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A B S T R A C T   

Non-coding RNAs (ncRNAs) are a diverse group of functional RNA molecules that lack the ability to code for 
proteins. Despite missing this traditional role, ncRNAs have emerged as crucial regulators of various biological 
processes and have been implicated in the development and progression of many diseases, including cancer. 
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two prominent classes of ncRNAs that have 
emerged as key players in cancer pathophysiology. In particular, miR-21 has been reported to exhibit oncogenic 
roles in various forms of human cancer, including prostate, breast, lung, and colorectal cancer. In this context, 
miR-21 overexpression is closely associated with tumor proliferation, growth, invasion, angiogenesis, and che-
moresistance, whereas miR-21 inactivation is linked to the regression of most tumor-related processes. 
Accordingly, miR-21 is a crucial modulator of various canonical oncogenic pathways such as PTEN/PI3K/Akt, 
Wnt/β-catenin, STAT, p53, MMP2, and MMP9. Moreover, interplays between lncRNA and miRNA further 
complicate the regulatory mechanisms underlying tumor development and progression. In this regard, several 
lncRNAs have been found to interact with miR-21 and, by functioning as competitive endogenous RNAs (ceR-
NAs) or miRNA sponges, can modulate cancer tumorigenesis. This work presents and discusses recent findings 
highlighting the roles and pathophysiological implications of the miR-21-lncRNA regulatory axis in cancer 
occurrence, development, and progression. The data collected indicate that specific lncRNAs, such as MEG3, 
CASC2, and GAS5, are strongly associated with miR-21 in various types of cancer, including gastric, cervical, 
lung, and glioma. Indeed, these lncRNAs are well-known tumor suppressors and are commonly downregulated in 
different types of tumors. Conversely, by modulating various mechanisms and oncogenic signaling pathways, 
their overexpression has been linked with preventing tumor formation and development. This review highlights 
the significance of these regulatory pathways in cancer and their potential for use in cancer therapy as diagnostic 
and prognostic markers.   

1. Introduction 

Over the last few decades, after the ground-breaking completion of 
the Human Genome Project (HGP), it became evident that only about 
1.5 % of the human genome accounts for protein-coding sequences, 
while the other 98.5 % is non-coding and does not provide instructions 

for making proteins [1,2]. Moreover, as a result of the recent techno-
logical advancement in high-throughput sequencing, large data sets 
were quickly and efficiently generated and analyzed, revealing that 
non-coding genes, once thought of as transcriptional “junk”, are instead 
important regulators of protein-coding gene activity and play a crucial 
role in many biological and cellular processes [1,3]. Accordingly, 
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pathophysiological implications of various diseases are strongly associ-
ated with non-coding transcriptome abundance, thus strengthening the 
relevance and impact of non-coding genes [4]. Based on their size, 
non-coding RNAs (ncRNAs) are classified into two categories: small 
ncRNAs (sncRNAs) and long ncRNAs (lncRNA). The former includes 
non-coding transcripts with less than 200 nucleotides to which belong: 
a) microRNAs (miRNAs) that destabilize and inhibit the mRNA trans-
lation by binding to its 3′UTR at the RNA level. [5], b) small interfering 
RNAs (siRNAs) [5,6], c) transfer RNAs (tRNAs) [7], and d) 
piwi-interacting RNAs (piRNAs) [8,9]. Non-coding transcripts of over 
200 nucleotides are known as lncRNAs. They can be intergenic, anti-
sense, or intronic in relation to protein-coding genes [10]. They contain 
5′-caps and 3′-poly-A tails but don’t have protein-coding potential [10]. 
lncRNAs exhibit various functions, including chromatin structure mod-
ulation, nuclear organization, and gene regulatory potential at both 
transcriptional and post-transcriptional levels [11,12]. Furthermore, 
they can also function as guides, scaffolds, decoys, and enhancer RNAs 
[13]. Circular RNAs (circRNAs), a novel subclass of lncRNA with a co-
valent closed circular structure lacking a 5′ end cap or 3′ poly (A) tail, 
also belong to this group [14]. Similarly to lncRNA, the biological roles 

of circRNAs range from post-transcriptional regulators to protein scaf-
folds and miRNA sponges [15,16]. As mentioned above, miRNAs are 
considered one of the most evolutionary conserved and abundant classes 
of sncRNAs [5]. The level of complementarity between miRNA and 
mRNA determines the employed silencing mechanism, which can either 
be the translation repression or mRNA cleavage; in both cases, the 
mRNA will not be translated into a functional protein [17]. miRNAs are 
involved in various biological and developmental processes, including 
cell proliferation, apoptosis, cell cycle control, immune responses, stem 
cell division, and metabolism [18,19]. As a result, a dysregulated miRNA 
expression is implicated in the pathogenesis of various diseases, 
including cancer, cardiovascular, diabetes, and autoimmune [20–24], 
and therefore, miRNAs can effectively be used as disease biomarkers 
[25–27] or druggable molecules [28–31]. 

With regard to malignancies, working as either tumor suppressors or 
oncogenes depending on the signaling pathways involved and altered 
expression of target genes, miRNAs play a crucial role in the develop-
ment and progression of various human cancers [25,32–34]. Besides, 
several miRNAs can potentially be used as diagnostic, prognostic and 
therapeutic biomarkers in human cancers [25,32]. In this regard, one of 

Fig. 1. The figure illustrates the mechanisms associated with miR-21 downregulation, which enhances breast cancer apoptosis and inhibits cancer progression 
and metastasis. 
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the earliest identified oncomiR is miR-21, which is usually overex-
pressed in various cancers, including glioma, colorectal, prostate, breast, 
and ovarian cancer [35–39]. One of the main mechanisms by which 
miR-21 accelerates cancer development is by affecting (e.g., by down-
regulating tumor suppressor genes) downstream signaling pathways 
involved in cell proliferation, survival, and invasion [35,40–43]. Simi-
larly, miR-21 can also affect signaling pathways involved in autophagy, 
apoptosis, metastasis, and angiogenesis [44,45]. 

