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SUMMARY

The need for attention to enable statistical learning is debated. Testing individuals with impaired conscious-
ness offers valuable insight, but very few studies have been conducted due to the difficulties inherent in such
studies. Here, we examined the ability of patients with varying levels of disorders of consciousness (DOC) to
extract statistical regularities from an artificial language composed of randomly concatenated pseudowords
by measuring frequency tagging in EEG. The objectives were firstly, to assess the automaticity of the seg-
mentation process and the correlations between the level of covert consciousness and statistical learning
capacities; secondly, to identify potential new diagnostic indicators. We observed that segmentation abilities
were preserved in some minimally conscious patients, suggesting that auditory statistical learning is an
inherently automatic low-level process. Due to significant inter-individual variability, word segmentation
might not be robust enough for clinical use. In contrast, temporal accuracy of auditory syllable responses
correlates strongly with coma severity.

INTRODUCTION

The structure of sensory sequences can be uncovered by

analyzing statistical patterns present in the input, a mechanism

known as statistical learning. It has been shown that such a

mechanism operating between adjacent syllables in a speech

stream can be exploited to detect words without any other

cues.1 In this behavioral experiment, four pseudo-words were

randomly concatenated to form a continuous sequence with a

high predictability of the next syllable within the pseudo-word

but a drop of transition probability between pseudo-words.

Despite the absence of other cues for word segmentation,

such as those provided by prosodic indices, participants were

able to distinguish words corresponding to triplets with high tran-

sition probabilities between syllables, from part-words comp-

rising a low transition between syllables. This result was subse-

quently extended to non-linguistic streams2,3 as well as to visual

sequences.4 This phenomenon is not exclusive to the human

species,5,6 nor limited to adjacent elements; it also extends to

non-adjacent dependencies.7 Furthermore, evidence indicates

that humans are also capable of learning higher-order statistical

structures in sequences.8–12 Thus, it has been proposed that sta-

tistical learning represents a fundamental learning mechanism

operating in different modalities and is sensitive to statistical reg-

ularities at different temporal scales.

The question of whether auditory statistical learning occurs

automatically and whether this mechanism requires attention re-

mains a matter of debate. While most studies have used passive

exposure to sequences in awake and attentive subjects, the

impact of attention on statistical learning has been explicitly

questioned by some authors, with mixed results. While some

studies have shown a drastic decline in performance under
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divided attention,13,14 others have shown that auditory sequence

segmentation is preserved when attention is diverted by asking

subjects to focus on an independent visual sequence.15,16

Another study even reports enhanced performance in partici-

pants experiencing cognitive fatigue following an effortful work-

ing memory task prior to sequence presentation.17 Thus, studies

that directly manipulate attentional focus do not provide any

definitive answer regarding the interaction between auditory sta-

tistical learning and participants’ attentional resources.

Another approach to answering this question would be to

study statistical auditory learning in sleeping subjects. Although

not directly testing attention, sleep studies address the automa-

ticity of this mechanism. In a recent study, Batterink et al.18

tested sleeping adults with pseudo-word segmentation tasks

composed of either bi-syllabic or tri-syllabic pseudo-words.

The results indicated that sleeping adults were only sensitive to

bi-syllabic pairs but failed to extract tri-syllabic words. These re-

sults suggest that sleep might reduce the integration period of

the statistical computation without preventing the computation

between adjacent items. This interpretation appears congruent

with the findings of Strauss and colleagues’19 who observed dur-

ing sleep, a preserved mismatch response to auditory violations

of a sequence local regularity but no reaction to a violation con-

cerning a longer timescale regularity. In contrast, one-to three-

day-old neonates tested with EEG in a pseudo-word segmenta-

tion paradigm similar to that of Batterink et al. in adults20–22 were

able to segment tri-syllabic pseudowords during sleep (for quad-

risyllabic pseudo-words see22).

Studying statistical learning in patients with coma could also

reveal the automaticity of statistical learning. Among patients

with Disorders of Consciousness (DOC), varying degrees of re-

sidual consciousness may be observed, as assessed by diag-

nostic tools suchasCRS-R23or categorization intoUnresponsive

Wakefulness Syndrome (UWS) -no visible sign of awareness- or

Minimally Conscious State (MCS) –visible partial aware-

ness-24,25. One attempt to measure auditory statistical learning

in patients with DOC was recently made by Xu et al.26 using bi-

syllabic words concatenated in a continuous, monotonic stream.

