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Construction of the coexpression network 
involved in the pathogenesis of thyroid eye 
disease via bioinformatics analysis
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Abstract 

Background:  Thyroid eye disease (TED) is the most common orbital pathology that occurs in up to 50% of patients 
with Graves’ disease. Herein, we aimed at discovering the possible hub genes and pathways involved in TED based on 
bioinformatical approaches.

Results:  The GSE105149 and GSE58331 datasets were downloaded from the Gene Expression Omnibus (GEO) data-
base and merged for identifying TED-associated modules by weighted gene coexpression network analysis (WGCNA) 
and local maximal quasi-clique merger (lmQCM) analysis. EdgeR was run to screen differentially expressed genes 
(DEGs). Transcription factor (TF), microRNA (miR) and drug prediction analyses were performed using ToppGene suite. 
Function enrichment analysis was used to investigate the biological function of genes. Protein–protein interaction 
(PPI) analysis was performed based on the intersection between the list of genes obtained by WGCNA, lmQCM and 
DEGs, and hub genes were identified using the MCODE plugin. Based on the overlap of 497 genes retrieved from the 
different approaches, a robust TED coexpression network was constructed and 11 genes (ATP6V1A, PTGES3, PSMD12, 
PSMA4, METAP2, DNAJA1, PSMA1, UBQLN1, CCT2, VBP1 and NAA50) were identified as hub genes. Key TFs regulating 
genes in the TED-associated coexpression network, including NFRKB, ZNF711, ZNF407 and MORC2, and miRs includ-
ing hsa-miR-144, hsa-miR-3662, hsa-miR-12136 and hsa-miR-3646, were identified. Genes in the coexpression network 
were enriched in the biological processes including proteasomal protein catabolic process and proteasome-mediated 
ubiquitin-dependent protein catabolic process and the pathways of endocytosis and ubiquitin-mediated proteolysis. 
Drugs perturbing genes in the coexpression network were also predicted and included enzyme inhibitors, chlorodi-
phenyl and finasteride.

Conclusions:  For the first time, TED-associated coexpression network was constructed and key genes and their func-
tions, as well as TFs, miRs and drugs, were predicted. The results of the present work may be relevant in the treatment 
and diagnosis of TED and may boost molecular studies regarding TED.
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Background
Thyroid eye disease (TED), also known as thyroid-asso-
ciated ophthalmopathy (TAO), Graves’ ophthalmopathy 
or thyroid orbitopathy, is one of the common autoim-
mune diseases behind the eye. This disease is commonly 
seen with Graves’ disease and Hashimoto’s thyroiditis, 
but can also occur in healthy people and patients with 
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hyperthyroidism [1]. TED is caused by systemic autoim-
mune attacks of the orbit and other targeted tissues, such 
as thyroid, skin, pretibial soft tissues [2], periorbital con-
nective tissue, extraocular muscles and orbital fat tissue. 
Its symptoms include mild eye irritation, severe disfigure 
and even permanent blindness [3]. Although the major-
ity of TED cases exhibit only mild eye disease, 3–5% of 
cases exhibit vision loss mainly due to exposure corneal 
ulceration or compressive optic neuropathy [4]. TED is 
the result of a combination of genetic and environmen-
tal factors. Many of these factors, including race, gender, 
age, smoking history, thyroid hormone, radioactive stim-
ulating hormone (RAI) therapy and thyroid-stimulating 
hormone receptor antibodies, have been confirmed by 
numerous studies [5]. A previous study suggested that 
the immune response is an important factor involved in 
TED [6]. However, the pathologic mechanism of TED is 
still poorly understood. Understanding the pathologi-
cal mechanism of TED will lead to the discovery of tar-
geted molecular approaches for TED and provide strong 
evidence for the future treatment of TED. Therefore, it 
is necessary to scrutinize the molecular mechanism of 
TED, especially the key genes and pathways related to 
TED.

Up to date, the transcriptome data of TED are very 
limited. In addition to data limitation, the methods used 
for identifying genes with biological relevance in TED 
are also limited to differential expression analysis-based 
approaches. Although studies reported by Rosenbaum 
et  al. [6], Zhu and Yang [7] and Lee et  al. [8] identified 
some genes related to TED, the unicity of their approach 
may not help capture some highly TED-related genes. 
Thus, integrating multiple approaches may help identify 
the credible key genes associated with TED.

