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Abstract: Glucose is the primary energy source for the brain, and exposure to both high and low
levels of glucose has been associated with numerous adverse central nervous system (CNS) outcomes.
While a large body of work has highlighted the impact of hyperglycemia on peripheral and central
measures of oxidative stress, cognitive deficits, and vascular complications in Type 1 and Type 2
diabetes, there is growing evidence that glycemic variability significantly drives increased oxidative
stress, leading to neuroinflammation and cognitive dysfunction. In this review, the latest data
on the impact of glycemic variability on brain function and neuroinflammation will be presented.
Because high levels of oxidative stress have been linked to dysfunction of the blood–brain barrier
(BBB), special emphasis will be placed on studies investigating the impact of glycemic variability
on endothelial and vascular inflammation. The latest clinical and preclinical/in vitro data will be
reviewed, and clinical/therapeutic implications will be discussed.
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1. Introduction

Glucose, the predominant energy source for the body and particularly for the brain [1],
is transported across the blood–brain barrier and ultimately metabolized in the mitochondria to
generate ATP [2]. In the process of oxidative phosphorylation, reactive oxygen species (ROS) are
generated; thus, in disease states such as Type 1 and Type 2 diabetes, exposure to abnormal glucose
levels can lead to high levels of oxidative stress and inflammation [3,4]. While much attention has been
focused on the impact that chronic hyperglycemia [5] and hypoglycemia [6] have on the generation of
oxidative stress and inflammation, a growing body of evidence has shown that fluctuations in blood
glucose levels, or glycemic variability (GV), may also drive excessive ROS and oxidative stress and lead
to vascular and cardiovascular complications [7–9]. This review will summarize the recent literature
on the impact of fluctuations in glucose, neuroinflammation, and neurological function.

The definitions of glycemic variability have changed over time, particularly with the recent
widespread use of technologies such as continuous glucose monitors (CGM), which were first approved
in 1999 for clinical use in patients with Type 1 diabetes (T1DM) [10] and which measure interstitial
blood glucose levels. Prior to CGM use, the term glycemic variability was often used to describe
the variability between glycated hemoglobin (HbA1C) measurements or the direct blood glucose
measurements made at clinical visits. These measurements were often taken weeks or months apart.
With advances in CGM technology, the term “glycemic variability” has been adopted to indicate
changes in peripheral glucose on the order of minutes rather than weeks. For coherence in this review,
GV measured by inter-visit laboratory tests will be labeled “long-term” GV and GV measured through

Nutrients 2020, 12, 3906; doi:10.3390/nu12123906 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
http://www.mdpi.com/2072-6643/12/12/3906?type=check_update&version=1
http://dx.doi.org/10.3390/nu12123906
http://www.mdpi.com/journal/nutrients


Nutrients 2020, 12, 3906 2 of 14

CGMs will be termed “short-term” GV. A short guide to common acronyms in GV is included in
Table 1. For a more thorough review of GV metrics, see Rodbard 2009 [11] and Umpierrez 2018 [12].

Table 1. Common terms used in the study of glycemic variability.

Abbreviation Full Name Description

Short-Term GV Measures GV fluctuations in
minute to hour increments

Typically measured using a CGM and reported with
a variety of statistical measures

Long-Term GV Measures GV on the scale of
weeks to months

Typically reported as standard deviation of inter-visit
HbA1C

HbA1C GlycatedHemoglobin Assay Reported as percentage of glycated hemoglobin

CGM Continuous Glucose Monitor A wearable medical device that regularly records
blood sugar

It is important to highlight that in many studies, it may be difficult to distinguish between the
effects of glycemic control and glycemic variability. Glycemic control is most commonly measured by
the HbA1C (glycated hemoglobin fraction), which is the gold standard measurement for measuring
the risk of developing diabetes-related complications [13,14]. The HbA1C is largely the result of a slow
glycation of hemoglobin, which is dependent on circulating glucose levels and thus, is used as an
average blood glucose concentration over the past ~3 months (the approximate life span of a typical
red blood cell) [15]. Thus, the HbA1C does not provide any information about fluctuations in glucose
levels during that period. Some clinical trials have reported that improved glycemic control can be
associated with reduced glycemic variability [16]. Other studies have shown that the intensification of
diabetes therapy leads to higher rates of hypoglycemia and variability [17]. Thus, it may be challenging
to resolve the impact of glycemic control and variability independently. With the more frequent
use of CGM technology as well as other biological markers such as 1,5 anhydro-d-glucitol [18] and
glycated albumin [19], which may be more reflective of some measures of glycemic variation, such as
postprandial glucose excursions, future studies may provide more insight into the independent effects
of glucose control and variability.

