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ABSTRACT Polycystic ovary syndrome (PCOS) impacts ;10% of reproductive-aged
women worldwide. In addition to infertility, women with PCOS suffer from metabolic
dysregulation which increases their risk of developing type 2 diabetes, cardiovascular
disease, and nonalcoholic fatty liver disease. Studies have shown differences in the
gut microbiome of women with PCOS compared to controls, a pattern replicated in
PCOS-like mouse models. Recently, using a letrozole (LET)-induced mouse model of
PCOS, we demonstrated that cohousing was protective against development of met-
abolic and reproductive phenotypes and showed via 16S amplicon sequencing that
this protection correlated with time-dependent shifts in gut bacteria. Here, we
applied untargeted metabolomics and shotgun metagenomics approaches to further
analyze the longitudinal samples from the cohousing experiment. Analysis of beta
diversity found that untargeted metabolites had the strongest correlation to both
disease and cohoused states and that shifts in metabolite diversity were detected
prior to shifts in bacterial diversity. In addition, log2 fold analyses found numerous
metabolite features, particularly bile acids (BAs), to be highly differentiated between
placebo and LET, as well as LET cohoused with placebo versus LET. Our results indi-
cate that changes in gut metabolites, particularly BAs, are associated with a PCOS-
like phenotype as well as with the protective effect of cohousing. Our results also
suggest that transfer of metabolites via coprophagy occurs rapidly and may precipi-
tate changes in bacterial diversity. This study joins a growing body of research link-
ing changes in primary and secondary BAs to host metabolism and gut microbes rel-
evant to the pathology of PCOS.

IMPORTANCE Using a combination of untargeted metabolomics and metagenomics,
we performed a comparative longitudinal analysis of the feces collected in a cohous-
ing study with a PCOS-like mouse model. Our results showed that gut metabolite
composition experienced earlier and more pronounced differentiation in both the dis-
ease model and cohoused mice compared with the microbial composition. Notably,
statistical and machine learning approaches identified shifts in the relative abundance
of primary and secondary BAs, which have been implicated as modifiers of gut micro-
bial growth and diversity. Network correlation analysis showed strong associations
between particular BAs and bacterial species, particularly members of Lactobacillus,
and that these correlations were time and treatment dependent. Our results provide
novel insights into host-microbe relationships related to hyperandrogenism in females

Citation Ho B, Ryback D, Benson B, Mason CN,
Torres PJ, Quinn RA, Thackray VG, Kelley ST.
2021. Gut metabolites are more predictive of
disease and cohoused states than gut bacterial
features in a polycystic ovary syndrome-like
mouse model. mSystems 6:e01149-20. https://
doi.org/10.1128/mSystems.01149-20.

Editor Jessica L. Metcalf, Colorado State
University

Copyright © 2021 Ho et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Scott T. Kelley,
skelley@sdsu.edu.

* Present address: Pedro J. Torres, Viome
Research Institute, Viome Inc., San Diego,
California, USA; Robert A. Quinn, Department of
Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan, USA.

Multiomics analysis of the gut microbiome
in a PCOS-like mouse model found metabolites
had strong time-dependent correlation with
disease phenotype. Protective effects of
cohousing also associated with a distinct gut
metabolite profile.

Received 2 November 2020
Accepted 11 August 2021
Published

September/October 2021 Volume 6 Issue 5 e01149-20 msystems.asm.org 1

RESEARCH ARTICLE

14 September 2021

https://orcid.org/0000-0001-9547-4169
https://orcid.org/0000-0001-9547-4169
https://doi.org/10.1128/mSystems.01149-20
https://doi.org/10.1128/mSystems.01149-20
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msystems.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/mSystems.01149-20&domain=pdf&date_stamp=2021-9-14


and indicate that focused research into small-molecule control of gut microbial diversity
and host physiology may provide new therapeutic options for the treatment of PCOS.

KEYWORDS bile acids, bioinformatics, gut microbiome, longitudinal, metabolomics,
metagenomics, mouse model, multiomics

Polycystic ovary syndrome (PCOS), a common reproductive endocrine disorder, is
estimated to affect ;5 to 15% of reproductive-age women worldwide (1). PCOS is

the most prevalent cause of anovulatory infertility, and women with this disorder have
a higher risk of pregnancy-related complications (2). The diagnosis of PCOS is based on
the 2003 Rotterdam criteria, which require two out of three of the following: hyperan-
drogenism, oligomenorrhea or amenorrhea, and polycystic ovaries (3). Although the
precise etiology of PCOS is unknown, genetic and twin studies indicate that PCOS is a
polygenic heritable disorder that is influenced by environmental factors including ex-
posure to excess maternal androgens during fetal development (4–6). The onset of
PCOS often occurs during the early reproductive years, indicating that puberty may be
a critical period in the development of PCOS (7).

In addition to its effects on reproductive health, PCOS increases the risk of developing
metabolic diseases such as type 2 diabetes, hypertension, and nonalcoholic fatty liver dis-
ease (NAFLD) (8, 9). Metabolic dysregulation manifests predominantly in women with
PCOS who have hyperandrogenism and is independent of body mass index (10, 11).
Alongside metabolic dysregulation, PCOS is also associated with changes in the gut micro-
biome (12, 13). The gut microbiome comprises a complex community of microorganisms
that are important for host physiology including immunity, metabolism, and neurology
(14). Gut microbes play a critical role in the fermentation of dietary fibers, synthesis of vita-
mins such as B12, modification of bile acids (BAs), neurotransmitters, and hormones, and
production of short-chain fatty acids that regulate energy homeostasis (14). Dysbiosis of
the gut microbiome has been correlated with multiple metabolic disorders, including obe-
sity, type 2 diabetes, and NAFLD (15). With regard to PCOS, studies have shown that gut
bacterial species richness is lower and that the relative abundance of specific bacterial
taxa is altered in women with PCOS compared to women without the disorder (12, 13,
16–23). Furthermore, studies have demonstrated a strong correlation between gut micro-
bial diversity or the abundance of specific gut bacterial taxa and hyperandrogenism, indi-
cating that testosterone may modulate the composition of the gut microbiome in women
(12, 13, 16–19, 22, 23).