Gene coexpression networks (GCNs) are key tools 
for identifying molecular mechanism of diseases [9]. 
Their main steps include calculating coexpression 
and selecting important thresholds to filter networks. 
GCNs can be used to screen candidate biomarkers and 
therapeutic targets [10, 11]. Although this approach 
cannot provide a causal relationship, the coexpression 
network can find regulatory genes in many phenotypes 
[12]. The weighted gene coexpression network analysis 
(WGCNA) is a systematic biological method used for 
detecting coexpressed genes that cannot be detected 
by differential analysis and has good applications in 
microarray data or deep sequencing. The problem of 
multiple tests inherent in microarray data analysis is 
alleviated in WGCNA [10] which studies biological 
networks based on pairwise correlations between vari-
ables, which is suitable for most high-dimensional data 
sets. Although principal component analysis (PCA) 
can also handle high-dimensional data, this method 

provides very little information [13]. Thus, WGCNA 
is usually performed to identify modules containing a 
high correlation with disease characteristics. Generally, 
WGCNA is a widely implemented in the identification 
of gene modules involved in diverse diseases. For exam-
ple, in the study of lupus arthritis (LA), researchers 
identified highly coexpressed gene modules associated 
with LA through WGCNA analysis, revealed immune/
inflammatory cells dominated by myeloid phenotype 
and identified cell composition and physiological path-
ways that are relevant in LA [14]. Researchers have also 
identified key modules in the psoriatic arthritis (PsA) 
dataset GSE61281 through WGCNA; through GO 
and KEGG analysis of key modules and other analysis 
tools, they determined that RHOH/TRAF1 has great 
effects on the pathogenesis of PsA [15]. WGCNA has 
been also widely applied in autoimmune diseases [16, 
17] and cancer [18, 19] research. WGCNA was imple-
mented by Li and colleagues in the research of rheu-
matoid arthritis and allowed the discovery of 4 key 
modules associated with RA, revealing the biological 
processes and pathways related to immunity and infec-
tion involved in RA [20]. The WGCNA also bridges the 
gap between individual genes and systemic oncology 
[21]. WGCNA is not only used for identifying coex-
pressed mRNAs, but also coexpressed microRNA and 
lncRNAs. For example, Giulietti et  al. [22] discovered 
the expression of LINC00675 and LINC01133 lncR-
NAs as well as the occurrence and development of 
pancreatic cancer by using the coexpression network. 
Zhou et  al. [23] found that hsa-mir-125b-5p, hsa-mir-
145-5p, hsa-let-7c-5p, hsa-mir-218-5p and hsa-mir-
125b-2-3p were the prognostic and pathological hub 
miRNAs involved in colon cancer by using WGCNA. 
However, WGCNA has not been applied for identify-
ing coexpression networks involved in TED. In addi-
tion to the widely used WGCNA, there are also GCNs 
such as mutual rank, highest reciprocal ranks (HRR) 
and lmQCM [24, 25]. lmQCM is a new network mining 
method that can be used to identify densely connected 
modules [26]. The main feature of this method is the 
use of the local maximum pass to initialize the search, 
avoid excessive overlap between modules and improve 
the efficiency of calculation. In addition, this method 
includes the weight normalization process and can find 
modules with more balanced sizes. lmQCM has been 
used in cancer and neurodegenerative syndrome [25, 
27]. In a latest report, lmQCM has been used to analyze 
rhabdomyosarcoma subtypes [28] and 41 coexpression 
modules were found, of which 17/41 showed obvious 
up-regulation or down-regulation in the fusion state. 
However, lmQCM has not been applied to screen coex-
pression modules associated with TED. Thus, applying 
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WGCNA and lmQCM to TED-related transcriptome 
data is promising in discovering new key genes and 
pathways involved in TED.

Therefore, in our present study, the WGCNA and 
lmQCM algorithms were employed to generate gene 
coexpression modules associated with TED. The key 
genes obtained from different approaches were used for 
TED coexpression network construction, followed by the 
identification of TFs, hub genes and miRs that may par-
ticipate in TED pathogenesis. Potential therapeutics were 
also predicted based on coexpression network genes. 
The present work may promote the understanding of the 
pathological mechanism of TED.

Results
Analysis and functional enrichment analysis of the DEGs
Through differential expression analysis, we obtained 
4,999 DEGs (2767 up-regulated, 2232 down-regulated) 
between TED and normal samples. The volcano plot 
and heatmap of DEGs are shown in Fig.  1C, D, respec-
tively. As shown in Additional file 1: Table S1, the DEGs 
were enriched in the biological process (BP) terms of 
Golgi vesicle transport, positive regulation of establish-
ment of protein localization, positive regulation of cel-
lular protein localization and endoplasmic reticulum to 
Golgi vesicle. The predominant molecular function (MF) 
terms were endopeptidase activity, ubiquitin-like protein 
ligase binding and ubiquitin protein ligase binding. For 
the cellular component, the most enriched terms were 
mitochondrial matrix, nuclear speck and transport vesi-
cle. The KEGG pathways of the DEGs were enriched in 
MAPK signaling pathway, endocytosis and protein pro-
cessing in endoplasmic reticulum.