2. Glycemic Variability, Oxidative Stress, and Inflammation

Reactive oxygen species are generated under normoglycemic conditions during cellular glucose
metabolism [2,3]. While once considered simply by-products of cellular metabolism, ROS are now
understood to play important roles in intracellular signaling, particularly in immune cells [20].
However, the balance between ROS production and antioxidant defense mechanisms is altered in
states of hyper- and hypoglycemia. This imbalance then leads to increased oxidative stress as well as
abnormal immune function and inflammation [4,21].

Hyperglycemia can drive excess ROS via multiple different pathways including: increased
flux through the polyol pathway [22,23] and hexosamine pathway [24,25]; increased formation of
advanced glycation end products [26,27]; and increased activation of protein kinase C through
diacylglycerol [28,29]. A more detailed exploration of these mechanisms can be found in
Brownlee 2001 [30] and it is very well-established that these underlying mechanisms contribute
to the hyperglycemia-associated microvascular complications of diabetes including retinopathy,
nephropathy, and neuropathy [30]. Although the mechanisms remain less well defined than in
hyperglycemia, hypoglycemia also increases oxidative stress, likely via dysfunctional mitochondrial
bioenergetics [31–33]. Mild hypoglycemia (2.5 mM) induces apoptosis and oxidative stress in
cultured Schwann cells, and, in animal models, exposure to repeated episodes of hypoglycemia
changes the expression levels of redox genes as well as increases levels of lipid peroxidation and
protein carbonylation [34]. In patients with Type 2 diabetes mellitus (T2DM) studied using a
hyperinsulinemic hypoglycemic clamp, mild hypoglycemia (2.7 mM) induces the production of markers
of oxidative stress and inflammation including c-reactive protein and urinary free 8-isoprostoglandin
F2α (8-iso PGF2α) [35].



Nutrients 2020, 12, 3906 3 of 14

Given the body of evidence that both hyperglycemia and hypoglycemia can independently
lead to increased oxidative stress and inflammation, it is not surprising that fluctuations in glucose
level may lead to even greater exposure to oxidative stress and inflammation [36,37]. The Diabetes
Complication and Control Trial (DCCT) was the landmark trial that established a clear link between
glycemic control (measured by HbA1C) and the risk of developing microvascular complications of
diabetes [38]. However, while the DCCT found that mean HbA1C values were the dominant factor in
predicting future microvascular complications, glycemic control did not solely account for the risk of
complications [38], raising the possibility that additional factors such as glycemic variability could be
contributing to patient outcomes [39,40]. To begin measuring the respective impact of hyperglycemia
compared to glycemic variability, Monnier and colleagues [36] examined the relationship between
CGM-measured metrics of glycemic variability and markers of oxidative stress. While individuals
with T2DM had higher levels of 8-iso PGF2α compared to non-diabetic control subjects, there was no
relationship between 8-iso PGF2α and any metrics of glycemic control including HbA1C or fasting
glucose levels. However, higher glycemic variability was strongly correlated with higher levels of
8-iso PGF2α [36]. Two subsequent studies amongst individuals with T1DM [41] and T2DM [42]
were not able to replicate these findings; however, there were differences in methodology as well
as severity of diabetes in the subjects. More recently, plasma levels of 1,5-anhydroglucitol (1,5-AG)
and glycated albumin, which may be more reflective of postprandial glucose excursions, [18] were
found to be more closely associated with markers of oxidative stress than HbA1C [43]. Moreover,
Ohara and colleagues reported improvements in markers of oxidative stress amongst 67 patients with
T2DM following a 6-month intervention to reduce postprandial glucose excursions and glycemic
variability [44]. While these studies point to a growing recognition that glycemic variability may
be associated with oxidative stress and inflammation, they also highlight how differences in the
methodology used to measure GV may have a significant impact on the interpretation of results.
In fact, two separate reviews by Nalysnyk et al. [45] and Siegelaar et al. [46], which mainly focused on
the impact of GV on peripheral complications of diabetes, drew fundamentally different conclusions
about whether GV should be considered a risk factor for diabetes-related complications. With the
recent publication of a consensus statement on the use of CGM to measure GV [47], future studies will
include more standardized metrics for measuring GV, which will greatly improve the reproducibility
of findings as well as improve our ability to interpret results.

Relatively fewer studies have focused specifically on the impact of GV on the central nervous
system (CNS), despite strong evidence that both hyperglycemia and hypoglycemia have a profound
impact on CNS function [48,49]. Thus, the remainder of this review will focus specifically on the
impact of GV on the CNS (Figure 1).
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Figure 1. The impact of glycemic variability in the central nervous system.