They reported some learning in patients with emerging con-

sciousness. Indeed, the power at the frequency of syllable pairs

and its harmonics were significantly above zero, suggesting suc-

cessful segmentation of sequences intowordpairs. Although this

study supports thepossibility of auditory statistical learning in pa-

tients with DOC, it had certain limitations. Firstly, the bi-syllabic

units employed in the study, which required only a pairing be-

tween two items, do not encompass all aspects of segmentation,

as evidenced by the findings of the sleep studies discussed

above. Furthermore, the pairs presented in the study could be

either frequent and meaningful in natural language or reversed

and thus meaningless (e.g., "go home" versus "home go"). How-

ever, even in the reversed condition, syllables within a pair are

more related to each other in natural language than syllables be-

tween pairs. This feature makes it difficult to distinguish the cur-

rent learning of statistical regularities in the stream from a reacti-

vation in memory of previous exposure to natural language. This

limitationwaspartially addressedbyobtaining similar resultswith

the learning of artificial tri-syllabic pseudowords, but the sample

of minimally conscious patients was small (N=8).

In the present study, we used the experimental design and

techniques previously employed in our research with sleeping ne-

onates20 (seeSTARMethods): Our aimwas to investigate the abil-

ity of patients with DOC to recognize statistical regularities in an

artificial syllable sequence comprising four tri-syllabic pseudo-

words which were concatenated in a pseudo-random manner

(Figure 1). The syllables within the words followed each other pre-

dictively (transitional probabilities = 1), while between the words,

the transitional probabilities dropped to 1/3. In addition, the sub-

jects were presented with a random sequence composed of the

same syllables with a flat transitional probability of 1/11 between

syllables. A group of healthy awake adults was also included as

a control to compare with the clinical population.

We utilized high-density EEG recordings (256 channels)

to assess sequence segmentation using the frequency tagging

method, which has been demonstrated to be a robust

approach for evaluating non-responsive subjects in our previous

studies.16,20,22,27 This technique relies on detecting rhythmicity

in brain activity driven by the rhythmicity of the input sequence.

This method permits the monitoring of sequence segmentation

by following the modulation of power and Phase Locking Value

(PLV) at the syllabic and word frequencies. The power at the syl-

labic rate was analyzed in order to estimate basic auditory pro-

cessing at the individual level and check which patients have

intact auditory perception. Indeed, patients with severe auditory

perception disorderwould exhibit no frequency tagging at the syl-

labic rate (i.e., nostableauditoryERP). Auditory statistical learning

and segmentation of the tri-syllabic words are revealed by an in-

crease in the word-rate frequency and eventually its harmonics.

Not only does this paradigm address the question of

conscious attention in auditory statistical learning, but also offers

a promising way to enhance the clinical assessment of covert

consciousness in patients with DOC. Previous studies have

shown that EEG features are altered in relation to the level of con-

sciousness. These include spectral power,28 auditory ERP

amplitude and latency,19 and mismatch responses in EEG odd-

ball paradigms.29 The depth of language processing during time-

locked natural language exposure has also been suggested as a

useful metric for predicting patient outcomes.30 Given the im-

portance of language function30–33 and correct metabolic func-

tioning of the left middle temporal cortex34 in the recovery of pa-

tients with DOC, investigating language-related paradigms is a

promising avenue for the development of new clinical tools.

Therefore, the present study also aims to investigate whether

neural markers of auditory statistical learning can be used for

diagnosis and outcome prediction in patients with DOC.

RESULTS

Evidence of word segmentation in the different
experimental groups
To estimate whether patients were able to correctly segment the

words concatenated in the structured stream, we measured the

normalized PLV at the word rate and its first harmonic and

compared the values to those measured in the random stream

(Figure 2A).

Firstly, in healthy control subjects, numerous electrodes ex-

hibited significant positive PLV at both the word rate and its

2 iScience 28, 111591, January 17, 2025

iScience
Article

ll
OPEN ACCESS



harmonic when listening to the structured stream (p < 0.05 FDR

corrected) but not to the random stream, with a significant

difference between the two conditions in many electrodes

(Figure 2). The same analysis in patients in the minimally

conscious state (clinical assessment: MCS or EMCS) showed

similar results, although with fewer significant electrodes. In

the UWS group, a trend in the same directions as the other

groups was visible (Structured stream at 2.66Hz: 23 channels

with p < 0.05 uncorrected), but only one channel survived the

FDR correction at the word rate harmonic. The comparison

with the random stream showed a very modest effect (1 elec-

trode with p < 0.05 FDR corrected). In the coma patients, no

electrode showed a significant segmentation effect.