Construction of weighted gene coexpression networks 
and functional enrichment analysis
The sample dendrogram and trait heatmap of samples 
in the TED matrix are shown in Fig.  2A. In WGCNA 
analysis, TED coexpression network was built when the 
power value equaled 6 (Fig. 2B). The cluster dendrogram 
showing the dynamic cut and merging of merged mod-
ules is depicted in Fig.  2C. The heatmap of eigengene 
adjacency is reported in Fig. 2D, while the network heat-
map of selected genes is reported in Fig.  2E. Similarly, 
another TED coexpression network was also constructed 
by lmQCM analysis. Finally, we got 11 WGCNA mod-
ules (Fig. 3A) and 13 lmQCM modules (Fig. 3C). Based 
on the correlation between MEs and TED trait in the 
modules among WGCNA modules or lmQCM mod-
ules, we selected the modules most highly correlated to 
TED as TED-specific modules. The blue module (cor-
relation = 0.37, P value = 0.0009) containing 17,008 
genes was the module most correlated with TED among 

modules identified by WGCNA and was selected as the 
key TED-associated module for further analysis (Fig. 3A). 
The functional enrichment analysis of genes in the blue 
(Fig. 3B, Additional file 2: Table S2) indicated that these 
genes were enriched in the biological processes (BP) of 
positive regulation of cellular protein localization, regu-
lation of dendrite development, macromolecule deacyla-
tion, memory, protein deacylation, protein deacetylation, 
cell differentiation in spinal cord and positive regulation 
of mRNA catabolic process. In the category of molecu-
lar function (MF), “transcription coregulator activity” 
and “ubiquitin-like protein transferase activity” were the 
most significantly enriched terms, whereas in the cat-
egory of cellular component (CC), “nuclear speck,” “neu-
ron to neuron synapse” and “postsynaptic specialization” 
were the most enriched terms (Fig. 3B, Additional file 2: 
Table S2). The pathways of the genes in the blue module 
were neuroactive ligand–receptor interaction, endocyto-
sis, MAPK signaling pathway, ubiquitin-mediated pro-
teolysis, Cushing syndrome, hippo signaling pathway, 
sphingolipid signaling pathway, cholinergic synapse and 
aldosterone synthesis and secretion (Fig.  3B, Additional 
file 2: Table S2). The detailed information can be found in 
Additional file 2: Table S2.

Among the lmQCM modules (Fig.  3C), the module 
most correlated with TED was the red module (corre-
lation = 0.39, P value = 0.0006) which contained 1873 
genes. We found that genes in the red module obtained 
from lmQCM analysis (Fig.  3D, Additional file  3: 
Table S3) were mostly enriched in the BP terms of RNA 
splicing, proteasomal protein catabolic process, protea-
somal-mediated ubiquitin-dependent protein catabolic 
process and Golgi vesicle. The most enriched MF terms 
of genes in the red module were “ubiquitin-like protein 
transferase activity,” “ATPase activity,” “cadherin bind-
ing” and “translation regulator activity” while the most 
enriched CC terms were “nuclear speck,” “cell-substrate 
junction,” “focal adhesion,” “chromosomal region” and 
“spliceosomal complex” (Fig.  3D, Additional file  3: 
Table S3). For the KEGG pathway analysis, amyotrophic 
lateral sclerosis, endocytosis, Salmonella infection, 
protein processing in endoplasmic reticulum, diabetic 
cardiomyopathy, ubiquitin-mediated proteolysis and 
spinocerebellar ataxia were the most enriched pathways 
(Fig.  3D, Additional file  3: Table  S3). The more detailed 
information about the modules identified by lmQCM is 
summarized in Additional file 3: Table S3.

Construction of a robust TED coexpression network 
and identification of hub genes
A total of 497 overlap genes were obtained by intersect-
ing the DEGs and genes in the blue (WGCNA) and red 
(lmQCM) modules associated with TED (Fig.  4A). The 
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enrichment analysis of the TED-specific genes (Fig.  4B, 
Additional file 4: Table S4) demonstrated that the genes 
were enriched in “proteasomal protein catabolic pro-
cess,” proteasome-mediated ubiquitin-dependent pro-
tein catabolic process, protein polyubiquitination, Golgi 
vesicle transport, post-translational protein modification, 

regulation of mRNA metabolic process, macroautophagy 
and endosome organization in the category of BP. In the 
MF category, ubiquitin-like transferase activity, ubiquitin 
transferase activity, ubiquitin-like protein ligase binding 
and ubiquitin-like protein ligase activity were the most 
enriched terms (Fig.  4B, Additional file  4: Table  S4). In 