A further level of complexity in the regulatory mechanisms under-
pinning tumor development and progression is due to the role played by 
the interaction between lncRNAs and miRNAs. Indeed, acting as 
competing endogenous RNA (ceRNA), lncRNA inhibits the available 
miRNA from binding to the target mRNA, thus blocking its function, 
whether tumorigenic or antitumorigenic [46,47]. In other words, 
lncRNAs act as miRNA sponges, decreasing the miRNAs’ regulatory ef-
fect on the downstream target genes [48]. An increasing number of 
studies showed that lncRNA-miRNA-mRNA regulatory axes are involved 
in several biological processes associated with tumorigenesis and tumor 
metastasis, such as cell proliferation, apoptosis, cell-cycle regulation, 
migration, invasion, epithelial-mesenchymal plasticity, and drug resis-
tance [49–53]. In addition to the relevance and impact that these reg-
ulatory axes have on cancer pathophysiology, they also proved to be 
powerful diagnostic and prognostic tools. Given the key role of miR-21 
in cancer development, progression, diagnosis, and therapy, the purpose 
of this work is to gather, analyze, and discuss the latest research progress 
on the regulatory association between miRNA-21 and lncRNAs in 
different types of human cancer and its pathophysiological implications. 

2. Breast cancer 

Breast cancer (BC) is the most common cancer in females and the 
leading cause of early mortality among women worldwide [54,55]; new 
cases of this cancer are indeed constantly increasing year by year [54]. 
Chemotherapy is the principal strategy for treating BC patients. How-
ever, the resistance to chemotherapy and the chemotherapy-associated 
side effects, which compromise the functionality of several organs, are 
the main barriers to BC treatment [55]. As mentioned above, miRNA-21 
(miR-21) functions as an oncomiRNA, and its expression is associated 
with carcinogenic processes and drug resistance mechanisms in many 
cancer types [55,56]. A recent study illustrated that miR-21 over-
expression is correlated to increased levels of the proangiogenic factor 
VEGF (vascular endothelial growth factor) and therapeutic resistance 
enhancement in HER2+ (positive human epidermal growth factor re-
ceptor 2) BC [55]. Furthermore, miR-21 overexpression causes poly 
[ADP-ribose] polymerase 1 (PARP-1) inhibition, affecting DNA repair 
and inducing apoptosis suppression. Mechanistically, a circular sponge 
(Circ-21) sequesters miR-21, and by decreasing its expression levels, 
carcinogenesis processes such as cancer cell progression, migration, and 
colony formation are suppressed [55]. In addition, both PARP-1 and 
VEGF protein expression resulted respectively increased and decreased 
by the action of circ-21. Interestingly, circ-21 also caused G2/M phase 
cell cycle arrest in the BC cell line MCF7 but not in the MCF10A cell line 
[55]. Concerning the chemotherapy resistance, circ-21 was able to in-
crease the DOXO activity concomitantly with the decreased gene 
expression of the resistance genes ABCA1, ABCC4, and ABCC5 (Fig. 1) 
[55]. Also, the lncRNA CASC7 (cancer susceptibility candidate 7 
lncRNA) has recently been shown to act as a BC suppressor through the 
miR-21-5p/FASLG axis regulation [54]. CASC7 is downregulated in both 
BC tissue and cells, while CASC7 overexpression suppresses BC growth 
and metastasis [54]. In addition, CASC7 overexpression results in the 
elevation (both at gene and protein level) of Fas ligand (FASLG), a 
member of the tumor necrosis factor superfamily, whose primary role is 
the triggering the caspase cascade activation initiating apoptosis 
through FAS binding [57,58]. These findings, further verified in vivo 
using a xenograft model in nude mice, highlight that CASC7 plays a 
tumor-suppressive role in BC by inhibiting miR-21 oncogenic effect and 

raising FASLG levels (Fig. 1) [54]. 
Triple-negative breast cancer (TNBC) is a subtype of BC that misses 

progesterone (PR) and estrogen receptor (ER) expression and lacks the 
human epidermal growth factor receptor-2 (HER2) overexpression [59]. 
Within this framework, miR-21 was shown to promote proliferation and 
invasion of TNBC cells by targeting the oncosuppressor protein phos-
phatase and tensin homolog (PTEN) (Fig. 3) [60]. On the other hand, 
lncRNA BRE-AS1, recently recognized as a tumor suppressor in prostate 
carcinoma and lung cancer [61,62], inhibits TBNC proliferation by 
downregulating miR-21 [56]. Specifically, BRE-AS1 and miR-21 showed 
opposite expression profiles that were also significantly correlated with 
poor survival of TNBC patients; indeed, the former resulted decreased, 
while the latter was significantly higher in TNBC patients than healthy 
subjects [56]. Furthermore, BRE-AS1 overexpression inhibited prolif-
eration, migration, and invasion of TNBC cells by increasing the 
expression levels (both at gene and protein levels) of PTEN while 
decreasing those of miR-21. Conversely, overexpression of miR-21 
enhanced proliferation, migration, and invasion of TNBC cells but 
showed no effect on BRE-AS1 expression (Fig. 1) [56]. 