3. Impact of GV on Central Nervous System Inflammation

The interactions between various brain cell types and the brain microvessel endothelial cells,
often termed the neurovascular unit (NVU), are critical to maintaining CNS function. A growing body
of the literature has described the impact of diabetes on components of the NVU, including: astrocytes,
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which are less populous and disconnected from endothelial cells [50]; pericytes, which are similarly
diminished and retracted [51]; oligodendrocytes, which are decreased in number and short-lived [52];
microglia, which are abnormally polarized [53]; and endothelial cells, which are rendered less dense
and more permeable [54–56]. However, very little is known about the impact of glycemic variability
on the integrity of the NVU.

3.1. GV on Endothelium and Blood–Brain Barrier

Few studies have looked specifically at the impact of GV on brain endothelial function. In studies
using brain endothelial cell lines, a brief acute exposure to hyperglycemia was associated with greater
endothelial barrier dysfunction as measured by disruptions in transendothelial electrical resistance [57].
Similarly, in rodent models of diabetes, ex vivo analysis of brain microvessels revealed upregulation
of inflammatory markers and evidence that glycemic variation leads to endothelial disruption [58].
These studies are consistent with other studies using human aortic endothelial [59] and umbilical [60,61]
cell lines. In rodent models, glucose fluctuations have been associated with blood–brain barrier (BBB)
dysfunction [62] as well as altered brain glucose transport [63]. Glut1 expression in brain endothelial
cells has been shown in vitro to be increased following exposure to hypoglycemia [64] and the
distribution of Glut1 on luminal compared to abluminal surfaces of microvessel endothelial cells may
also be altered with hypoglycemia [63]. Conversely, chronic hyperglycemia may also be associated with
decreased expression of Glut1 at the BBB [65]. One of the few studies that studied GV directly found
that repeated glucose fluctuations had a larger effect on BBB transporters than acute, sustained glucose
changes [58]. In humans, poorly controlled T1DM and T2DM have both been associated with
diminished brain glucose [66,67].

In the human brain, virtually no studies have examined the impact of glycemic variability directly
on the blood–brain barrier. Amongst T1DM patients, higher glycemic variability is associated with
altered brain glucose transport capacity [68], which could have implications for hyperglycemia-driven
ROS production and oxidative stress. A series of studies by Ceriello and colleagues used experimentally
induced glucose fluctuations to investigate the impact of GV on endothelial function and inflammation.
In one study, acute hyperglycemia resulted in peripheral endothelial dysfunction measured by
flow-mediated dilation, increased inflammation measured by 8-iso prostaglandin F2α, and higher
levels of oxidative stress measured by plasma nitrotyrosine [69]. Additional studies using similar
experimental methods found that the degree of endothelial dysfunction and the levels of oxidative stress
were higher with repeated glucose oscillations compared to a single step in glycemia [70]. Moreover,
inducing extremes in glucose levels such as a period of hypoglycemia followed by hyperglycemia was
associated with worse endothelial function as well as greater oxidative stress and inflammation [71].
More recently, amongst individuals with poorly controlled T2DM, higher CGM measured short-term
GV, measured by mean absolute glycemic excursion (MAGE), was associated with an altered endothelial
cell epigenetic profile on P66shc, an adapter protein that is a key driver of mitochondrial oxidative
stress [72]. A similar study in patients with T1DM demonstrated a positive correlation between MAGE
and higher levels of endothelial progenitor cells, which are typically produced to repair vascular
damage [73].

3.2. GV and Microglia, Neuronal, and Astroglial Cells

Microglia, the resident macrophages of the central nervous system, comprise nearly 15% of cells
in the brain [74] and play a critical role in synaptic pruning [75–77] and the phagocytosis of cellular
debris [78]. Resting microglia are tightly regulated by interactions with neurons with microglia serving
protective functions [79]. For example, when provided with signals that indicate the presence of
tissue damage or pathogens, microglia become activated and carry out repair functions. However,
excessive activation may lead to the release of inflammatory cytokines, chemokines, reactive oxygen
species, and nitric oxide, which can lead to neuronal dysfunction and death [80–83]. Exposure to chronic
hyperglycemia has been associated with activation of microglia [84]. Furthermore, when studying
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the mouse microglial BV-2 cell line, exposure to glucose fluctuations resulted in increased markers of
metabolic stress leading to apoptosis and/or autophagy [85] as well as leading to shifts in microglial
polarization to the inflammatory M1 phenotype [53].