Fig. 1  Data preprocessing and differential expression gene analysis. Boxplot of the merged matrix of transcriptome data A before and B after batch 
effect removal and normalization. C Volcano plot of DEGs. Top 10 DEGs (sorted by adj. p value) in the up-regulated and down-regulated groups. D 
Heatmap of DEGs. Top 10 DEGs (sorted by |log2FC|) in the up-regulated and down-regulated groups
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the CC category, nuclear speck, nuclear envelope and 
ubiquitin ligase complex were the most enriched terms 
(Fig. 4B, Additional file 4: Table S4). For KEGG pathways, 
endocytosis, ubiquitin-mediated proteolysis, amyo-
trophic lateral sclerosis, spliceosome, spinocerebellar 
ataxia, autophagy in animal, mRNA surveillance path-
way, AMPK signaling pathway, RNA degradation and 
proteasome were the most enriched pathways of the 497 
overlap genes (Fig. 4B, Additional file 4: Table S4). Then, 
the 497 overlap genes were used as input for PPI analy-
sis. PPI network was constructed in STRING to explore 
the interactions between genes involved in TED. The PPI 
network generated from the overlap genes included 443 
nodes and 1650 edges, and the average number of neigh-
borhoods was 7.478 (Fig. 5). For clearer visualization, we 
kept nodes with degree greater than ten (Fig. 6). MCODE 
analysis allowed the identification of 2 predominant 
clusters of hub genes. The 11 hub genes in cluster 1 with 
the highest score were ATP6V1A, PTGES3, PSMD12, 
PSMA4, METAP2, DNAJA1, PSMA1, UBQLN1, CCT2, 
VBP1 and NAA50, among which PTGES3, PSMD12, 

PSMA4, PSMA1, UBQLN1, CCT2 and VBP1 had node 
degree higher than ten.

Prediction of transcription factors (TFs), miRs and drugs 
targeting genes in the robust TED coexpression network
We uploaded TED-specific genes to ToppGene to inves-
tigate the potential TFs, miRs and drugs perturbing the 
biological function and pathways involved in TED patho-
genesis. Detailed information of the TFs is summarized 
in Additional file 5: Table S5. Based on the overlap genes, 
we retrieved 221 TED-associated TFs at a p value cutoff 
of 0.01. As shown in Additional file 5: Table S5, NFRKB 
had the highest number (115 genes) of regulatory tar-
gets among genes in the coexpression network, followed 
by ZNF711 (104 genes), ZNF407 (97 genes), MORC2 
(91 genes), NFE2L1 (89 genes), UBP1 (87 genes) and 
HOXA2 (86 genes). In total, 476 genes in the TED-asso-
ciated coexpression network were targeted by the pre-
dicted TFs. To further investigate the regulation of genes 
in the TED coexpression network, ToppGene was used 
for the prediction of 4581 miRs targeting these genes 

Fig. 2  Construction of WGCNA networks. A Sample dendrogram and trait heatmap. The two traits are TED and normal. B Scale independence 
and mean connectivity of various soft-thresholding values (β). C Gene dendrogram and modules color. D Eigengene adjacency heatmap. E The 
heatmap of the 400 genes in the coexpression network
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Fig. 3  WGCNA and lmQCM modules and functional analysis of key modules. A Module–trait relationships in WGCNA modules. B Function 
enrichment analysis of the blue module most significantly correlated with TED as identified by WGCNA. C Module–trait relationships in lmQCM 
modules. D Function enrichment analysis of the red module most significantly correlated with TED as identified by lmQCM
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from different databases. As shown in Additional file  5: 
Table  S5, we found that hsa-miR-144 had the highest 
number of targets (134 genes) among genes in the coex-
pression network, followed by hsa-miR-3662 (130 target 
genes), hsa-miR-12136 (126 target genes), hsa-miR-3646 
(122 target genes), hsa-miR-607 (121 target genes), hsa-
miR-548x-3p (120 target genes), hsa-miR-548aj-3p (120 
target genes) and hsa-miR-411* (116 target genes). More-
over, for therapeutic purpose, we predicted the drugs 
targeting the genes in the TED-associated coexpression 
network. As shown in Additional file  5: Table  S5, 138 
drugs were predicted to significantly target genes in the 
coexpression networks. Among these drugs, enzyme 
inhibitors had the highest number of target genes (112 
genes), followed by the chlorodiphenyl (103 target genes), 
finasteride (90 target genes), nefazodone (89 target genes) 
and sodium arsenate (85 target genes).