2.1. MEG3 lncRNA 

Maternally expressed gene 3 (MEG3) is another lncRNA with an 
opposite expression pattern compared to miR-21 in BC tissues and cells 
[63]. MEG3 overexpression was shown to inhibit BC tumorigenesis by 
suppressing cell proliferation and promoting apoptosis [63]. Besides, 
MEG3 has also been shown to suppress the expression of hexokinase 2 
(HK2), the enzyme responsible for glucose-6-phosphate (G6P) produc-
tion in the glucose metabolic pathway [63]. High glycolysis is indeed a 
common biochemical feature of cancer cells since it is essential for their 
growth and survival [64]. Luciferase reporter assay, RNA immunopre-
cipitation chip (RIP) assay, and qRT-PCR analysis collectively revealed 
that MEG3, acting as a sponge of miR-21, negatively regulates HK2 
expression [63]. Accordingly, MEG3 overexpression inhibits 
miR-21-mediated PI3K/Akt pathway activation, ultimately leading to 
BC tumorigenesis inhibition (Fig. 1) [63]. 

3. Cervical, endometrial and ovarian cancer 

3.1. Cervical cancer 

Cervical cancer (CC) is a mortality-causing gynecological cancer 
among women worldwide [65,66]. About 500 thousand CC new cases 
are reported yearly [67]. Squamous cell carcinoma (CSCC) is the most 
prevalent type of CC, accounting for 90% of the total cases [68]. Early 
detection of CC can positively influence treatment for patients who may 
undergo radical surgery. In contrast, the late detection of patients with 
CC advanced stages leads to poor prognosis due to a lack of efficient 
treatment [68]. Chemotherapy is the gold standard protocol used to 
treat patients with large tumors or metastatic lesions, while cisplatin is 
the first-line chemotherapy drug used to treat ovarian cancer and CC 
[65,66]. However, late-stage patients have a poor prognosis because of 
developed resistance to the chemotherapy regimen [65,67]. Under-
standing chemoresistance molecular mechanisms in cervical cancer is 
thus crucial for the development of targeted therapies. Several studies 
proved oncogenic miR-21 is involved in CC, where it can target different 
tumor suppressors [69], as well as in cervical squamous cells, where it 
can induce tumorigenesis via the tumor growth promoter CCL20 (C–C 
Motif Chemokine Ligand 20) regulation [70]. Besides, several 
miR-21-lncRNA interactions have also been demonstrated in CC 
[65–67]. In this regard, a recent study investigated the function of 
lncRNA LOXL1-AS1 and its relationship with miR-21 in cervical squa-
mous cell carcinoma (CSCC) [68]. Unlike other types of cancers, 
including prostate cancer and glioblastoma, where LOXL1-AS1 was 
found upregulated, in CSCC, this lncRNA resulted downregulated [68]. 
Besides, its overexpression decreased cell invasion and migration rates 
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Fig. 2. The figure illustrates the effect of miR-21 downregulation and upregulation on cervical cancer progression and metastasis.  

Fig. 3. The figure depicts the effect of miR-21 downregulation in both endometrial and ovarian cervical cancer, which inhibits cancer progression and metastasis.  
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of CSCC cells, indicating a tumor suppressor role. In silico analysis and 
dual luciferase assay suggested the potential interaction between 
LOXL1-AS1 and miR-21; however, LOXL1-AS1 overexpression had no 
effects on miR-21 expression, as miR-21 overexpression on the 
LOXL1-AS1 expression [68]. Instead, LOXL1-AS1 overexpression resul-
ted in the upregulation of the tumor suppressor Ras Homolog Family 
Member B (RHOB), a direct target of miR-21 [68]. Similarly to 
LOXL1-AS1, overexpression of RHOB decreased invasion and migration 
rates of CSCC cells, while miR-21 mitigated the impact of LOXL1-AS1 
and RHOB overexpression. These results collectively suggest that 
LOXL1-AS1 participates in CSCC by regulating the miR-21/RHOB axis 
(Fig. 2) [68]. 

3.1.1. MEG3 lncRNA 
MEG3 is another differentially expressed lncRNA in CC; precisely, 

MEG3 was reported downregulated in CC tissues from 108 patients 
compared to the adjacent normal tissues [67]. Moreover, MEG3 
expression resulted negatively correlated with clinicopathologic fea-
tures of CC, such as tumor size, degree of tumor spread, lymphatic 
metastasis, and high risk-human papillomavirus (HR-HPV) infection 
[67]. In vitro experiments also demonstrated that MEG3 expression is 
linked to CC cell replication ability; indeed, MEG3 knockdown promoted 
cell proliferation and reduced apoptosis of CC cells, while MEG3 over-
expression considerably enhanced apoptosis and arrested cell growth. 
Although the interaction between MEG3 and miR-21 in CC has not well 
established, the MEG3 expression was found to be negatively correlated 
with miR-21 expression; indeed, miR-21 downregulation resulted in 
MEG3 overexpression, whereas miR-21 upregulation resulted in MEG3 
suppression [67]. These results collectively suggest that MEG3 may 
regulate miR-21 expression, consequently inhibiting CC cell prolifera-
tion and fostering apoptosis [67]. A recent study, besides confirming 
MEG3 downregulation in CC and its role as a tumor suppressor, also 
showed that MEG3, acting as ceRNA, promotes CC cells cisplatin 
sensitivity through the miR-21/PTEN axis regulation (Fig. 2) [66]. 