Correlation of the segmentation performancewith coma
recovery scale revised
We then estimated for each electrode the correlation of the word

and harmonic PLV with the clinical Coma recovery scale revised

(CRS-R) estimated just before the recording, excluding the

healthy participants. We found a highly significant correlation

spread on many channels of the frequency tagging (normalized

PLV) and the CRS-R score during the structured stream only

Figure 1. Presentation of the paradigm and

dataset

(A) Flow chart of the inclusion of the recording. 180

recordings of comatose patients were performed.

4 were discarded because patients were classi-

fied as fully recovered and 3more recordings were

excluded because no artifact-free epochs could

be found in the data, preventing further analysis.

Similarly, 3 recordings were rejected out of 72 in

the control group.

(B) Description of the two streams presented to

participants. The random stream consists of syl-

lables that can be followed by any of the other 11

syllables, resulting in a flat transitional probability

of 1/11 throughout the sequence. The structured

stream is composed of four tri-syllabic pseudo-

words with transition probabilities between sylla-

bles equal to 1 inside the pseudo-words and 1/3

between the pseudo-words.

(C) Frequency tagging analyses: The syllables

were presented at a rate of 4Hz, which is expected

to elicit a 4Hz oscillation in the brains of normal

hearing subjects. If, and only if, the structured

sequence was segmented based on transition

probabilities, the phase locking value (PLV) at the

word rate (1.33Hz) and its harmonics (2.66Hz)

should increase relative to the random stream.

for the word first harmonic (24 channels

with p < 0.05 FDR) with a significant

difference with the random condition

(Figure 2B).

Individual effect size
The effect size for each recording was

estimated to assess inter-individual vari-

ability and to determine whether it was

possible to separate subjects who segmented the structured

sequence from those who did not (Figure 2C). This analysis repli-

cated our previous results, with both healthy controls and pa-

tients with MCS showing an average effect size greater than

zero for both the word rate and its harmonic. The distribution

of the data revealed a high degree of inter-individual variability

with no clear bi-modal distribution. This precludes the possibility

to draw reliable conclusions about a patient’s ability to perform

the task on an individual level.

Controls taking into account low-level auditory
perception as captured by the response at the syllabic
rate
The previous correlation between PLV at the word harmonics

and CRS-R score might indicate either a modulation in auditory

statistical learning and segmentation abilities with DOC severity

or a spurious correlation due to a higher number of patients with

auditory perception impairment and a severe DOC. Fortunately,

PLV at the syllabic rate effectively summarizes basic auditory

perception and temporal synchronization of auditory ERP. We

presented the distribution of the average PLV at a syllabic rate

for each recording in Figure 3A. Therefore, we repeated the
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previous analyses (Figure 2) while excluding recordings with

negative syllabic rates to ensure that all recordings left are with

patients with correct hearing and a level of signal/noise in the

recording that enables correct measure of frequency tagging.

The results remained similar, both considering the PLVmeasures

in each group (Figure 3B) and the correlation with CRS-R

(Figure 3C).

Finally, to mitigate the impact of the variation of the PLV at the

syllabic rate of each electrode on the segmentation metrics, we

regressed out the syllabic rate for each recording for each elec-

trode before computing the correlation of the residuals with the

CRS-R score. For this analysis, we included all recordings of pa-

tients with DOC, comprising those with negative average syllabic

rates. We obtained results similar to the original analyses: 1) a

significant correlation during the structured stream only with

the first harmonic, but not at the fundamental; 2) a significant

contrast between structured and random sequence streams

(Figure 3D).

The analyses presented in Figures 2 and 3 have been repli-

cated using power instead of PLV with similar results (Figures

S1 and S2 in supplemental information).

Auditory ERP measured with syllabic rate frequency
tagging
Independently from statistical learning, we found that the fre-

quency tagging at the syllabic rate was highly correlated with

the clinical assessment of the level of consciousness in patients

with DOC. Indeed, we found many electrodes for which PLV and

Power at the syllabic rate (4hz) robustly correlated with diag-

nostic scales, such as CRS-R (Figure 4). PLV at the syllabic

rate significantly correlated with CRS-R on most electrodes.