Discussion
Thyroid eye disease (TED) is one of the most com-
mon autoimmune inflammatory diseases [29]. In 
about 3–5% of patients, TED is accompanied by loss of 

vision and compressive optic neuropathy [4]. Explor-
ing disease-related genes on the molecular level can 
contribute to the development of drugs for TED treat-
ment. In this study, we used the differential expression 
analysis, WGCNA and lmQCM approaches to iden-
tify TED-associated modules and constructed a solid 
coexpression network for TED. Based on the over-
lap of important genes retrieved from the different 
approaches, 11 genes (ATP6V1A, PTGES3, PSMD12, 
PSMA4, METAP2, DNAJA1, PSMA1, UBQLN1, CCT2, 
VBP1 and NAA50) were identified as hub genes in the 
PPI network of the overlap coexpression genes. We 
also found that NFRKB, ZNF711, ZNF407 and MORC2 
were key candidate TFs possibly regulating genes in 
the TED-associated coexpression network. Similarly, 
the genes in the coexpression network were mostly 
regulated by predicted miRs such as hsa-miR-144, hsa-
miR-3662, hsa-miR-12136 and hsa-miR-3646. Func-
tional enrichment analysis indicated that genes in the 
coexpression network were enriched in the biologi-
cal processes related to proteasomal protein catabolic 
process, proteasome-mediated ubiquitin-dependent 

Fig. 4  The overlap of DEGs and genes in key TED-associated modules identified by WGCNA and lmQCM. A The Venn plot of the DEGs and genes 
in key TED-associated modules identified by WGCNA and lmQCM. B The function enrichment analysis of the overlap of DEGs and genes in key 
TED-associated modules identified by WGCNA and lmQCM
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protein catabolic process and protein polyubiquit-
ination and the pathways of endocytosis, ubiquitin-
mediated proteolysis and amyotrophic lateral sclerosis. 
Furthermore, drug prediction based on the coexpres-
sion network indicated that most of genes were targets 
for enzyme inhibitors, chlorodiphenyl, finasteride and 
nefazodone. The study is the first, to the best of our 
knowledge, to construct such a stringent coexpression 
network for TED and to explore its regulatory factors 
and potential targeting drugs. The present findings are 

important in the understanding of the pathogenesis of 
TED, its diagnostics and the development of drugs for 
this disease.

Previous studies have revealed the clinical features 
and some key genes associated with TED. For instance, 
Grusha Ia et al. [30] found that the expression of HBD-2 
may cause corneal damage in patients. Previously, sev-
eral researchers have also identified hub genes by using 
bioinformatics analysis. Lee et al. [8] identified that 328 
DEGs were associated with active TED through RNA 

Fig. 5  Construction of a robust TED coexpression network based on the intersection genes. The 497 coexpression genes obtained from the 
intersection of the overlap of DEGs and genes in key TED-associated modules identified by WGCNA and lmQCM were imported in stringdb for 
protein–protein interaction (PPI) network, and the PPI network was downloaded
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sequencing. Many of these were associated with inflam-
mation, cytokine signaling, adipogenesis, IGF-1 signal-
ing and glycosaminoglycan binding. Gopinath et  al. [3] 
demonstrated that cardiac calsequestrin gene CASQ2 
was markedly up-regulated (~ 2.2-fold) in patients with 
the orbital disease and/or healthy people by microar-
ray analysis. Zhu and Yang [7] indicated that POMC, 
IL-2, GNG3, CXCR4, TLR4, CSF1R, LPAR3 and CXCL8 
were hub genes among many DEGs. It was also found 
that 71 DEGs were associated with TED in the com-
parative Toxicogenomics Database. Rosenbaum et al. [6] 
extracted RNA from the orbit of 83 volunteers and found 
that TED had fewer inflammatory marker characteris-
tics than other ophthalmologic diseases through PCA. In 
the present study, by combining multiple bioinformatics 
approaches, we were able to construct, for the first time, 
a robust regulatory coexpression network. The regulatory 

interaction genes identified here might shed light in the 
understanding of the pathogenesis of TED.

There are various tools for weighted gene coexpres-
sion network mining, for example, quasi-clique merger 
(QCM), lmQCM, Markov clustering (ML) and WGCNA. 
Except for WGCNA, lmQCM is suitable for identifying 
small yet densely connected gene coexpression networks. 
A detailed description of each approach is provided in 
“Introduction” and “Methods” sections. Here, we per-
formed lmQCM and WGCNA network and found that 
11 and 13 modules were identified by WGCNA and 
lmQCM, respectively. The correlation between TED and 
both lmQCM modules and WGCNA modules was simi-
lar, ranging from − 0.31 to 0.39. However, we obtained a 
small number of genes in TED-specific modules through 
lmQCM compared with WGCNA. Moreover, 1488 genes 
of TED-specific modules were found in both WGCNA 

Fig. 6  Visualization of the coexpression network in Cytoscape and identification of clusters and hub genes. The PPI network of the TED 
coexpression genes was visualized in Cytoscape. Clusters were identified by MCODE, and genes with node degree higher than ten were visualized. 
Node labels in red indicated hub genes with node degree higher than ten
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modules and lmQCM modules, suggesting that the 
genes obtained by both methods were the most credibly 
related to TED and that both methods are highly effi-
cient in module discovery. Pathway enrichment analysis 
results showed that the pathways regulated by the genes 
in the TED-specific modules identified by lmQCM and 
WGCNA showed overlap in functional terms, indicat-
ing that both WGCNA and lmQCM were able to extract 
important genes involved in TED.