Investigations of the gut microbiome in a letrozole (LET)-induced PCOS-like mouse
model have also indicated a strong relationship between hyperandrogenism and shifts
in the alpha diversity and composition of the gut microbiome (24, 25). This mouse
model utilizes letrozole, a nonsteroidal aromatase inhibitor, to limit the conversion of
testosterone to estrogen, resulting in increased testosterone and decreased estrogen
levels. This model recapitulates many reproductive and metabolic hallmarks of PCOS
including oligo- or anovulation, polycystic ovaries, elevated luteinizing hormone (LH)
levels, weight gain, abdominal adiposity, dysglycemia, hyperinsulinemia, and insulin re-
sistance (24–26). The importance of hyperandrogenism in this activational model was
further demonstrated in a study that discontinued letrozole treatment in mice and
demonstrated a recovery in reproductive, metabolic, and gut microbial phenotypes
(27). A letrozole-induced PCOS-like rat model was also reported to have changes in the
gut microbiome (28, 29).

Although correlative evidence from both human and rodent model studies indi-
cates that there is an association between PCOS and the gut microbiome, a direct role
of the gut microbiome in generating or exacerbating metabolic dysregulation in this
disease state has yet to be established. Indeed, despite the many studies that have
identified correlations between metabolic disorders such as obesity, type 2 diabetes,
and NAFLD and shifts in the gut microbiome, very few have demonstrated a direct
effect of gut microbes in these disorders (30). One method for establishing a causal
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link between the gut microbiome and host is via fecal microbiota transplant (FMT) into
germfree mice. For example, Ridaura et al. transplanted stool samples from lean and
obese human donors into germfree mice and found that the mice developed the
donors’ metabolic phenotype (31). More recently, Qi et al. performed an FMT of stool
from women with PCOS versus controls into antibiotic-depleted mice and showed that
the FMT with PCOS stool was sufficient to result in a PCOS-like phenotype that
included increased LH, acyclicity, polycystic ovaries, and insulin resistance (20). Since
rodents are coprophagic, another approach is to perform a cohousing study. This
method of horizontal transmission has been shown to result in an exchange of micro-
biota between caged individuals (32). Cohousing with healthy mice was reported to be
protective against developing obesity and maternal high-fat-diet-induced metabolic
dysregulation (31, 33). Altogether, these studies suggest that the gut microbiome may
play a causative role in the development of metabolic disorders including PCOS.

Recently, we performed a cohousing study using the letrozole mouse model to test
whether exposure to a healthy gut microbiome was protective against developing
PCOS metabolic or reproductive phenotypes (26). During the cohousing study, mice
implanted with either placebo or letrozole pellets were housed two per cage in three
separate housing arrangements (Fig. 1). This resulted in four treatment groups: placebo
mice (P), letrozole mice (LET), placebo cohoused with letrozole (Pch), and letrozole
cohoused with placebo (LETch). This study demonstrated that cohousing with P mice
improved both reproductive and metabolic phenotypes associated with letrozole
treatment (26). Interestingly, gut microbial 16S rRNA sequencing analysis showed that
the gut microbiome of LETch mice did not resemble the gut microbiome of P mice but
instead was more similar to that of Pch mice (26). These results suggested that cohous-
ing resulted in an exchange of gut microbes and that transfer of the gut microbiome
from a P mouse to a LET mouse was sufficient to provide protection from developing
both metabolic and reproductive phenotypes of PCOS despite the lack of similarity
between P and LETch mice.

In the present study, we applied multiple ‘omics approaches to further explore the
longitudinal relationship of the gut microbiome samples collected in the letrozole-
induced PCOS-like mouse model cohousing study (22). Although little is known about
the relationship between gut metabolites and PCOS, a recent study by Qi et al. showed

FIG 1 For the cohousing study design, mice implanted with either placebo or 3-mg letrozole pellets
were housed two per cage in three separate housing arrangements. This resulted in four treatment
groups: placebo mice (P), letrozole mice (LET), placebo cohoused with letrozole (Pch), and letrozole
cohoused with placebo (LETch) (n = 8 mice/group).
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that the secondary BAs glycodeoxycholic acid and tauroursodeoxycholic acid (TUDCA)
were present in lower abundance in a cohort of women with PCOS than in women
without this disorder and that supplementation with these BAs was protective against
developing a PCOS-like phenotype in mice (20). Given these results, we hypothesized
that gut metabolites might provide greater explanatory power for longitudinal pat-
terns in the data than gut microbes and that the combination of multiple ‘omics data
sets might strengthen the time-dependent patterns previously observed with the 16S
data. Specifically, we applied untargeted mass spectrometry (MS) analysis to identify the di-
versity of small molecules, including BAs, in the fecal samples and shotgun metagenomic
sequencing to improve species- and strain-level identification of bacterial species.

RESULTS
Metabolites clustered by treatment in a time-dependent manner. A CAP (canoni-

cal analysis of principal coordinates) analysis of untargeted metabolomic data generated from
weekly fecal samples from the cohousing study found the degree of clustering associated
with treatment differed substantially over the course of the study (Fig. 2). No treatment-associ-
ated clustering was observed based on sample metabolite composition prior to pellet implan-
tation (week 0) (Fig. 2A). By week 1, we observed differentiation among samples from different
treatments (Fig. 2B; P = 0.002, R2 = 0.161), with virtually no overlap among samples from the
four treatment groups. The greatest degree of clustering occurred among the week 2 samples
(Fig. 2C; P = 0.001, R2 = 0.427). At week 2, P and LET samples showed distinct separation from
each other and from the cohousing samples (Pch and LETch) which clustered together. The
amount of variation explained by the first two principal components was also highest at week
2 (Fig. 2C). We continued to observe significant associations between treatment and metabo-
lites at week 3, but this was not observed at week 4 (Fig. 2D).