Several studies have also shown the direct impact of GV on neuronal and astroglial cells [86,87].
An in vitro study of neuroblastoma cells found that 6-h fluctuations of glucose from 90 to 900 mg/dl
resulted in decreased metabolic activity measured by a reduction in tetrazolium salts, and increased
apoptotic gene expression [86]. A similar in vitro experiment on C6 astroglial cells exposed to
hyperglycemia (12 mM) or glucodeprivation (0 mM) exhibited decreased cellular proliferation and
glucose uptake as well as increased mitochondrial dysfunction, DNA damage, and ROS production [87].
An in vivo study comparing glucose fluctuation to constant hyperglycemia in female Goto-Kakizaki
(GK) rats used twice daily intraperitoneal insulin injections to model GV and found that GV caused
significantly more neuron apoptosis than hyperglycemia alone [88]. In addition, GV–GK rats had higher
levels of inflammatory markers including tumor necrosis factor-alpha (TNFα) and interleukin-1beta [88].
A comparable study of male Sprague Dawley rats with streptozotocin-induced diabetes found similar
results [89]. GV caused by the tri-daily alternation of intraperitoneal injections of glucose and insulin
induced an inflammatory response measured by TNFα and interleukin-6 (Il-6) [89]. Furthermore,
GV led to observable neuronal structural damage in myelin sheaths and axons when viewed via
electron microscopy, which may explain the rats’ impaired performance on maze and passive avoidance
tests [89].

3.3. GV and the Human Brain

Whether the mechanisms identified in animal models associating glycemic variability with
neuroinflammation translate into the human brain is not clear and few studies have directly investigated
this question. However, there is evidence that glycemic variability may be associated with impairments
in cognitive function as well as decreased recovery from CNS injury.

Amongst patients with T2DM, in studies measuring long-term GV most [90–92], but not all [93],
studies have found that greater long-term GV is associated with cognitive deficits. One large-scale
study of over 11,000 older patients observed no relationships between HbA1C, variability in HbA1C,
c-reactive protein levels, and cognitive performance [93]; however, several other studies amongst
healthy, older patients with T2DM and no history of cognitive dysfunction found that long-term GV
was associated with lower metrics of cognitive function [90,91] as well as with decreased levels of
limbic and temporal–parietal gray matter [92]. Moreover, in a large cohort of >16,000 older patients
with T2DM followed prospectively, long-term variation in HbA1C and variability in fasting plasma
glucose levels was associated with an increased risk of developing Alzheimer’s disease [94]. In more
recent studies using continuous glucose monitoring, patients with T2DM with greater MAGE had
worse performance on the Montreal Cognitive Assessment, Trail-Making Test-B, and the Verbal
Fluency Test [95]. In participants studied in the Atherosclerosis Risk in Communities (ARIC) study
with a 20-year follow-up, levels of 1,5-AG, a biological marker of postprandial glucose elevations,
were significantly associated with the risk of developing dementia [96]. While most studies above
involved older adults with T2DM, amongst children with T1DM, children with larger fluctuations
in glucose levels were also noted to have poorer performance on cognitive tests, particularly related
to memory [97]. Other studies have shown that antecedent hypoglycemic episodes in children may
adversely impact performance on cognitive tasks [98,99]. Finally, even amongst individuals without
diabetes, long-term GV is associated with poorer performance in memory recall and verbal fluency
tests in older subjects [100,101].

GV-driven CNS inflammation may also play an important role in acute CNS injury. In a study
of 417 participants with acute coronary syndrome (ACS), short-term GV, measured by the mean
amplitude of glycemic excursion, was an independent predictor of subsequent adverse cardiovascular
and cerebrovascular events [102]. Similarly, amongst patients hospitalized for ACS in the intensive care
unit, the standard deviation of inpatient blood glucose measurements was the strongest predictor for
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subsequent major cardiovascular events [103]. Numerous studies have also reported that higher GV is
associated with poor outcomes following stroke [104–106] including decreased functional outcomes
at discharge [104], cognitive impairments post stroke [105], and increased 3-month mortality [106].
Finally, in a study of individuals with traumatic brain injury, increased GV was associated with poorer
long-term neurological outcomes [107]. While the mechanisms underlying these associations remain
unclear, strong evidence indicates that both hyper- and hypoglycemia contribute to the inflammatory
state that occurs post-CNS injury [108].

4. Strategies to Minimize GV

At the time of writing, there are nearly 70 clinical trials specifically investigating the impact of
glycemic variability on clinical outcomes [109]. With the widespread use of newer technologies such
as continuous glucose monitors to measure short-term GV, more publications have concluded that GV
is an additional source of diabetic complications independent of glycemic control. These publications
have questioned the use of HbA1C as the solo marker for diabetes treatment [110], evaluated the
evidence from interventions to reduce GV [37], and proposed treatment plans that use GV as a
component of diabetes management [111]. Both diabetes treatments and dietary choices have been
found to reduce GV and the results of each will be explored here in turn.