3.1.2. CASC2 lncRNA 
Interestingly, the lncRNA, cancer susceptibility candidate 2 (CASC2), 

can also enhance cisplatin sensitivity by regulating CC cells’ miR-21/ 
PTEN axis [45]. Similarly to MEG3, CASC2 is low expressed in CC tis-
sues and cells, and in cisplatin-resistant CC cells [65]; accordingly, 
CASC2 overexpression can inhibit CC cell viability and proliferation, 
whereas CASC2 downregulation can promote them [65]. Besides, 
CASC2 expression is inversely related to miR-21 expression and directly 
related to PTEN expression in cisplatin-resistant CC cells, as confirmed 
by both real-time PCR and Western blot experiments; also, as suggested 
by luciferase assays, miR-21 directly binds CASC2 [65]. Data collec-
tively indicate that CASC2 functions as a ceRNA and inhibits miR-21 to 
promote PTEN and ultimately sensitize CC cells to cisplatin [65]. Both 
MEG3 and CASC2 are thus promising therapeutic candidates to use in 
combination with traditional cisplatin-based chemotherapy for CC 
treatment (Fig. 2) [65,66]. 

3.2. Endometrial cancer 

Endometrial cancer (EC) is the most common gynecologic cancer 
with an incidence strongly associated with advanced age and obesity 
[71,72]. Although EC diagnosis and therapy improved significantly, 
treatments have multiple side effects, including infertility; besides, 
15%–20% of patients have recurrence and metastasis in ovaries, vagina, 
bladder, and rectum [71,72]. Understanding the molecular strategies 
involved in EC progression is thus essential to enhance EC therapeutic 
agents’ effectiveness. In this regard, emerging studies demonstrated that 
lncRNAs contribute to EC development and progression through 
different mechanisms [73]. An increasing number of lncRNAs are 
aberrantly expressed in EC tissues, and some of them have shown 
promising diagnostic and prognostic potential [74]. On the other hand, 

miR-21 has an important diagnostic value in EC, and its differential 
expression is associated with clinicopathological parameters. For 
instance, higher miR-21 expression is associated with advanced disease 
stage, as per the International Federation of Gynecology and Obstetrics 
(FIGO) classification, as well as with cervical invasion, myometrial in-
vasion and distant metastasis [75,76]. Accordingly, some 
miR-21-lncRNA interactions have been reported as important check-
points of EC cell proliferation, metastasis and apoptosis [77,78]. This is 
the case of the relationship between lncRNA RUNX1-1T1 and miR-21 
[77], where RUNX1-1T1, which is downregulated in EC, acts as a 
tumor suppressor and decreases EC cell proliferation by suppressing 
miR-21 activity. Precisely, RUNX1-IT1 suppresses miR-21 maturation by 
interacting with miR-21 precursor (Fig. 3) [77]. This mechanism is 
suggested by expression analysis results showing that the RUNX1-1T1 
expression is inversely correlated with miR-21 but not with miR-21 
precursor; also, RUNX1-1T1 overexpression downregulates mature 
miR-21 (resulting in EC cells proliferation decreasing), but not miR-21 
precursor. Finally, dual-luciferase activity assay and RNA pull-down 
assay confirmed the predicted interaction between RUNX1-IT1 and 
miR-21 precursor [77]. The interaction between lncRNA NBAT1 and 
miR-21-5p has also been described in EC. Precisely, NBAT1 enhances 
PTEN expression by sponging miR-21-5p to ultimately repress EC cell 
proliferation and promote apoptosis [78]. Therefore, similarly to 
RUNX1-1T1, NBAT1 acts as a tumor suppressor and is downregulated 
(whereas miR-21 is upregulated) in EC. Overexpression of NBAT1 in-
hibits EC cell proliferation, migration, and invasion; it also induces 
apoptosis and increases PTEN expression at both gene and protein levels. 
Opposite effects are instead observed with miR-21-5p overexpression 
(Fig. 3) [78]. 

3.3. Ovarian cancer 

Ovarian Cancer (OC), the malignancy of the ovaries, is the fifth 
leading cause of death in women due to its advanced stage at diagnosis 
[79]. In recent decades, various lncRNAs have been shown to play a part 
in OC pathophysiology, mainly as tumor suppressors [80]. For instance, 
lncRNA HLA-F Antisense RNA 1 (HLA-F-AS1) was shown to suppress OC 
development by targeting the miR-21-3p/Paternally Expressed 3 (PEG3) 
axis [81]. PEG3 is targeted by miR-21, which in turn is targeted by 
HLA-F-AS1; indeed, HLA-F-AS1’s overexpression attenuates the 
miR-21-induced increases of OC cell proliferation and migration, 
whereas PEG3 overexpression abolishes the miR-21-induced cancer 
progression [81]. Overall, both in vivo and in vitro data have shown the 
HLA-F-AS1mediated attenuation of OC development and progression 
via the miR-21-3p/PEG3 axis (Fig. 3) [81]. 

3.3.1. GAS5 lncRNA 
Similarly to the role played in colorectal [82] and lung cancer [83], 

GAS5 functions as a tumor suppressor in OC. In OC cells, GAS5 is 
downregulated, while GAS5 overexpression results in inhibition of OC 
cell proliferation [80]. The underlying mechanism of this inhibition 
involves miR-21 and Sprouty homolog 2 (SPRY2), a member of the 
Sprouty family with a tumor suppressive role in OC [84]; indeed, pa-
tients with low SPRY2 expression show poorer prognosis than those with 
high SPRY2 expression [85]. MiR-21 is a target gene of GAS5, and 
SPRY2 is a target gene of miR-21 [80]; accordingly, overexpression of 
GAS5 decreases miR-21 expression and increases SPRY2 expression, in 
addition to inhibiting OC cell proliferation. On the contrary, miR-21 
overexpression results in decreasing SPRY2 expression and attenuation 
of GAS5 suppressive effects on OC proliferation [80]. SPRY2 is thus a 
downstream effector of GAS5/miR-21 signaling in OC cells; precisely, 
GAS5 suppresses OC cell proliferation by inhibiting miR-21 expression 
and consequently increasing SPRY2 expression (Fig. 3) [80]. 
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4. Colorectal cancer 