Comparisons of beta diversity analyses acrossmultiomics data sets found strongest
association betweenmetabolites and treatment. The metabolite CAP analysis was com-
pared with metagenomic and 16S rRNA CAP analyses of the gut microbiome at weeks 2
and 5, the time points for which we had all three data sets. At week 2, all three data sets
showed clear differentiation among the samples from the four treatment groups (Fig. 3).
The goodness of fit (R2) between data and treatment was highest for the metabolites
(Fig. 3A; P = 0.001, R2 = 0.427) followed by the 16S (Fig. 3C; P = 0.027, R2 = 0.207) and meta-
genomic (Fig. 3E; P = 0.036, R2 = 0.193) data. The proportion of variation explained by the
first two principal components at week 2 was also the highest with the metabolite data
compared to the metagenome and 16S data. At week 5, the metabolites showed significant
levels of differentiation among treatments (Fig. 3B; P = 0.012, R2 = 0.136), while we found no
significant separation based on the 16S (Fig. 3D; P = 0.320, R2 = 0.171) and metagenomic
(Fig. 3F; P = 0.072, R2 = 0.153) data. For all three data sets, both the goodness of fit (R2 val-
ues) and the amount of variation explained by the first two principal components were
lower at week 5 than week 2. Compositional data analysis (CoDA) via clr-transformed multio-
mics data sets also demonstrated a higher goodness of fit for all three data sets at week 2
than week 5, with the metabolites having a better fit at week 2 than either the metagenom-
ics or 16S data sets. In addition, multiomics data set correlation analysis performed via the
DIABLO package showed high overall correlations between all three data sets (metage-
nomics versus metabolomics, r = 0.81; metagenomics versus 16S, r = 0.82; metabolomics
versus 16S, r = 0.72). The complete data sets, analyses (Jupyter notebooks), and results of
all the CoDA tests are stored on GitHub (https://github.com/bryansho/PCOS_WGS_16S
_metabolome/tree/master/Revision/CLR_transform).

In addition to employing operational taxonomic unit (OTU) clustering at the 97% (ge-
nus) level for 16S rRNA gene analysis, we also analyzed our data using denoised amplified
sequence variants (SVs) and SVs clustered at the 97% level. The programming scripts used
to generate the SVs and results for CAP analysis, random forest, and DESeq2 are included
in supplementary data at https://github.com/bryansho/PCOS_WGS_16S_metabolome/tree/
master/Revision/16S%20SV.

CAP analysis of the 16S data using SVs and 97% clustered SVs confirmed the OTU
results: the highest level of differentiation among treatment groups was found at time 2

Ho et al.

September/October 2021 Volume 6 Issue 5 e01149-20 msystems.asm.org 4

https://github.com/bryansho/PCOS_WGS_16S_metabolome/tree/master/Revision/CLR_transform
https://github.com/bryansho/PCOS_WGS_16S_metabolome/tree/master/Revision/CLR_transform
https://github.com/bryansho/PCOS_WGS_16S_metabolome/tree/master/Revision/16S&hx0025;20SV
https://github.com/bryansho/PCOS_WGS_16S_metabolome/tree/master/Revision/16S&hx0025;20SV
https://msystems.asm.org


FIG 2 Cohousing letrozole-treated mice with placebo-treated mice influenced the overall
composition of gut microbial metabolites over time. The cohousing study resulted in four treatment
groups: placebo mice (P), letrozole mice (LET), placebo cohoused with letrozole (Pch), and letrozole
cohoused with placebo (LETch). (A to F) Constrained canonical analysis of principal (CAP) coordinates
(Bray-Curtis distances) of fecal metabolites from the four treatment groups for weeks 0 to 5
posttreatment. Shown are the CAP1 and CAP2 coordinates, representing the two coordinates that
captured the greatest amount of variation (percentage of variation is shown in brackets). Results of
permutational ANOVA (PERMANOVA) of the Bray-Curtis distances are shown for each time point.
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FIG 3 Cohousing letrozole with placebo mice resulted in greater differentiation among treatment
groups in the overall composition of both gut microbes and metabolites at 2 weeks compared with
5 weeks. The cohousing study resulted in four treatment groups: placebo mice (P), letrozole mice
(LET), placebo cohoused with letrozole (Pch), and letrozole cohoused with placebo (LETch). Canonical
analysis of principal (CAP) coordinates of Bray-Curtis dissimilarity among the four treatment groups,
week 2 (A, C, E) and week 5 (B, D, F). Shown are the CAP1 and CAP2 coordinates, representing the
two coordinates that captured the greatest amount of variation (percentage of variation is shown in
brackets). (A and B) Metabolites; (C and D) bacterial 16S rRNA gene sequences (16S); (E and F)
bacterial whole-genome sequencing (WGS).
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versus time 5 (see Table S1 at https://github.com/bryansho/PCOS_WGS_16S_metabolome/
tree/master/Revision/16S%20SV). Interestingly, the goodness-of-fit was notably better for the
OTU data at both time points compared to the SV or clustered SV data. A similar pattern was
observed with the random forest analysis, with equal or higher preiction accuracy for the OTU
data, particularly at time 2 (see Table S2 at https://github.com/bryansho/PCOS_WGS_16S
_metabolome/tree/master/Revision/16S%20SV).

Combining multiomics data sets did not improve goodness-of-fit in beta
diversity analyses. CAP analyses were performed after combining the metabolomics data
with the 16S and metagenomic data sets at weeks 2 and 5, respectively. At week 2, the com-
bined metabolite and 16S data showed clear differentiation among treatment groups
(Fig. 4A; P = 0.001, R2 = 0.425) but was not different at week 5 (Fig. 4B; P = 0.060, R2 = 0.124).
For the combined metabolite and metagenomic data set, treatment groups were signifi-
cantly different at both week 2 (Fig. 4C; P = 0.001, R2 = 0.398) and week 5 (Fig. 4D; P = 0.004,
R2 = 0.135). The amount of variation explained by the first two principal components was
higher at week 2 for both combined data sets. The goodness-of-fit and amount of variation

FIG 4 Combination of metabolomic and metagenomic data did not improve the fit of overall microbial
compositional data compared to metabolomic data set alone. The cohousing study resulted in four treatment
groups: placebo mice (P), letrozole mice (LET), placebo cohoused with letrozole (Pch), and letrozole cohoused
with placebo (LETch). Canonical analysis of principal (CAP) coordinates of Bray-Curtis dissimilarity among the
four treatment groups, week 2 (A, C) and week 5 (B, D). Shown are the CAP1 and CAP2 coordinates,
representing the two coordinates that captured the greatest amount of variation (percentage of variation is
shown in brackets). (A and B) Metabolites combined with bacterial 16S rRNA gene sequences (16S); (C and D)
metabolites combined with bacterial whole-genome sequencing (WGS).
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explained by the principal components at week 2 were not greater than determined inde-
pendently for the metabolite data set (Fig. 3A), indicating that the metabolite data set in this
multiomics analysis was the main contributor to the observed treatment differentiation.