On Figure 4 B, we display the distribution of the average PLV

value from the significant electrodes, for each subject by clinical

assessment group. We clearly observe higher PLV at the sylla-

bic rate associated with better clinical assessment. We also

compared for each group the probability of improved outcome

six months later depending on the PLV at the syllabic, word,

and word harmonic rates and found no significant differences

(for the syllabic rate analysis, recordings associated with an imp-

roved six-month outcome are displayed in green on Figure 4).

DISCUSSION

Frequency tagging provides a direct neural measure for moni-

toring word segmentation within a continuous speech stream

obviating the need of an explicit behavioral response. This

approach has proven its usefulness in assessing segmentation

abilities in preverbal infants7 and neonates.20 Consequently,

we proposed to apply this paradigm in patients with DOC as

also did Xu et al.26 Our first goal was to establish whether audi-

tory statistical learning and auditory sequence segmentation

might persist in patients with disorder of consciousness amidst

conflicting literature on the role of conscious attention. Our sec-

ond goal was to explore whether statistical learning metrics may

help the clinical diagnosis and care of these patients.

Auditory statistical learning is partially preserved in
patients with disorders of consciousness
The automaticity of statistical learning is still being debated.

Indeed, while some studies showed a large decline in perfor-

mance under divided attention13,14 arguing for the need for

focused attention on the task, others have reported that seq-

uence segmentation persists even when outside the focus of

attention15,16,35 and even improves with cognitive fatigue that

impairs focal attention.17 Furthermore, sleeping neonates can

automatically segment a stream based on its statistical

Figure 2. Frequency tagging analysis

(A) Normalized Phase Locking Value (PLV) for

each electrode at the word rate (1.33Hz) and at its

first harmonic (2.66Hz) during the random and

structured streams in the recordings of Coma,

UWS,MCS, and Healthy subjects. The bottom line

presents the topography of the contrast [struct-

ured > random]. Dots represent electrodes with

p < 0.05 before multiple comparison correction

and red dots electrodes significant after FDR

correction.

(B) Correlation of the PLV at word rate and its

harmonic with Comatose Recovery Scale-Rev-

ised (CRS-R) in patients with DOC. The harmonic

of the word rate (2.66Hz) significantly correlates

with the clinical score only during the structured

stream.

(C) Distribution of the effect size for each recording

in each group and for the word rate (bottom row)

and its harmonics (top row). Each dot represents

the difference between structured and random

PLV at the word and the harmonic rates for the 10

best electrodes in each condition of a particular

recording. Bold vertical bars represent the

average of the distributions. Significant difference

in the distribution average with zero is represented

by stars (* <p < 0.05, **p < 0.01, ***p < 0.001).
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properties.20,22 Similarly, other studies investigating visual sta-

tistical learning with hypnosis,36 or TMS disruption of DLPFC,37

suggest that statistical learning abilities are enhanced when pre-

frontal activity is reduced.

Studies in patients with DOC provide valuable insight into this

issue. In a recent study,26 showed that some comatose patients

were able to extract bi-syllabic real words (ormixed) arguing for a

preservedminimal version of auditory statistical learning on pairs

of real words. Here, we extend and strengthen this result by us-

ing a stream of tri-syllabic pseudo-words with flat intonation, i.e.,

without any additional linguistic cues to aid segmentation. Thus,

any increase of PLV and power at the frequency of three syllables

can only be based on the online calculation of the statistical rela-

tionship or transitional probability (TP), between the syllables,

i.e., TP = 1 between syllables belonging to the same word and

TP = 1/3 between syllables belonging to different words. We

checked for any spurious effects by comparing this structured

stream with a stream consisting of a concatenation of the

same syllables with a flat probability (TP = 1/11). Significant dif-

ferences between the two streams were observed in MCS and

EMCS patient groups and possibly a very weak trend in patients

with UWS. Since patients with MCS suffer from severe atten-

tional dysfunction, this result provides evidence that the full

focus of attention is not needed for this type of learning. Sleeping

adults were only able to chunk bisyllabic pseudowords, unlike

neonates who succeeded with trisyllabic pseudo-words as is

the case here. It can be related to the linguistic expert adults’

bias to segment the stream in shorter units (Franck et al., 2010)

that might interfere more in a sleep stage than in a coma. In

any case, chunking a stream in its tri-syllabic components re-

veals that even patients with MCS and EMC were able to inte-

grate TP over several syllables to discover the TP drop that is

used to chunk words.