Colorectal cancer (CRC) is a malignant tumor of the colon and 
rectum cells. It is the third most common death-causing cancer world-
wide, and its incidence in younger adults has dramatically increased in 
the last decade [86]. Surgery is the primary treatment in patients with 
early diagnosis, followed by chemotherapy and radiotherapy. None-
theless, the survival rate is still low because of reoccurrence and 
metastasis [86]. Consequently, investigating the molecular mechanisms 
of CRC onset and progression is highly demanded to recognize important 
biomarkers for diagnostic and therapeutic purposes. In this regard, the 
molecular pathways involving lncRNA-miRNA interaction may provide 
a novel diagnostic and therapeutic approach to CRC. 

4.1. GAS5 lncRNA 

Similarly to what was reported in OC [80], the interplay between 
lncRNA GAS5 and miR-21 has a key role in CRC progression [82]. Pre-
cisely, GAS5 expression is inversely correlated with miR-21 expression 
in CRC cells, and their interaction reciprocally affects their role in CRC. 
CRC cells display lower expression levels of GAS5 than normal cells, 
resulting in increased tumorigenesis and a low survival rate. Besides, 
GAS5 knockdown boosts cell viability inhibits apoptosis and stimulates 
cell migration. Conversely, GAS5 overexpression suppresses miR-21 
expression, promotes cell apoptosis and suppresses cell migration 
[82]. Moreover, acting as ceRNA, GAS5 competitively binds miR-21 and 
blocks its inhibitory action on the target gene leukemia inhibitory factor 
receptor (LIFR) (Fig. 4). Therefore, by targeting the miR-21/LIFR axis, 
GAS5 may suppress proliferation and metastasis of CRC and provide a 
potential target for CRC treatment [82]. Exosomes are extracellular 
vesicles containing proteins, bioactive lipids, and RNAs (including 
miRNAs, lncRNAs, and circRNAs) acting as intercellular messengers 
[87]. 

4.2. Other lncRNAs 

In the context of CRC growth and progression, some exosomal 
circRNAs were shown to play a regulatory role [88–90]. This is the case 
of circEPB41L2, which, acting as a sponge of miR-21 and miR-942-5p, 
represses CRC progression via the PTEN/AKT signaling pathway [90]. 
CircEPB41L2 is downregulated in plasma exosomes from CRC patients 
and cells, whereas its overexpression enhances apoptosis and inhibits 
the proliferation, migration, and invasion of CRC cells [90]. Also, exo-
somal circEPB41L2 inhibits the expression of miR-21-5p, miR-942-5p, 
and PTEN/AKT signaling pathway [90], whose activity is crucial for 
CRC progression [91,92]. This inhibitory role on CRC tumor growth has 
also been confirmed in vivo experiments, where the subcutaneous in-
jection of exosomal circEPB41L2 in mice has significantly reduced 
tumor volume and weight (Fig. 4) [90]. MiR-21–PTEN axis resulted also 
regulated by LINC00312, another lncRNA with a tumor suppressive role 
in CRC. LINC00312 is indeed downregulated in both CRC tissues and 
cells, while its overexpression (or miR-21 inhibition) suppresses CRC 
cell proliferation, invasion, and migration [93]. Overall, LINC00312 can 
modulate CRC cell malignancy by suppressing the miR-21- PTEN axis 
(Fig. 4) [93]. A tumor suppressive role in CRC has also been described 
for lncRNAs DiGeorge syndrome critical region gene 5 (DGCR5), which 
was showed to inhibit CRC cells proliferation by downregulating miR-21 
[94], and for cancer susceptibility candidate 2 (CASC2), whose expres-
sion level resulted inversely correlated with mir-21 levels [95]. How-
ever, the molecular mechanisms underpinning the relationship of these 
two lncRNAs with miR-21 still need to be fully understood. On the 
contrary, some lncRNAs associated with miR-21 have also shown an 
oncogenic function in CRC; is this the case of LOC100507144, whose 
expression resulted higher in advanced CRC stages, lymph node 
metastasis, and vascular invasion [96]. LOC100507144 gain-of-function 
experiments demonstrated that this lncRNA participates in CRC cell 
proliferation by restraining apoptosis and cellular senescence and pro-
moting cell cycle progression [96]. Besides, LOC100507144 suppression 
inhibited the expression of key cancer stem cell markers, such as CD44, 
Nanog, and Sox2, as well as the expression of their targets, miR-302 and 

Fig. 4. The figure illustrates four mechanisms that affect colorectal cancer progression and metastasis via the interaction between the miR-21 axis and some lncRNAs.  
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miR-21. Collectively, data suggest that LOC100507144 may enhance 
CRC progression and metastasis via the 
CD44/Nanog/Sox2/miR-302/miR-21 axis regulation (Fig. 4) [96]. 
Similarly, lncRNAs MALAT1 and circRNA-ACAP2, which are highly 
expressed in CRC tissues and cells, act as oncogenes by directly targeting 
miR-21 [97,98]. Specifically, MALAT1 inhibition was shown to prevent 
CRC cell invasion and migration, ultimately reducing tumor formation 
in tumor-bearing mice [97]. On the other hand, circRNA-ACAP2 acts as 
a miR-21 sponge to regulate T lymphoma invasion and metastasis pro-
tein 1 (Tiam1) expression, a protein associated with the tumor meta-
static potential [98,99]. Similarly to circRNA-ACAP2, Tiam1 expression 
was found to be high in CRC tissue and cells and inversely correlated 
with miR-21 expression [98]. Accordingly, when circRNA-ACAP2 and 
Tiam1 expression was decreased, and miR-21-5p was increased, CRC 
cells proliferation, migration and invasion were suppressed, suggesting a 
regulatory role of circRNA-ACAP2/hsa-miR-21-5p/Tiam1 axis in CRC 
growth and progression (Fig. 4) [98]. 