Log2 fold analysis identified numerous differential metabolite abundances
between treatment groups. To identify specific features that contributed to the differ-
ence in treatment groups, we calculated log2 fold ratios for the relative abundances of
primary and secondary BAs and other identifiable metabolites (Fig. 5). For the BAs, the
number of differential BAs was greater between LETch and LET than between P and
LET, particularly at week 2 (Fig. 5A to D). We found a similar, though more pronounced,
pattern with the other identified metabolites (Fig. 5E to H). Almost twice as many identifia-
ble metabolites were differentially abundant in LETch/LET compared to P/LET at week 2
(Fig. 5E and F), but this pattern was not present at week 5 (Fig. 5G and H).

Log2 fold change values smaller with bacterial relative abundances compared
to metabolites. Figure 6 shows the results of log2 fold analyses based on relative bacte-
rial abundances estimated via 16S rRNA gene sequences (Fig. 6A to D) and metage-
nomes (Fig. 6E to H). The plots include the 10 taxa with the greatest fold change from
each comparison. The fold change values ranged from26 to16 with the 16S OTU data,
and 23 to 12 with the metagenomic data, compared with a fold change range of 230
to 30 with the metabolites (Fig. 5). In the 16S data, comparisons of week 2 and week 5
found 6 of the top 10 taxa with the highest fold change values were the same for both
P/LET and LETch/LET comparisons. At week 2, P/LET and LETch/LET shared 6 of the same
OTUs, and all but Ruminococcus had a similar positive or negative change in ratio. For the
metagenomic data, we identified 4 bacterial species shared between week 2 and week 5 for
P/LET and 2 species shared between weeks 2 and 5 in the LETch/LET comparisons. Only 2
species, Akkermansia muciniphila and Pseudobutyrivibrio ruminis, were in common at week 2
between the P/LET and LETch/LET comparisons. A comparison of DESeq2 results for the OTU
data with those of the clustered SV 16S data found that 50% or more of the top 10 most dif-
ferentially abundant OTU taxonomic groups were among the top 10 most differentially clus-
tered SVs (see Table S3 at https://github.com/bryansho/PCOS_WGS_16S_metabolome/tree/
master/Revision/16S%20SV), while most of the rest were present among the top 20 most
differentially abundant taxa.

As a complement to the DESeq2 analysis, we applied a compositional data approach
to detect differentially abundant taxa. The programming scripts and results of the ANCOM
analyses for metabolite, 16S, and whole-genome sequencing (WGS) data sets are in supple-
mentary data at https://github.com/bryansho/PCOS_WGS_16S_metabolome/tree/master/
Revision/ANCOM.

ANCOM confirmed the results of the DESeq2 analysis for BAs and other metabolites.
The majority of differentially abundant metabolite and 16S features in the DESeq2
analysis were present in the ANCOM results. For the WGS data, on the other hand, the
ANCOM results returned very few differentially abundant taxa and there was minimal
overlap between the WGS DESeq2 and ANCOM results.

Multiomic data combinations improved random forest classification accuracy.
Table 1 shows the results of random forest analysis classification of P versus LET and
LETch versus LET comparisons at weeks 2 and 5 for independent and combined data
sets. In general, the week 2 data sets were better able to classify treatments than the
week 5 data sets, and classification accuracy was highest with LETch versus LET.
Among independent data sets, the 16S data set had the highest classification accu-
racy, while the combination of BA and metagenomic data resulted in the best overall
accuracy for both P-versus-LET and LETch-versus-LET comparisons. An analysis of fea-
tures that contributed the most to the accuracy of the combined multiomics random
forest analyses is shown in Fig. 7. Specifically, the 10 features with the highest Gini
importance scores are shown; their removal from the data set had the greatest effect
on the ability to classify between the treatment conditions. In the week 2 samples,
BAs were the majority of the top 10 features with the highest Gini importance. In the
LETch-versus-LET comparisons, all of the most important classification features were BAs
when they were combined with 16S data (Fig. 7B), while 8 of the 10 most important features
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FIG 5 Primary and secondary BA relative abundance was altered in a pairwise comparison of P relative to LET or LETch relative to LET. The cohousing study
resulted in four treatment groups: placebo mice (P), letrozole mice (LET), placebo cohoused with letrozole (Pch), and letrozole cohoused with placebo
(LETch). Results from the DESeq2 analysis were expressed as log2 fold change for P/LET (A, C, E, G) and LETch/LET (B, D, F, H) with BAs at week 2 (A and B),
BAs at week 5 (C and D), other identified metabolites at week 2 (E and F), and other identified metabolites at week 5 (G and H). The 10 BAs or metabolites
with the greatest magnitude of log2 fold change were shown for each comparison. Positive log2 fold changes represent metabolites increased in P or LETch

relative to LET, while negative changes represent metabolites increased in LET relative to P or LETch.
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were BAs when they were combined with metagenomic data (Fig. 7F). At week 2, 6 out of
the 10 most important features were BAs in the P-versus-LET comparisons at week 2 for
both the BA1 16S combination (Fig. 7A) and the BA1 metagenome combination (Fig. 7E).
In the week 5 samples, the case was reversed: with one exception (Fig. 7D, BA 116S LETch

versus LET), the bacterial taxa dominated the top 10 importance features.
Analyses revealed time- and treatment-specific patterns of correlations between

bacteria and BAs. The heatmaps in Fig. 8 illustrate the results of correlations between
BAs and bacterial species identified in the metagenomic data. For all the treatment groups