Why are results more visible on the first harmonic
compared to the word rate?
All our analyses pointed toward a greater frequency tagging at

the first harmonic compared to the fundamental frequency at

the word rate. In our design, the harmonic of the word rate

(2.66Hz) is different from half of the frequency of the syllabic

rate (2Hz); thus, the modulation seen here can only be due to

the discovery of the word structure and not to the perception

of the syllables. The evoked activity by each syllable and word

superpose as there is no pause between syllables and words.

The shape of this event-related activity is complex, and the Four-

ier transform decomposes it into a set of sinusoids with different

Figure 3. Frequency tagging analysis limited to subjects with a positive syllabic rate

(A) Average PLV at the syllabic rate (4Hz) for each recording (each dot represents one recording). Syllabic rate is a good metric of preserved auditory perception

and correct signal/noise ratio in the recording. For the following analysis, we only kept the recordings with a positive average syllabic rate (black dots) as we

cannot be sure that the other participants even heard the stimuli. Red dots represent recordings with negative syllabic rates, which were then excluded from the

analyses presented in B and C.

(B) Topographies of the normalized PLV at each electrode at the word rate (1.33Hz) and its first harmonic (2.66Hz) during the random and structured streams in

patients with Coma, UWS, MCS, and Healthy subjects, excluding recordings with negative average PLV at a syllabic rate (red dots on Panel A). The bottom line is

the contrast structured > random. Black dots represent electrodes with p < 0.05 before multiple comparison correction and red dots electrodes significant after

FDR correction.

(C) Topographies of the correlation score between the PLV at word rate (or harmonic) with CRS-R scores, excluding recordings with negative average PLV at

syllabic rate. The harmonic of the word rate (2.66Hz) significantly correlates with this score during the structured stream only. (D) To account for the variation of

frequency tagging at syllabic rate, we computed the correlation after having regressed out the effect of DOC on syllable entrainment, results remained similar.
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powers depending on the ERP shape. A significant response at

the first harmonic argues for a rhythmic response that vanishes

faster than the word length, such as a larger response words’

first syllable. In contrast, an activity drooling over the following

syllables belonging to the word (e.g., integration of the three syl-

lables) would be more visible at the fundamental frequency.38

ERP shapes can explain the different sensitivity of the two mea-

sures observed in the above analyses. Further experiments are

needed to investigate whether this difference reveals a different

encoding of the word in memory. For instance, sleeping neo-

nates segment a tri-syllabic non-word streambut only remember

the first syllable of the words, contrary to adults who memorize

the entire word.20

Correlation between the level of residual consciousness
and statistical learning
We observed a significant correlation between CRS-R score and

the first harmonic of the word rate in patients with DOC. This re-

veals that even though this auditory statistical learning task does

not require attention, a deeper consciousness disorder penalizes

learning. Therefore, we tried to separate whether impaired

learning was related to deficient statistical computations or to

a deficit in auditory perception due to degraded auditory/pho-

netic encoding or the result of the suboptimal synchronization

of cortical activity with the stimulus. To do this, we used the

4Hz entrainment as ametric for the auditory low-level processing

quality as well as a proxy of the recording quality which is some-

times impaired by the electrically noisy environment of the

hospital wards. We linearly regressed it to CRS-R score. We

then used the residuals of this regression in the correlation anal-

ysis with the word rate and its harmonic (Figure 3). Despite this

stringent control, a significant correlation remained between

CRS-R and the first harmonic only for the structured stream as

well as a significant difference between the structured and

random condition. This suggests that statistical learning abilities

were affected by the degree of residual consciousness, even in

cases where the brain exhibited the capacity to track the syllabic

rhythm. It remains possible that in some cases, syllabic entrain-

ment was based solely on the vocalic nucleus of the CV syllable,

without the exact phonemes being encoded, thus ruling out

the possibility of statistical learning. This could be the case for

patients with lesions of the left perisylvian regions involved in

phonetic processing. Fama et al.39 reported that patients with

stroke, notably those with anterior lesions, did not show evi-

dence of statistical learning in a behavioral paradigm in which

they had to rate their familiarity with words, part-words and

non-words after 10 min of familiarization with a similar structured

stream than here. Despite the high number of recordings studied

here, we had not enough power to orthogonalize the DOC de-

gree and the type, size, localization of the lesions. Further studies

are needed, notably by testingmusical tones to simplify the iden-

tification of the tokens in the stream.