5. Leukemia 

Leukemia is a cancer of white blood cells. This cancer is clinically 
categorized into four categories, myeloid or lymphoid, and acute or 
chronic, in order to facilitate the treatment approach choice [100]. 
Acute myeloid leukemia (AML) is the most common type. With the 
advancement of cancer remedies, the survival rate of younger patients 
increased, but older patients still have poor prognoses and low survival 
rates [101]. Consequently, understanding the disease’s molecular 
mechanism is highly demanded in order to find innovative diagnostic 
and therapeutic approaches. As mentioned above, lncRNAs play a crit-
ical regulatory role in cancer disease, either as tumor suppressors or 

oncogenes. In the context of AML, unlike other cancers, such as breast, 
lung, liver and esophageal cancer, lncRNA TP73-AS is downregulated 
and acts as a tumor suppressor by directly interacting with miR-21 
[101]. Accordingly, AML cell proliferation, migration, and invasion 
are suppressed when TP73-AS is overexpressed, while the tumor sup-
pressor and target of miR-21, PTEN, is upregulated. Collectively, these 
data indicate that TP73-AS1 may affect cell proliferation in AML by 
sponging miR-21 to upregulate PTEN (Fig. 5) [101]. SCIRT is another 
downregulated lncRNA in AML, as well as in doxorubicin-resistance 
(DR) AML patients, whereas miR-21 resulted upregulated [102]. 
SCIRT directly interacts with miR-21 but does not affect its expression. 
However, SCIRT suppresses the miR-21 inhibitory effect on 
doxorubicin-induced apoptosis, suggesting a ceRNA mechanism where 
SCIRT increases doxorubicin chemosensitivity by sponging miR-21 
[102]. 

5.1. MEG3 lncRNA 

Resistance to the chemotherapy drug Imatinib is one of the major 
problems in the treatment of chronic myeloid leukemia (CML), another 
common type of leukemia (Fig. 5) [103]. In this regard, lncRNA MEG3 
was shown to contribute to Imatinib resistance by suppressing miR-21 
expression [104]. Specifically, MEG3 resulted significantly down-
regulated in both blood samples of Imatinib-resistant CML patients and 
imatinib-resistant K562 cells. In these last, MEG3 overexpression 
reduced cell proliferation, promoted apoptosis, and increased Imatinib 
resistance, as well as reduced the expression of three major multidrug 
transporters, multidrug resistance1 (MDR1), multidrug resistance pro-
tein 1 (MRP1), and ATP-binding cassette transporter G2 (ABCG2). 
Moreover, MEG3 expression resulted negatively correlated with miR-21 

Fig. 5. The figure illustrates the interplay effect between the miR-21 axis and the lncRNAs TP73-AS, SCIRT, and MEG3 on leukemia cancer development and cancer 
drug resistance. 
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in CML patients, while luciferase reporter assays indicated a potential 
interaction between MEG3 and miR-21. Taken together, these results 
suggest that MEG3 may regulate imatinib resistance in CML by acting as 
a ceRNA of miR-21 (Fig. 5) [104]. 

6. Lung cancer 

Lung cancer or bronchogenic carcinoma refers to tumors originating 
in the lung parenchyma or within the bronchi. Since 1987, lung cancer 
has ranked among the top reasons for cancer-related deaths in the USA, 
also causing more female deaths than breast cancer [105]. The two main 
types of lung cancer are small-cell lung carcinoma (SCLC) and non-small 
cell lung carcinoma (NSCLC), which currently account for 15% and 
85%, respectively, of new lung cancer diagnoses [105]. Based on his-
tological and clinical variations, NSCLC is further divided into three 
subtypes: adenocarcinoma, squamous-cell carcinoma, and large-cell 
carcinoma [106]. One of the most promising areas for developing 
future lung cancer treatments is gene therapy, and in this area, miRNAs 
are emerging as potential diagnostic biomarkers and therapeutic targets 
[107]. In this context, miRNA expression profiles that are able to 
distinguish between normal and malignant tissues, as well as tumor 
types, have been developed [107]. Besides, miRNA-based biomarkers 
allow the assessment of a patients’ prognosis, responsiveness to 
chemotherapy, treatment effectiveness, and disease susceptibility and 
may represent powerful tools in lung cancer therapy [107]. In this 

context, miR-21 represents a valid diagnostic and prognostic biomarker 
in different tumors, including NSCLC [108–110]. miR-21 expression 
levels are indeed raised in NSCLC, and they are negatively correlated 
with patients’ overall survival, supporting the oncogenic role of this 
miRNA [111–113]. 