FIG 6 Bacterial relative abundance was altered in a pairwise comparison of P relative to LET or LETch relative to LET. The cohousing study resulted in four
treatment groups: placebo mice (P), letrozole mice (LET), placebo cohoused with letrozole (Pch), and letrozole cohoused with placebo (LETch). Results from
the DESeq2 analysis were expressed as log2 fold change for P/LET (A, C, E, G) and LETch/LET (B, D, F, H) with 16S rRNA bacterial gene sequences (16S) at
week 2 (A and B), 16S at week 5 (C and D), bacterial whole-genome sequencing (WGS) at week 2 (E and F), and WGS at week 5 (G and H). The 10 bacteria
(family or genus level for 16S; species level for WGS) with the greatest magnitude of log2 fold change were shown for each comparison. Positive log2 fold
changes represent bacteria increased in P or LETch relative to LET, while negative changes represent bacteria increased in LET relative to P or LETch.
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(P, LET, and LETch), we observed more than twice the number of strong correlations (P $

j0.8j; dark red or blue squares) in samples collected at week 2 than in those collected at
week 5. Moreover, none of the strongest correlations detected between BAs and bacterial
species at week 2 were detectable at week 5. For example, in the week 2 P samples, one
cholic acid metabolite was positively correlated with 6 different bacterial species. However,
this same metabolite was weakly or even negatively correlated with the same 6 species at
week 5. Similar patterns could be observed in the LET (e.g.,g-muricholic acid) and LETch (e.g.,
cholic acid.7) treatment groups. The patterns of correlations between bacteria and BAs also
differed considerably among treatment groups. Of the 10 strongest correlations between
BAs and bacterial species in the P samples at week 2, 8 were not detectable in the LET sam-
ples. Similarly, none of the 10 strongest correlations in LETch at week 2 were correlated in
LET at the same time point.

DISCUSSION

Multiomics methods improved the fit of gut microbiome samples to the experimen-
tal treatment conditions, increased the resolution of the time-dependent changes in
the gut microbiome, and identified potential targets for future mechanistic studies.
The untargeted metabolomic analysis proved especially useful for distinguishing treat-
ment groups. At time zero of the longitudinal sampling, there were no detectable dif-
ferences among treatment groups (Fig. 2A), but by week 1 the untargeted metabolo-
mic data indicated clear patterns of differentiation (Fig. 2B). By week 2, all three data
sets showed a pattern of differentiation, but the metabolite data were the best fit to
the treatment conditions (Fig. 2C). Analysis of the untargeted metabolites from the
cohousing samples also revealed a pattern of early divergence of both Pch and LETch

from the P and LET microbiome samples, which were also distinct from one another.
Furthermore, effects of cohousing on the LETch gut microbiome did not result in a “pla-
cebo-like” state; rather, cohousing resulted in a third state, distinct from both P and

TABLE 1 Results of random forest analyses with single and combined multiomics data setse

Comparisons Accuracya OOB scoreb Mean accuracyc AUCd

Wk 2
P vs LET (BA) 16.67% 50.00% 40.00% 0.00%
P vs LET (16S) 83.33% 20.00% 70.00% 66.66%
P vs LET (WGS) 66.67% 80.00% 70.00% 100.00%
LET vs LETch (BA) 66.67% 80.00% 80.00% 100.00%
LET vs LETch (16S) 100.00% 93.75% 90.00% 100.00%
LET vs LETch (WGS) 66.67% 40.00% 40.00% 66.67%
P vs LET (BA1 16S) 50.00% 50.00% 60.00% 66.66%
P vs LET (BA1WGS) 100% 60.00% 60.00% 100.00%
LET vs LETch (BA1 16S) 100.00% 100.00% 90.00% 100.00%
LET vs LETch (BA1WGS) 100% 90.00% 80.00% 100.00%

Wk 5
P vs LET (BA) 50.00% 80.00% 80.00% 66.67%
P vs LET (16S) 50.00% 40.00% 60.00% 55.55%
P vs LET (WGS) 66.67% 90.00% 70.00% 55.56%
LET vs LETch (BA) 66.67% 80.00% 70.00% 44.45%
LET vs LETch (16S) 40.00% 30.00% 73.33% 16.66%
LET vs LETch (WGS) 66.67% 60.00% 70.00% 88.89%
P vs LET (BA1 16S) 50.00% 30.00% 60.00% 66.66%
P vs LET (BA1WGS) 83.30% 60.00% 90.00% 78.00%
LET vs LETch (BA1 16S) 40.00% 77.77% 73.33% 83.33%
LET vs LETch (BA1WGS) 83.30% 30.00% 50.00% 88.90%

aRF accuracy = percentage of correctly classified samples.
bOut-of-bag (OOB) score = percentage of correctly classified samples based on unselected samples from the
bootstrap sampling method.

cMean accuracy = average accuracy of a 5-fold cross-validation.
dArea under the curve = measurement of the performance of a binary classifier.
eAbbreviations: P, placebo; LET, letrozole; LETch, LET cohoused with placebo; BA, bile acids; 16S, 16S rRNA gene
sequences; WGS, whole-genome sequencing data.
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LET conditions, indicating that the gut microbiome does not have to “return” to a healthy
state to have protective effects.

In addition to OTU clustering for the 16S data, we also performed analyses using
denoised SVs and clustered SVs (see supplementary data at https://github.com/bryansho/
PCOS_WGS_16S_metabolome/tree/master/Revision/16S%20SV). The beta diversity patterns
with SVs and clustered SVs were very similar to the OTU results, though the goodness-of-fit
in the CAP analysis was better with the OTUs than either the SVs or clustered SVs, which
was somewhat surprising given that the OTUs and clustered SVs were both clustered at the
97% (genus) level. We also note that the accuracy of the random forest analyses with the
OTU data was more robust than that with the SV data in terms of accuracy. While not iden-
tical, the DESeq2 analysis with the clustered SVs had considerable overlap with the OTU
analysis in terms of the differentiated taxa. Because the log2 fold analysis implemented by
DESeq2 may be prone to false positives, we also reanalyzed feature-level differentiation
with the metabolite, 16S, andWGS data with ANCOM, a compositional data analysis approach.
The DESeq2 and ANCOM results for the metabolite data were very similar, particularly for the
BAs. We also observed a high degree of similarity with the 16S data between the DESeq2 and
ANCOM results. The 16S results from the ANCOM approach found many additional differenti-
ated taxa compared with DESeq2, including many uncultured taxa, but the same identified
bacterial taxa differentiated in DESeq2 results were also present in the ANCOM results. The
WGS results, on the other hand, were quite dissimilar between the DESeq2 and ANCOM
results, though it is important to note that there was a very low level of feature differentiation
in both the DESeq2 and ANCOM results.