Is there a clinical interest for this type of paradigm?
Despite the significant result described above, a word-segmen-

tation task as implemented here might not be usable as a stand-

alone clinical tool, although it could be relevant to include it in a

battery of tests as this task targets a basic learning mechanism.

The search for better indices of recovery, as well as indices

quantifying the integrity of different brain functions beyond the

anatomical lesions visible on MRI, is a necessity to guide care.

However, here, the CRS-R effect size observed was smaller

than the inter-individual variance and not highly significant, and

language functions might be better quantified by sentences in

the native language.30,33,40 By contrast, the frequency tagging

at the syllabic rate proved much more informative. Indeed, the

correlation with CRS-R was greatly and highly significant and

features of the auditory ERPs have been shown to be usable.19

In our dataset, many electrodes showed a significant correlation

between the auditory 4Hz frequency tagging and CRS-R mea-

sures. Steady-State measure is a more robust and time-eco-

nomic way to elicit brain responses than isolated ERP, and fre-

quency tagging is a more robust way, to look at the same

neural response. This is confirmed by the typical auditory topog-

raphy of the effect size of the correlation (Figure 4A). Previous

studies suggested that the brain responses to the violation of

Figure 4. Syllabic rate correlation with

CRS-R

(A) Topography of the correlation score between

syllabic rate PLV and CRS-R. For each electrode,

we correlated the PLV measure at the syllabic rate

(average across random and structured condi-

tions) with patients’ CRS-R measured just before

the recording.

(B) For better visualization of the effect, we report

here the distribution of the average PLV at 4Hz

across electrodes for each recording and patients’

status. The average frequency tagging is modu-

lated by the participant’s depth of disorders of

consciousness but the inter-recording variance

within each diagnostic group stays higher than the

variance explained by the depth of disorders of

consciousness. Note that this figure is not inde-

pendent from the analysis done in Panel A so we

did not perform statistical analysis on this. This is

just presented for a better visualization and estimation of the inter-recording variance. Recordings associated with an improved clinical assessment 6 months

later are displayed in green. We found no systematic relation between PLV at the syllabic rate and the probability of improved clinical condition 6 months later.
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auditory regularities, such as mismatch negativity or P300

waves,32,41–44 can indicate the presence or absence of aware-

ness in these patients. Thus, syllabic rate entrainment is a

promising venue. Further research might be useful to better

characterize which frequencies to be entrained are themost sen-

sitive and which electrodes are the most informative for clinical

application.

Conclusion
In this study, we discovered evidence of preserved auditory sta-

tistical learning of word boundaries in some patients with DOC

using frequency tagging measurements. This result confirms

our hypothesis that attention is not required for auditory statisti-

cal learning and extends the previous findings of efficient statis-

tical learning abilities in sleeping neonates. Our study shows that

statistical learning is an automatic process that scans the audi-

tory environment even in conditions of disturbed conscious

attention. In addition, we showed that these metrics of auditory

statistical learning were significantly correlated with diagnostic

metrics such as CRS-R, implying that they can be used as indi-

cators of the level of consciousness and the prognosis of pa-

tients with DOC. Finally, we proposed that frequency tagging

robustness could be of interest for better characterization of

auditory ERP modification in patients with DOC, warranting fur-

ther investigation of this measure in relation to the neural mech-

anisms and the clinical markers of consciousness disorders.

Limitations of the study
Running EEG in an ICU environment comes with limitations in

terms of noise (electrical noise more pronounced than in Lab

environment with Faraday cage, involuntary movements of pa-

tients .. ). As described in the discussion, this high noise might

prevent meaningful interpretation at the subject level, especially

in a clinical context.
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21. Fló, A., Brusini, P., Macagno, F., Nespor, M., Mehler, J., and Ferry, A.L.

(2019). Newborns are sensitive to multiple cues for word segmentation

in continuous speech. Dev. Sci. 22, e12802.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Comatose patients
81 patients from Huashan hospital with disorders of consciousness were included in the experiment for a total of 180 recordings

(including 53 in females) from March 2021 to September 2022. Clinical assessment of the patient state was made just before

each recording. 4 recordings were discarded as participants were labeled as fully recovered. We also rejected recordings that

had not at least one artifact free epoch for each condition (random and structured) to increase signal/noise ration and prevent false

positive or false negative results.45 Indeed, in the absence of at least one epoch per condition, we could not estimate the PLV differ-

ence between random and structured sequences. 3 recordings were then rejected based on this criterion leaving a total of 173

recordings. Out of those 173 recordings, 13 were classified as coma, 61 as UWS and 99 as minimally conscious or emerging of con-

sciousness. The experiment consisted of three stimulus sequences (see details in the following), of which 78 patients completed

84 recordings of list 1, 50 patients completed list 2 recordings and 46 patients completed list 3 recordings. Therefore, a total of

40 patients completed three different lists at different time points.