In eukaryotes, the binding of transcription factors 
and histone modification can accurately regulate gene 
expression. TFs can control the transcription rate of 
genetic information from DNA to messenger RNA by 
binding to specific DNA sequences. A number of stud-
ies have reported that transcription factors can partici-
pate in the activation and shutdown of gene functions. 
In order to explore the transcription factors regulating 
the expression of genes involved in TED, we used Top-
pGene to predict the TFs that regulate the expression 
of TED-specific genes. We found a total of 221 TFs that 
may be related to the expression of TED-associated coex-
pression genes. Among them, NFRKB, ZNF711, ZNF407 
and MORC2 were the most prevalent, but these TFs and 
many of other identified TFs have not been reported in 
TED before. Thus, we can conclude that we identified 
new TED-related TFs which might be important in the 
research on the pathogenesis of TED. More relevant evi-
dence needs to be provided in future research.

Ubiquitination is believed to be involved in the regu-
lation of almost all life activities, including cell cycle, 
proliferation, apoptosis, gene expression, transcription 
regulation, inflammatory immunity, etc. Several stud-
ies have found that ubiquitination has an important 
regulatory role in autoimmune diseases [31–33]. Ubiq-
uitination controls the development, activation and dif-
ferentiation of T cells and maintains an effective adaptive 
immune response to pathogens and immune tolerance to 
self-tissues. Autoimmune diseases are not only directly 
affected by ubiquitination, but may also be regulated 
by ubiquitination-related enzymes. Wang and his col-
leagues found that mutations in the ubiquitin-conjugat-
ing enzyme E2L3 (UBE2L3) gene may be related to the 
high risk of Hashimoto’s thyroiditis (HT) in Han Chinese, 
indicating that ubiquitination may be involved in thyroid-
related autoimmune diseases [34]. TED is an autoim-
mune disease, and its occurrence and development may 
be closely related to ubiquitination. In addition, a previ-
ous study reported that small ubiquitin-like modifier 4 
(SUMO4) is a common autoimmune disease susceptibil-
ity gene in the Japanese population [35]. We found that 
the genes in the regulatory coexpression network were 
enriched in the biological processes related to protea-
somal protein catabolic process, proteasome-mediated 

ubiquitin-dependent protein catabolic process and pro-
tein polyubiquitination and the pathway of ubiquitin-
mediated proteolysis, indicating that ubiquitination plays 
a significant role in the pathogenesis of TED. The ubiqui-
tin–proteasome pathway is responsible for the degrada-
tion of most intracellular proteins in eukaryotic cells [36]. 
Proteasome dysfunction is related to autoimmune dis-
eases [37], neurodegeneration [38], heart [39] and other 
diseases. We found that genes in the regulatory network 
were also enriched in the proteasome pathway and the 
processes of proteasomal protein catabolic process, and 
proteasome-mediated ubiquitin-dependent protein cata-
bolic process, which can explain a previous finding that 
the immune proteasome LMP2 can be used as a new 
target for the treatment of autoimmune hypothyroidism 
[40]. A previous study also demonstrated that TNF-α 
can promote mTOR-dependent proteasome-mediated 
PDCD4 degradation in orbital fibroblasts and that rapa-
mycin can enhance TNF-α induction and IL6 secretion 
by inhibiting PDCD4 degradation in orbital fibroblasts 
[41]. Thus, the coexpression network constructed in 
this study may regulate the pathogenesis of TED via the 
ubiquitin–proteasome pathway (UPP). Although we only 
discussed some of the pathways, other pathways also 
deserve a more in-depth study.

In order to identify the interaction between proteins 
associated with the pathogenesis of TED and the related 
hub genes, we performed PPI analysis. We found 11 hub 
genes (ATP6V1A, PTGES3, PSMD12, PSMA4, METAP2, 
DNAJA1, PSMA1, UBQLN1, CCT2, VBP1 and NAA50) 
in the PPI network. Several studies reported that the 
PSMD12, PSMD14, PSMD5, PSMD6 were associated 
with the pathway of the proteasome [42–45]. PSMA1, 
PSMA4 and PSMB7 are the three subunits of the 20S 
proteasome [46]. The regulatory effects of PSMA1 and 
PSMD12 in the liver of thyroid hormone were previ-
ously reported [47], which is consistent with the down-
regulation of PSMA1 and PSMD12 in TED as observed 
in the present work. The 11 hub genes may regulate TED 
by regulating the pathway of UPP, which is consistent 
with the findings in the functional enrichment analysis. 
At present, there is still little about the role of these hub 
genes in the regulation of thyroid diseases. Although 
we have discussed the regulatory function of PSMA1, 
PSMD12 in the thyroid, there is no report indicating 
that the 11 hub genes are directly related to the occur-
rence and progression of TED, and thus, more studies are 
needed to validate their regulatory role in TED.