FIG 7 Top 10 BA and bacterial features that classify P versus LET or LETch versus LET in random forest analysis. The cohousing study resulted in four
treatment groups: placebo mice (P), letrozole mice (LET), placebo cohoused with letrozole (Pch), and letrozole cohoused with placebo (LETch). The graphs
show Gini importance scores which indicate the relative importance of a particular feature (BA or bacteria) in the classification result. Results are shown for
P/LET (A, C, E, G) and LETch/LET (B, D, F, H) with BA 1 bacterial 16S rRNA gene sequencing (16S) at week 2 (A and B), BA 1 16S at week 5 (C and D), BA 1
whole-genome sequencing (WGS) at week 2 (E and F), and BA 1 WGS at week 5 (G and H).
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FIG 8 Heatmaps of Spearman-rank correlation values between clr-transformed BA and bacterial abundances. Red indicates positive correlation values,
while blue indicates negative correlation values. The BA and bacterial features chosen for analysis were selected based on DESeq2 analyses. The
cohousing study resulted in four treatment groups: placebo mice (P), letrozole mice (LET), placebo cohoused with letrozole (Pch), and letrozole
cohoused with placebo (LETch). (A and B) P, (C and D) LET, and (E and F) LETch at week 2 or 5, respectively.
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The time-dependent nature of the shift in the gut microbiome due to both LET
treatment and cohousing was apparent in all the ‘omics data sets. Untargeted metabo-
lomics, 16S, and shotgun metagenomics showed stronger separation at week 2 sam-
ples than week 5 samples, with the metabolite data being the best fit to treatment at
both time points (Fig. 3). These results further confirm the importance of longitudinal
sampling. Had we waited until the end of the experiment to collect fecal samples, or
sampled at only a single time point, our interpretation of the results would have been
affected. Overall, three clear patterns emerged from the longitudinal multiomics analy-
ses: (i) a shift in overall gut metabolite diversity was detectable prior to the shift in bac-
terial diversity (16S or metagenomics), (ii) a detectable shift in gut metabolites
occurred by the first week of the study, and (iii) both Pch and LETch were distinct from
the P and LET samples, respectively, and were also more similar to one another than ei-
ther was to the P and LET samples. The early community-wide shift in metabolite diver-
sity in the LET samples suggests that these changes began even earlier, perhaps imme-
diately after letrozole treatment and the resultant increase in testosterone levels.
Further, our results suggest that metabolites transferred quickly between Pch and LETch

mice, likely via coprophagy. Given these patterns, we hypothesize that host-related
changes led to changes in gut microbial diversity, though future experimentation will
be needed to understand the timing and nature of these changes.

While little is currently known about the role specific BAs have in modulating host-
microbe interactions, it is well known that BAs can affect the growth of gut bacteria
and that they are chemically modified by gut bacteria. BAs have been reported to promote
the growth of BA-metabolizing bacteria and have strong antibiotic properties (34) and favor
resistant bacteria such as Lactobacillus and Bifidobacterium (35). Numerous gut bacteria includ-
ing members of Lactobacillus, Bifidobacterium, and Clostridium also express bile-salt hydrolase
(BSH) enzymes, enabling them to deconjugate BAs (36). In addition, Clostridium species can
metabolize secondary BAs (36). Interestingly, our log2 fold analysis found that many species
within these bacterial genera (e.g., Lactobacillus, Bifidobacterium, Akkermansia, and Clostridium)
were differentially abundant between P and LET as well as LET and LETch, particularly at week
2 (Fig. 6). A recent study by Tian et al. measured the effects of BAs on the growth and survival
of four common gut bacteria and found that different BAs had bacterium-specific effects (37).
Interestingly, the BAs they tested in the study, lithocholic acid (LCA), deoxycholic acid (DCA),
taurocholic acid (TCA), and TUDCA, were identified as differentially abundant in log2 fold com-
parisons between P/LET and LETch/LET (Fig. 5) and had high Gini importance scores in the ran-
dom forest analyses, particular at week 2 (Fig. 7A and B). In addition, our study identified
strong correlations between 3 of these BAs (LCA, TCA, and TUDCA) and various gut bacteria in
our study (Fig. 8). Furthermore, the magnitude of these correlations varied considerably
among treatment groups. For example, in the LET samples at week 2 LCA, TCA, and TUDCA
were highly positively correlated with Lactobacillus johnsonii and Lactobacillus gasseri and
strongly negatively correlated with Lactobacillus murinus and Lactobacillus animalis (Fig. 8C). At
the same time point, there were no correlations detected between these three BAs and these
Lactobacillus species in P samples (Fig. 8A) and only strong negative correlations between
TUDCA and L. johnsonii and L. gasseri in LETch (Fig. 8E). Interestingly, a recent study of the
effects of BAs on the neonatal microbiome found that administration of specific BAs to mice
via oral gavage had a particularly strong effect onmembers of Lactobacillus and that this effect
was highly species dependent (38). L. johnsonii, which carries BSH enzymes of different specif-
icities (39), was strongly affected by the administration of multiple different BAs, while the
BSH-negative L. murinus was unaffected. Two other striking patterns were the strong positive
correlations in the week 2 LETch samples between the same four BAs and Parabacteroides gold-
steinii and, to a lesser extent, Corynebacterium uterequi (Fig. 8E), correlations not observed in ei-
ther LET or P samples. Species of Parabacteroides have been suggested as potential therapeu-
tics for obesity-related disorders and have been shown to metabolize BAs (40).