Healthy control participants
26 healthy control adults (>18yo, average age:25.27; 18 females and 9 males) from local community were also tested along which

24 completed the experiments (72 recordings). Similar to the patient group, we rejected 3 recordings that had not at least one

artifact-free epoch in each condition, and thus analyzed the 69 remaining recordings. All 24 healthy volunteers completed all three

lists.

No male/female differences was expected in this experiment so we recruited patients regardless of their sex.

The study protocol was approved by the Ethical Committee of Huashan Hospital of Fudan University (approval no. HIRB-

2014-281 and updated approval no. HIRB-2023-051), and informed consent was obtained from all healthy participants and

caregivers of all patients. All documents were submitted and archived at the Ethical Committee of Huashan Hospital of Fudan

University.

METHOD DETAILS

Stimuli
We synthesized the syllables using the open-source text-to-speech synthesizer eSpeaker46 with Mandarin Chinese language (zh)

and the female voice variant f2. We set the pitch parameter to 70 and adapted the speed to obtain syllables with a duration as close

as possible to 250 ms. We further corrected the syllables using Praat.47 Specifically, we removed silent periods in the beginning and

the end to obtain syllables lasting exactly 250ms and removed pitch changes setting a constant pitch of 225 Hz. The syllables audio

files were concatenated without pauses to obtain the streams, and the first and last 4.5 s were ramped up and down to avoid the start

and end of the stream might serve as perceptual anchors.

The structured streams consisted of a semi-random concatenation of four tri-syllabic pseudowords. The only restriction on the

concatenation process was that the same pseudoword could not appear twice in a row, and that the same two pseudowords could

not repeatedly alternate more than two times (i.e., the sequence WkWjWkWj, where Wk and Wj are two words, was forbidden). In

order to prevent the phonetic features of the pseudowords from serving as segmentation cues, we balanced these features across

the three syllables of the pseudowords. In addition, we created three different structured streams by changing the arrangement of the

12 syllables (each syllable occupied a different position within the pseudoword in each stream). The random stream resulted from

concatenating the 12 syllables semi-randomly (without syllables repetition), giving an average uniform TP of 1/11. We also created

test words to be presented in isolation but we do not present the results here.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Stimuli This paper https://osf.io/k5tsq/

EEG Analysis MATLAB/This paper https://osf.io/k5tsq/

EEG preprocessing APICE https://github.com/neurokidslab/eeg_preprocessing

Stimuli presentation MATLAB/This paper https://osf.io/k5tsq/
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Procedure
Scalp electrophysiological activity was recorded using a 256-electrodes net (GTEN 200, Magstim EGI) referred to the vertex with a

sampling frequency of 1000 Hz. The recording procedure was similar to the one used in neonates.20 Participants first heard a random

sequence of 4 minutes (960 syllables) followed by a structured stream of 4 minutes (960 syllables, 320 words). After, participants

listen to 8 repetitions of 30s (120 syllables, 40 words) of structured sequences followed by a block of 16 pseudo-words test trials.

Patients were told to pay attention to the auditory stimuli.

All Healthy subjectswere testedwith the three structured streams (lists) on different days. For theDOCpatients,we tried to follow the

samepattern by testingeach subject on each list asmuchas the hospital constraints allowedus.OnaverageDOCsubjectswere tested

2.27 times, with 40 subjects having been tested on the three lists. We obtained 88 recordings with list 1, 50 with list 2 and 46 with list 3.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data preprocessing
Data were resampled to 250 Hz, band-pass filter 0.3–30 Hz and pre-processed using APICE pipeline for MATLAB48 with default pa-

rameters for rejection. The process, similar to other preprocessing pipelines like Desjardin et al.49 consists of several key steps: 1)

Identification of motion artifacts in continuous data using relative thresholds applied to individual electrodes through iterative loops.