4.1. Therapeutic Interventions to Minimize GV

Clinical studies have investigated the impact of both diabetes treatment factors as well as dietary
factors that impact glycemic variability and several studies have indicated that reducing GV leads to a
reduction in oxidative stress and a lower risk of developing diabetes-related complications. CGM use
alone has been shown to improve glycemic control and minimizes glucose fluctuations [112,113].
In addition, studies on different modes of insulin administration have also shown that certain methods
of administering insulin as treatment for T1DM achieve lower levels of GV. Continuous subcutaneous
insulin infusion (CSII) has also been shown to achieve both better glycemic control and lower GV than
multiple daily injection insulin administration [114]. Other treatment options available for diabetes
control besides insulin have proven to be beneficial in reducing GV and inflammation including
glucagon-like peptide-1 receptor antagonists (GLP-1 RA). One study found that use of the GLP1-RA,
liraglutide, in conjunction with CGM in individuals with newly diagnosed T2DM improved not
only glycemic control and glycemic variability, but also decreased oxidative stress markers [115].
Clinical trials with dipeptidyl peptidase 4 (DPP-4) inhibitors, which prevent the degradation of GLP1
have also been found to decrease MAGE as well as oxidative stress markers assessed by nitrotyrosine
and inflammatory markers IL-6 and IL-18. Nitrotyrosine and IL-6 changes significantly correlated
with changes in MAGE, but not in HbA1c [116]. Meglitinides, a class of antidiabetic agents which
act on the KATP channels on pancreatic “β” -cells to induce insulin release, can reduce postprandial
glucose excursions and GV. These medications have also been shown to reduce peripheral oxidative
stress markers including a regression of carotid intima–media thickness and a reduction in markers of
systemic vascular inflammation in individuals with T2DM [117,118].

4.2. Dietary Interventions to Minimize GV

A large number of dietary variables have been shown to affect glucose fluctuations, including diet
composition and meal timing. Evidence has shown that the type and quantity of carbohydrates has the
greatest influence on glycemic response [119]. Lin et al. correlated dietary components with glucose
fluctuations in individuals with T1DM. They found that the group with a carbohydrate intake of
<50% of their daily caloric intake had lower glucose fluctuations [120]. Other studies have shown
that the supplementation of a high glycemic index meal with proteins such as whey protein reduces
post meal glucoses by delaying gastric emptying, stimulating insulin and incretin secretion [121].
A study performed in subjects with obesity, in which two hypocaloric diets with similar macronutrient
composition but different glycemic index were given, showed that adherence to a low glycemic index
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hypocaloric diet led to lower levels of GV as well as improved endothelial function when compared to
high glycemic index foods [122]. Other studies have shown that the addition of certain ingredients
can reduce glycemic response of foods. As an example, Henry et al. provided a low glycemic index
(isomaltose) and high glycemic index (sucrose) diet to healthy men in a randomized, double-blind,
controlled crossover design. The low glycemic index diet resulted in lower glycemic variability
measured by CGM [123].

The order of food intake may also impact postprandial glucose levels. Shukla et al. showed that
the temporal sequence of carbohydrate ingestion during a meal has a significant impact on postprandial
glucose and insulin excursions [124]. Individuals were given identical meals of fixed portions of
carbohydrates and protein but in a different order. Individuals who consumed the carbohydrates first
were noted to have higher postprandial glucose excursions compared to those who had the protein
component first [124]. In patients with type 2 diabetes, skipping breakfast has also been found to lead to
higher GV. Subjects skipping breakfast had a lower fiber intake and higher carbohydrate-to-fiber ratio
than those eating breakfast. While total calories per day were equal between the groups, omission of
breakfast was associated with higher postprandial glucose responses after lunch and dinner, which may
be mediated by lower glucagon-like peptide 1 and insulin secretion [125]. Finally, in a within-subject
analysis study of women with gestational diabetes mellitus, high carbohydrate morning meals also
had higher measures of MAGE but lower mean glucose compared to equicaloric diets that distributed
carbohydrates throughout the day [126].

5. Conclusions

There is increasing evidence that glycemic variability is an independent driver of increased
oxidative stress and inflammation, which can be particularly detrimental to CNS function.
With greater use of technologies such as CGMs, which will allow for more rigorous quantifications
of GV, future studies will be needed to define the exact relationships between GV, inflammation,
and brain function.
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