Strengths of this study include the use of multiple ‘omics approaches for assessing
changes in the gut microbiome correlated with LET and cohousing, longitudinal sam-
pling, and a diet-independent mouse model that recapitulates many phenotypes of
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PCOS. Limitations of the study include how representative the experimentally induced
LET mouse model is of PCOS in women and the relatively small sample size. Despite
these caveats, our study provided additional evidence that changes in primary and sec-
ondary BAs may be associated with PCOS. One study recently demonstrated that levels
of secondary BAs such as glycodeoxycholic acid and TUDCA were lower in women
with PCOS than in women without PCOS (20). Interestingly, we also observed a lower
ratio of TUDCA in LET versus P mice as well as a higher ratio of TUDCA in LETch versus
LET mice (Fig. 5A to C). Given that supplementation with these BAs was shown to be
protective against developing a PCOS-like phenotype in mice (20), further studies will
be needed to determine whether treatment with specific BAs is protective in the letro-
zole-induced PCOS-like mouse model, what mechanisms are involved in this protective
effect, and whether these findings can be translated to develop novel therapies for
women with PCOS. Somewhat surprisingly given the importance of BAs in host physiology,
much remains to be discovered concerning the mediation of BA signaling by host-microbe
interactions. With regard to PCOS, this will necessitate mechanistic studies in PCOS-like animal
models focused on the role of sex steroids in regulating BA production in the liver, BA metab-
olism by gut microbes, and BA signaling in the enterohepatic system.

MATERIALS ANDMETHODS
Letrozole-induced PCOS-like mouse model. Details on the mouse model and cohousing experi-

mental design were described previously (26). Briefly, C57BL/6NHsd female mice (Envigo) were housed
in a vivarium under specific-pathogen-free conditions with ad libitum access to water and food. Placebo
or 3-mg letrozole pellets (50 mg/day; Innovative Research of America) were implanted subcutaneously
into 4-week-old mice for 5 weeks. Throughout the experiment, mice were housed two per cage in three
separate housing arrangements. This resulted in four treatment groups: placebo mice (P), letrozole mice
(LET), placebo cohoused with letrozole (Pch), and letrozole cohoused with placebo (LETch) (n = 8 mice/
group). All animal procedures in the experiment were approved by the University of California, San
Diego Institutional Animal Care and Use Committee (protocol S14011).

Fecal sample collection, DNA isolation, and 16S rRNA gene sequencing. Fecal sample collection,
DNA extraction, PCR, and 16S rRNA library sequencing were performed as previously described (26).
Fecal samples were collected prior to pellet implantation and once per week for the duration of the
experiment. Fecal samples were frozen immediately after collection and stored at 280°C. DNA was
extracted from the samples using the DNeasy PowerSoil kit (Qiagen) according to the manufacturer’s
protocol and stored at 280°C. PCR amplification was performed for the V4 hypervariable region of the 16S
rRNA gene with primers 515F and 806R (41). The reverse primers contained unique 12-bp Golay barcodes
that were incorporated into the PCR amplicons (41). Amplicon sequence libraries were prepared at the
Scripps Research Institute Next Generation Sequencing Core Facility and sequenced on an Illumina MiSeq.

Bioinformatics and statistical analysis of 16S rRNA gene sequences. Processing of sequences and
OTU picking were performed using accessory scripts from QIIME version 1.9.1 (42). Only forward reads
were used from the Illumina sequencing data. Barcodes were extracted from the Illumina 16Ss fastq file
using extract_barcodes.py, and the data were demultiplexed and quality filtered using split_libraries_-
fastq.py with default parameters. OTU picking was performed using a de novo approach with the pick_-
de_novo_otus.py script, using Greengenes 13.8 as the reference database (43). The OTU table was then
parsed using filter_otus_from_otu_table.py, and any OTUs not present in at least 25% of samples were
removed prior to downstream analysis.

Fecal metabolite extraction and LC-MS/MS. Individual fecal samples were weighed to ensure they
weighed at least 0.01 g per fecal sample. The fecal samples were transferred to 2-ml vial inserts to which
a 1:10 volume of methanol (Optima LC/MS-grade methanol, 67-56-1; Fisher Scientific) diluted in water
70:30 (Optima LC/MS-grade water, 7732-18-5; Fisher Scientific) was added. The sample was then homog-
enized in a Qiagen TissueLyser and allowed to extract overnight at room temperature. After extraction,
samples were briefly vortexed and incubated for 1 h at room temperature before centrifugation at
10,000 � g for 30 s. Liquid chromatography (LC) was performed with Thermo Scientific UltraMate 3000
Dionex. High-performance liquid chromatography (HPLC) was performed using a Phenomenex
(Torrance, CA, USA) Luna 5-mm C18(2) HPLC column (2.0 mm by 250 mm), and ultrahigh-performance liq-
uid chromatography (UPLC) was performed using a Phenomenex Kinetex 2.6-mm C18 (30 by 2.10 mm)
column with 20 ml of the extractions from the fecal pellets. A linear water–acetonitrile gradient (from
98:2 to 2:98 water-acetonitrile) containing 0.1% formic acid was used (HPLC, 54-min gradient; UPLC, 14-
min gradient) with a flow rate of 0.2 ml min21 for the HPLC analysis and 0.5 ml min21 for the UPLC analy-
sis. Tandem mass spectrometry (MS/MS) was performed using a Bruker Daltonics Maxis quadrupole time
of flight (qTOF) mass spectrometer equipped with a standard electrospray ionization source. Tuning of
the mass spectrometer was done by infusion of Tuning Mix ES-TOF (Agilent Technologies) at a
3 ml min21

flow rate. Lock mass internal calibration used a wick saturated with hexakis (1H,1H,3H-tetra-
fluoropropoxy) phosphazene ions (Synquest Laboratories, m/z 922.0098) located within the source for
accuracy. The mass spectrometer was operated in data-dependent positive-ion mode, automatically
switching between full-scan MS and MS/MS acquisitions for both the HPLC and UPLC analyses. Full-scan
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MS spectra (m/z 50 to 2,000) were acquired in the TOF, and the top 10 most intense ions in a particular
scan were fragmented using collision-induced dissociation at 35 eV for 11 ion and 25 eV for 12 ions in
the collision cell.