Specifically, any sample with a value exceeding a set threshold (e.g., further away than 2.5 standard deviation from the average of the

distribution) was marked as bad; 2) Correction of artifacts in continuous data when they involve only a few channels or occur over a

short period of time, taking advantage of EEG data redundancy to reconstruct the brief portions of the affected signal; 3) Definition of

contaminated samples (bad times) and non-functional channels (bad channels) based on the rejected data. Indeed, long periods of

artifacts, or simultaneous failure of several channels cannot be corrected with neighbors’ data and the corresponding epochs are

removed from further analysis. From this artifact detection and correction, epochs with more than 50% of its data interpolated or

epochs with more than 15% of remaining bad data were discarded from further analyses.

To assess the robustness of the analysis, the replicated the main effect (CRS-R correlation with PLV) by keeping all epochs from all

subjects despite noise and found nosier but still significant correlation (some electrodes with ps<0.05 FDR, see Figure S3).

In order to remove eye movements and blinks, we also performed ICA on the healthy control data.

Frequency tagging
The pre-processed data were segmented from the beginning of each sequence into segments comprising 13words to approach 10s

long epochs (13*0.750=9.75s). Segments were not overlapping to avoid an artefact in the frequency domain related to the length of

the overlap.16 Epochs with artifacts were rejected. Data were converted to the frequency domain using the Fast Fourier Transform

(FFT) algorithm and the Phase Locking Value (PLV) and Power were estimated for each electrode in both random and structured con-

ditions. The phase locking value ranges from 0 (completely asynchronized data) to 1 (completely timed-locked activity). The value at

each frequency bin estimation was then normalized by subtracting the mean value of eight neighboring frequency bins on each side.

All analysis have been replicated using power instead of PLV (see supplemental information).

Statistical analyses
Statistical analysis was conducted on the three frequencies of interest: 4Hz corresponding to the syllabic rate; 1.33 and 2.66 corre-

sponding to the frequency of the trisyllabic words and its harmonic. The results of the analyses performed on the PLV are presented in

the main text, while those for power are presented in the supplemental information. Results of the two metrics are largely similar.

For each electrode and for each frequency, it was first tested whether the PLV (and power) was above 0 with a one-sample t-test

against zero, second whether these values for the word frequencies were larger during the structured stream relative to the random

stream (structured > random one-way paired t-test). In all analyses, p-values were corrected for multiple comparisons (256 elec-

trodes) using FDR (Figure 2).

Individual effect size
Subsequently, the effect size for each recording was estimated in order to determine whether it was possible to distinguish between

patients who performed the task from those who did not segment the structured sequence. To achieve this, we calculated the dif-

ference at the frequency of interest between the 10 electrodes with the highest PLV in the structured condition and the 10 electrodes

with the highest PLV in the random condition. The rationale behind selecting the 10 best electrodes per recording was to obtain a

robust measurement of the effect by selecting the most effective electrodes without being affected by possible differences in topog-

raphy at the individual level induced by different brain lesions.

This analysis was conducted at theword rate (1.33Hz) and its first harmonic (2.66 Hz) and used one-way tests to compare themean

of the distribution with zero (no PLV difference between structured and random sequences).

Modulation of the neural responses by level of consciousness
To examine how the responses were influenced by the level of consciousness in DOC patients, we computed correlations between

the Phase Locking Value (PLV) of each electrode and the Coma Recovery Scale-Revised (CRS-R) score measured prior to the
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recording in DOC patients only. Importantly, healthy controls were not included in this analysis to ensure that any observed corre-

lation was not solely driven by the differences between healthy and DOC subjects, but rather by the varying degrees of conscious-

ness within the DOC group.

Modulation of words segmentation by the syllabic response
To be able to segment words in such a stream, patients should at least have a minimal auditory function and some patients may not

meet this criterion. We considered the responses at the syllabic rate as a proxy of low-level auditory function. Therefore, the previous

analyses were done again retaining only patients with a positive average syllabic rate PLV, that is patients for whom the mean PLV

across all electrodes for both the random and structured conditions was > 0 (Figure 3). This rejection metric is quite stringent as it

rejected participants with impaired auditory processing but also recording with too low signal/noise ratio to correctly detect this

metric. We also re-calculated the correlation between the PLV at the word rates and level of consciousness after regressing out

the PLV at the syllabic rate for each electrode: we first performed a regression between word rate PLV and the syllabic rate PLV

for each electrode; then the residuals of these regressions were correlated with CRS-R (Figure 3D).
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