6.1. GAS5 lncRNA 

Based on the Cancer Genome Atlas (TCGA) dataset analysis, miR-21 
expression in NSCLC cells is inversely correlated with the expression of 
the lncRNA, small nucleolar RNA host genes (SNHG9); similarly, they 
have opposite effects in NSCLC cells proliferation, as promoter or in-
hibitor for miR-21 and SNHG9 respectively [114]. Further analysis 
demonstrated a direct interaction between miR-21 and SNHG9; besides, 
SNHG9 overexpression strongly inhibited miR-21 expression (whereas 
miR-21 overexpression had no effect on SNHG9 expression), promoted 
the methylation of miR-21, and attenuated the increase of 
miR-21-induced NSCLC cells proliferation (Fig. 6) [114]. With the aim 
to investigate the molecular mechanisms underlying the radiosensitivity 
of NSCLC, a recent study demonstrated that the lncRNA GAS5 and the 
miR-21/PTEN/Akt axis play a key role in this process [115]. In partic-
ular, GAS5 expression in two NSCLC cell lines, NCI–H460 and A549, 
resulted associated with their different resistance to radiotherapy; 
indeed, NCI–H460 cells were more sensitive) to ionizing radiation 
(IR)-induced apoptosis than A549 cells and GAS5 was significantly 

Fig. 6. The figure depicts the effects and molecular mechanisms of different miR-21-lncRNA axes in modulating lung cancer progression and metastasis.  
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upregulated in NCI–H460 cells but not in A549 cells exposed to IR [115]. 
Overexpression of GAS5 decreased the miR-21 expression, and this 
inhibitory effect was significantly increased during IR, suggesting that 
GAS5/miR-21 interaction may be IR-specific [115]. The tumor sup-
pressor PTEN, which is also a miR-21 target, is an inhibitor of the 
PI3K/Akt signaling pathway, a key pathway in IR-induced cell apoptosis 
[116]. In this regard, the interaction between GAS5 and the 
miR-21/PTEN/Akt axis was enhanced by IR. Specifically, GAS5 over-
expression increased PTEN expression and decreased Akt phosphoryla-
tion through miR-21 modulation [115]. Resistance acquisition to 
cisplatin (DDP)-based chemotherapy is one of the major obstacles in 
NSCLC treatment [117]. In this regard, the ceRNA network, 
GAS5-miR-21-PTEN, where lncRNA GAS5 competes with PTEN for 
miR-21 binding, has been suggested to be involved in NSCLC sensitivity 
to DDP-based therapy [118]. GAS5, found downregulated in NSCLC 
patients, has been shown to suppress NSCLC cell proliferation and col-
ony formation capacity and regulate their resistance to DDP through the 
PTEN pathway [118]. MiR-21 has instead opposite effects on NSCLC cell 
viability; indeed, according to previous studies [119], it promotes 
NSCLC cell proliferation, migration, and invasion and represses the ac-
tivity of the tumor suppressive factor PTEN [120]. Results from in silico 
analysis, luciferase reporter gene assay, and immunoprecipitation sug-
gested that GAS5 and PTEN share almost the same binding site for 
miR-21 and that GAS5 competes with PTEN for miR-21 binding [118]. 
This ceRNA mechanism also underpins NSCLC chemo-sensitivity to DDP 
through the PTEN pathway regulation; indeed, PTEN protein levels are 
decreased by GAS5 knockdown and increased by miR-21 inhibition 
[118]. Furthermore, under DDP treatment, NSCLC cell viability is pro-
moted by GAS5 knockdown and suppressed by miR-21 inhibition; 
however, the effect of miR-21 inhibition on cell viability is partially 

counteracted by GAS5 silencing, indicating that the GAS5/miR-21 axis 
regulated NSCLC chemo-sensitivity to DDP through the PTEN pathway 
regulation (Fig. 6) [118]. 

6.2. CASC2 lncRNA 

PTEN and miR-21 participate in a further regulatory network, which 
is always implicated in NSCLC cells-associated cisplatin cytotoxicity and 
involves the lncRNA cancer susceptibility candidate 2 (CASC2) [121]. It 
is known that CASC2 acts as a tumor suppressor in various tumors [122], 
and it is downregulated in almost all tumor types, including NSCLC 
[123]. Based on a recent study, CASC2 is also related to lung adeno-
carcinoma (LUAD) development, and it inhibits LUAD progression by 
forming a positive feedback loop with the miR-21/p53 axis [124]. Here, 
CASC2 inhibits miR-21 expression and increases p53 expression by 
targeting miR-21. P53, which acts as a transcription factor upstream of 
CASC2, can, in turn, activate CASC2 transcription [124]. 

6.3. MEG3 lncRNA 

Similarly to the previously described role of GAS5 in the miR-21/ 
PTEN/Akt regulatory network, the lncRNA MEG3 acts as a tumor sup-
pressor by inhibiting NSCLC cell migration and invasion through the 
miR-21-5p/PTEN axis regulation (Fig. 6) [125]. MEG3, which is 
downregulated in NSCLC cells, inhibits NSCLC cell migration and in-
vasion by sponging miR-21-5p, which in turn increases PTEN expression 
via the PI3K/AKT signaling pathway [125]. MEG3 can also inhibit the 
epithelial-mesenchymal transition (EMT) process; indeed, MEG3 over-
expression significantly enhances both the transcript and protein levels 
of the endothelial marker E-cadherin and concurrently decreases the 

Fig. 7. The figure depicts the effects and molecular mechanisms of different miR-21-lncRNA axes in modulating glioma cancer progression and metastasis.  
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mesenchymal markers, N-cadherin, Vimentin and MMP9 in NSCLC cells. 
MEG3 overexpression-induced effects were instead attenuated by 
miR-21-5p mimic [126]. These results are consistent with previous 
studies showing that MEG3 directly targets miR-21-5p and suppresses its 
expression, whereas miR-21-5p overexpression abolishes MEG3-induced 
inhibition of cell proliferation and apoptosis induction in NSCLC cells 
[127]. MEG3 was also shown to improve the cisplatin sensitivity of 
NSCLC cells via the miR-21-5p/SOX7 axis modulation [127]. Moreover, 
it was demonstrated that target sex-determining region Y-box 7 (SOX7) 
is a miR-21 direct target, and MEG3, acting as a ceRNA, suppresses the 
activity of miR-21-5p, releasing the inhibitory action that miR-21 exerts 
on SOX7 (Fig. 6) [127]. 