Bioinformatics analysis of metabolites. Molecular networks were created by using the GNPS data-
base online workflow at http://gnps.ucsd.edu, and the data set was used to search various MS/MS libra-
ries available in the GNPS database by using the same workflow. The data set is available to the public
at the online MassIVE repository of the GNPS database under MassIVE ID number MSV000081524. The
molecular network used for analysis is available at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
d74cab73cc344821a59979f58269f3a8.

Features were quantified using the mzMine-based feature finding algorithm with qTOF presets on
the GNPS workflow. The features in the table were then filtered by removing features that were present
in fewer than four samples, which removed approximately 50% of the total features. Metabolite annota-
tions are based on MS/MS matches in the GNPS libraries and are therefore considered level two accord-
ing to the metabolomics standards initiative (44).

Shotgun metagenomic sequencing and preprocessing. Eight hundred nanograms of genomic
DNA isolated from week 2 and week 5 samples was sonicated using an E220 focused ultrasonicator
(Covaris) to produce 400-bp fragments which were purified using Agencourt AMPure XP beads
(Beckman Coulter). A KAPA Hyper Prep kit (Kapa Biosystems) was used to prepare Illumina libraries fol-
lowing the manufacturer's instructions. Libraries were quality checked for their size and concentration
with electrophoresis using a high-sensitivity D1000 kit on a 2200 TapeStation (Agilent). Prepared sam-
ples were sequenced by the Center for Advanced Technology at the University of California, San
Francisco, using an Illumina NovaSeq sequencer set to 150-bp paired-end reads. This produced an aver-
age of 109,084,767 reads per sample. Sequences from metagenomes were trimmed and filtered based
on quality score, read length, and number of ambiguous nucleotides (N) using Fastp (version 0.19.6)
(45). Adapters and poly(G) tails (NovaSeq’s no-signal indication) were automatically detected and
removed. This preprocessing step removed ,1% of reads per sample, resulting in an average read
length of 146 bp and a Q20 of 99.1%. Preprocessed paired-end reads were then mapped using Bowtie2
(version 2.2.6) to the mouse host genome (University of California, Santa Cruz Mus musculus genome;
mm10) to remove host contamination (46). Mapped reads were removed with SAMtools (version 1.5),
and unmapped reads were reconstructed to paired-end reads with BEDTools (version 2.25.0) (46, 47).

Bioinformatics analysis of metagenome data. Taxonomic identification was performed using
Centrifuge (version 1.0.3) against the NCBI nonredundant sequence database (48), and archaea, eukar-
yotes, and viral results were removed. Bacterial features (18,464) were passed through a filter that
required species to be present in 90% of all samples and have an abundance of greater than 0.00001%,
resulting in 3,539 bacterial species for analysis.

Statistical analysis of metabolites, 16S rRNA genes, and metagenomes. Analysis of the similarity
among treatment groups was done via CAP using Bray-Curtis dissimilarity through the R package (ver-
sion 1.26.1) (49). Differences among treatment groups were determined by permutational multivariate
analysis of variance (PERMANOVA) using the Python package Scikit-bio (version 0.5.5). Differential
expressions of features were determined through the R package DESeq2 (version 1.18.1) using Wald’s
test to find the log2 fold expression levels between treatment groups (50). Comparisons were made
between P and LET treatments and LET and LETch treatments for each time point (week 2 and week 5).
To test for the effects of potential statistical artifacts in the analysis of relative abundance data due to its
inherent compositional nature, we transformed all the ‘omics data sets independently using the cen-
tered log-ratio (clr). Specifically, we clr transformed the processed and filtered metagenomic, 16S, and
metabolite data sets at time points 2 and 5 using Python package Scikit-bio (version 0.5.5) with multipli-
cative replacement to adjust for zero values. Euclidean distances calculated using the clr-transformed
data were then subjected to NMDS (nonmetric multidimensional scaling) ordination and PERMANOVA
tests in R package vegan (version 2.5-6). In addition, correlations between the metagenomic, metabolite,
and 16S data sets were assessed with the DIABLO (Data Integration Analysis for Biomarker discovery
using a Latent cOmponents) framework in R package mixOmic (version 6.10.9). Treatment conditions
and time points were used as conditions in DIABLO for evaluation.

Multiomics analyses. To detect potential associations between the members of the gut microbial
community and specific metabolites, two multiomics feature tables were created: (i) metabolomes com-
bined with 16S rRNA sequencing and (ii) metabolomes and metagenomes. Multiomics data were ana-
lyzed via CAP based on Bray-Curtis dissimilarities through Phyloseq (version 1.26.1) (49). BAs and bacte-
rial species with the largest log2 fold magnitude as indicated by DESeq2 were used as features in a
random forest supervised learning model analysis via Scikit-learn (version 0.20.1) in Python (50, 51). All
models were optimized to have the lowest out-of-bag error. Following the same comparison structures
in the DESeq2 analysis, the top 10 features with the highest Gini importance index for all comparisons
were selected for a correlation analysis. To combine multiomics data sets at very different scales for correla-
tion analysis, we transformed the data sets independently using the centered log-ratio (clr) approach. Zero-
replacement was performed with the pseudocount method from the R package zCompositions version 1.3.3.
Spearman-rank correlation analysis was performed in Python pandas (version 0.25.1) with clr-transformed BA
counts and clr-transformed bacterial species counts from the metagenomic data for P, LET, and LETch at
weeks 2 and 5. Heatmaps were generated using the Python seaborn package (version 0.9.0) (52, 53).

Data availability. 16S rRNA gene sequences used in this study are available via the European
Nucleotide Archive (study accession number PRJEB29583). Shotgun metagenomes are available via the
European Nucleotide Archive (study accession number PRJEB40312). Metabolomics data are available online
in the MassIVE repository of the GNPS database under MassIVE ID number MSV000081524. The metadata
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and all code used to analyze and visualize data are available at https://github.com/bryansho/PCOS_WGS
_16S_metabolome.
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