The miRs are important regulators of gene expression. 
However, there are limited data on the involvement of 
miRs in the pathogenesis of TED. Up to date, only miR-
130a, miR-146a and miR-155 and miR-1287-5p have 
been reported in TED [48–50]. In the present work, we 
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predicted 4581 miRs targeting genes in the coexpres-
sion network involved in TED. The most prevalent miRs 
were hsa-miR-144, hsa-miR-3662, hsa-miR-12136 and 
hsa-miR-3646. Thus, our study provided a new set of 
miRs with relevant potential functions in the pathogen-
esis of TED. Further studies based on these miRs might 
enlighten our understanding on the pathogenesis of TED 
and open new avenues for the development of therapeu-
tics for this disease.

To date, there is no effective drug for the treatment 
of TED. Few studies have indicated that some drugs 
including teprotumumab, tocilizumab, rituximab and 
mycophenolate can improve the outcomes of TED [51]. 
Herein, we predicted a set of drugs that could target the 
predicted gene coexpression network. Enzyme inhibi-
tors and chlorodiphenyl (54% chlorine), finasteride, 
nefazodone, sodium arsenate, beta-methylcholine, propi-
conazole, pentachlorophenol, glucose, thimerosal, thapsi-
gargin, succimer were the drugs with the highest number 
of target genes. The predicted genes may be efficient in 
the treatment of TED, which needs further experimental 
screening and validation.

Our study presents some limitations. Although TED-
specific genes were found through the combined use of 
DEGs, lmQCM and WGCNA, due to the small sample 
size we used, there may be some deviations. In addi-
tion, our results were only based on public data, and 
more in vivo and in vitro experiments are still needed to 
verify our findings. We found 11 hub genes regulating 
the pathway of ubiquitin and proteasome through PPI 
analysis, but the role of these genes in the occurrence 
and development of TED still needs in-depth valida-
tion. In addition, we tried to identify the association of 
genes in the TED coexpression network to other diseases 
in ToppGene, but the analysis output revealed no dis-
ease association (no output data), which implied that the 
coexpression network might be specific to TED; however, 
tremendous work is needed to confirm this observation. 
We hereby call on more colleagues to experimentally ver-
ify our results.

Conclusions
By harnessing different bioinformatics approaches, we 
constructed a robust gene coexpression network for 
TED 11 hub genes involved in this disease. Furthermore, 
we predicted the TFs, miRs and drugs that could target 
genes in the coexpression network. The functions of the 
coexpression network were also identified and indicated 
the important implication of protein ubiquitination in 
TED. The role of the identified hub genes in the forma-
tion and development of TED has not been reported so 
far. So, this is the first study to propose that these 11 hub 
genes may be related to the pathological process of TED, 

but more evidence needs to be given in future research. 
In the future, we will conduct more experimental 
research to explore the central genes of TED, so as to lay 
the foundation for diagnosing the occurrence and devel-
opment of TED and developing new therapeutic targets 
for the treatment of TED.

Methods
Data collection and preprocessing
The data used in this study were obtained from two data-
sets in the GEO database (https://​www.​ncbi.​nlm.​nih.​
gov/): GSE105149 (containing four TED samples and 
seven Normal samples) and GSE58331 (containing 35 
TED samples and 29 Normal samples). The platform of 
the two datasets was GPL570. The array probes of each 
dataset were mapped to their respective gene IDs using 
corresponding array annotations. Probes matching mul-
tiple genes were represented by those with the high-
est average expression level. As shown in Fig. 7, the two 
datasets were merged into a matrix containing 22,880 
genes and 75 samples. The batch effect of the merged 
matrix was removed by the R “sva” package (http://​www.​
bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​sva.​html) 
(Fig.  1A). The normalizeBetweenArrays function in the 
R “limma” package (http://​www.​bioco​nduct​or.​org/​packa​
ges/​relea​se/​bioc/​html/​limma.​html) was used to perform 
normalization of the data in the merged matrix (Fig. 1B).

Gene coexpression network construction and modules 
selection
WGCNA network was performed to identify TED-
related modules based on the preprocessed matrix. 
Firstly, the similarity of gene coexpression between 
gene m and gene n was defined as Smn =|cor (m, n)|. 
Secondly, a power function was used to correlate adja-
cency between the genes: amn = power (Smn, β) =|Smn| β. 
Thirdly, the gradient method (the power value ranging 
from 1 to 30) was used to test scale independence and 
mean connectivity. When the value was above 0.80 [11], a 
proper power value was screened out to establish a scale-
free network. Finally, the adjacency matrix was con-
verted into a topological overlap matrix and the module 
was screened out by using hierarchical average linkage 
clustering analysis, which was a gene dendrogram with 
a minimal size of 60. Then, 400 genes were randomly 
selected for heatmap drawing.

Additionally, we performed the local maximized quasi-
clique merger (lmQCM) network mining [26] based on 
the preprocessed matrix. First, the samples in the TED 
matrix were divided into two groups: TED group and 
normal group. Then, the Pearson correlation coefficient 
(PCC) of each pair of genes in the TED and normal 
groups was calculated separately. Finally, we obtained 

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://www.bioconductor.org/packages/release/bioc/html/sva.html
http://www.bioconductor.org/packages/release/bioc/html/sva.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
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coexpression networks associated with TED and nor-
mal groups. In the networks, nodes correspond to genes, 
and weight corresponds to PCC value. The lmQCM [26] 
was used to detect densely connected modules in the 
weighted network. The parameters for lmQCM were set 
as follows: gamma = 0.55, t = 1, lambda = 1, beta = 0.4, 

minimum cluster size = 10. The lmQCM is available both 
in web version (https://​apps.​medgen.​iupui.​edu/​rsc/​tsuna​
mi/) and R package in CRAN as “lmQCM.”

To identify the module associated with TED in 
weighted networks constructed by WGCNA and 
lmQCM, respectively, we did the following processing. 

Fig. 7  Workflow to identify TED-specific coexpression modules and TED-associated pathway and hub genes

https://apps.medgen.iupui.edu/rsc/tsunami/
https://apps.medgen.iupui.edu/rsc/tsunami/
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Based on the modules identified in the previous step, we 
used the first principal component of each module (also 
named module eigengene, ME) to represent the expres-
sion levels of genes in each module. The correlation 
between MEs and TED was evaluated using PCC, and the 
modules with the highest or lowest PPC were selected as 
the TED-specific modules for the coexpression networks 
from WGCNA or lmQCM.

Identification of DEGs
The differential expression analysis based on the merged 
matrix was performed by “limma” package in R with the 
threshold of |log2FC|> 0.263 and adj. p value < 0.05. The 
expression levels of the top 10 up-regulated and down-
regulated genes (ranked by |log2FC|) were used to draw 
the heatmap by R “pheatmap” package. The volcano plot 
was visualized by the R “ggpubr” (https://​cran.r-​proje​ct.​
org/​web/​packa​ges/​ggpubr/​index.​html) and “ggthemes” 
(https://​cran.r-​proje​ct.​org/​web/​packa​ges/​ggthe​mes/​
index.​html) packages. The top 10 significant genes in up-
regulated and down-regulated genes (ranked by adj. p 
value) were highlighted with gene symbols.

Overlap of DEGs and genes in TED‑specific modules
We merged the DEGs and genes in TED-specific modules 
and got TED-specific genes. The Venn diagram analysis 
was performed using the ggvenn library in R program-
ming software to identify the intersection between lists 
of genes from DEGs, the blue module in WGCNA and 
the red module in lmQCM.

ToppGene Suite analysis for prediction of TFs, microRNAs 
and candidate drugs
The prediction of TFs, microRNAs and candidate drugs 
based on the TED-specific genes were explored by anal-
ysis in ToppGene Suite (https://​toppg​ene.​cchmc.​org/). 
The p value cutoff was set to 0.01.

Protein–protein interaction (PPI) network construction
To explore the interaction between proteins coded by 
TED-specific genes, PPI analysis was performed. Herein, 
we uploaded the TED-specific genes to the Search Tool 
for the Retrieval of Interacting Genes/Proteins (STRING, 
https://​string-​db.​org/​cgi/), which is a database of known 
and predicted protein–protein interaction. We selected 
the organism “Homo sapiens” and downloaded *.TSV 
and *.png files from the STRING database. The network 
was also imported into Cytoscape 3.4.0 software for vis-
ualization. The MCODE plug-in in Cytoscape was used 
for the identification of gene clusters. The nodes with no 
interaction with other proteins in the PPI network were 
removed, and only genes with node degree higher than 
ten were visualized in Cytoscape.

Functional enrichment analysis
The biological function of the genes was investigated 
by the R “clusterProfiler” package [52]. The GO terms 
and pathways were sorted by adjusted p values (adj. p 
value), and adj. p values < 0.05 were considered signifi-
cant. The top 10 terms of GO biological process, cel-
lular component and molecular function and the top 10 
pathways of the KEGG pathway were selected and visu-
alized by the R “ggplot2” package [53].
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