6.4. Other lncRNAs 

A recent study highlighted that poor survival of NSCLC patients is 
associated with low tissue levels of the lncRNA PLAC2, which may thus 
represent a potential biomarker for NSCLC prognosis [128]. PLAC2 is an 
upstream inhibitor of miR-21, which in turn controls NSCLC cell inva-
sion and migration by modulating downstream effectors of 
cancer-related pathways, such as the tumor suppressor PTEN. In this 
regard, PLAC2 overexpression resulted in PTEN upregulation, indicating 
that PLAC2 may relieve PTEN from miR-21-induced inhibition (Fig. 6) 
[128]. By combining lncRNA microarray data of LUAD tissues and cells 
from various online databases, such as Gene Expression Omnibus (GEO), 
TCGA, and the Atlas of Noncoding RNAs in Cancer (TANRIC), 
LINC00968 was found significantly downregulated in NSCLC [129]. To 
further validate this result, the effect of LINC00968 on NSCLC tumor 
growth and metastasis was evaluated both in vitro and in vivo. In 
particular, LINC00968 upregulation was shown to significantly inhibit 
cell proliferation, migration, and invasion. Label-free quantitative pro-
teomics data indicated that LINC00968 overexpression affects the 
expression of key hippo signaling pathway effectors, especially SMAD7 
[129]. Large-scale bioinformatics data mining revealed that the 
expression of both LINC00968 and SMAD7 was negatively correlated 
with miR-21-5p and that miR-21-5p was highly expressed in LUAD tis-
sues and cells. Besides, miR-21-5p upregulation significantly promoted 
cell proliferation, invasion, and migration and partially attenuated the 
inhibitory effects of LINC00968 [129]. All these findings suggested that 
LINC00968 may serve as a ceRNA for miR-21-5p; therefore, by sponging 
miR-21-5p, it releases the inhibitory action of miR-21-5p on SMAD7 and 
enhances SMAD7 expression (Fig. 6) [129]. 

7. Glioma 

Glioma is one of the most widely diagnosed brain malignancies in the 
central nervous system, with significantly high rates of mortality 
worldwide [130]. The observed poor prognosis is due to the high met-
astatic capability and strong invasiveness. Currently, the standard 
treatment for glioma involves surgery followed by postoperative com-
bined radiotherapy and chemotherapy; however, patients’ survival rate 
is less than 15 months [131,132]. Emerging studies demonstrated that 
several miRNAs-21-IncRNAs crosstalks are strongly associated with 
glioma cell proliferation and metastasis [133–139]. For instance, 
DGCR5 (similarly to the above-mentioned antiproliferative effect in 
CRC) was demonstrated to affect migration and invasion of glioma cells 
via the miR-21/Smad7 axis [140]. Regarding the underlying molecular 
mechanisms, it has been suggested that DGCR5 could inhibit miR-21 
expression and, consequently, its inhibitory effect on Smad7 [140], 
which is a TGFβ1 signaling inhibitor able to repress TGFβ1-induced 
cancer EMT and metastatic ability [141]. Accordingly, DGCR5 over-
expression was shown to reduce the mesenchymal markers VIM, Snai2, 
and TWIST and increase the epithelial marker E-cadherin, both at gene 
and protein levels [140]. On the other hand, miR-21 overexpression 
dramatically reversed the DGCR5 anti-tumor effect (Fig. 7) [140]. 
Similarly to what was described above in the context of EC, the tumor 

suppressive function of lncRNA NBAT1 and its relationship with miR-21 
has also been reported in glioma by Guan et al. [142]. Specifically, the 
authors showed that NBAT1, which is downregulated in glioma tissues 
and cells and associated with poor prognosis, inhibits glioma cell pro-
liferation, migration and invasion through the miR-21/SOX7 axis [142]. 
The miR-21-NBAT1 interaction, first predicted by in silico analysis, was 
also confirmed by dual-luciferase reporter assay; likewise, SOX7 was 
confirmed as a miR-21 downstream target. Besides, SOX7 expression 
level resulted lower in glioma tissues and cells as compared to para-
carcinoma tissues and healthy astrocytes [142]. Overexpression of 
NBAT1 in human glioma cells (A172 and AM138) inhibited prolifera-
tion, migration, and invasion, increasing the SOX7 expression; opposite 
effects were instead observed with miR-21 mimics. Overall, data suggest 
the promising value of the NBAT1/miR-21/SOX7 axis as a therapeutic 
target for the treatment of glioma patients [142]. The LncRNA 
Prader-Willi region non-protein coding RNA 1 (PWRN1) has been re-
ported to be aberrantly expressed in several cancers, including breast, 
prostate, and gastric cancers, but its expression in GBM was almost 
unknown [137,143]. A recent study found that PWRN1 is down-
regulated in both GBM tumors and GBM cell lines, and it suggested that 
PWRN1 may act as a suppressor of GBM tumors and cell lines via miR-21 
inhibition [137]. This last showed instead to act as an oncogene in GBM 
[137]. In this context, a novel therapeutic approach involving exosomes 
packed with a miR-21-sponge construct has been recently developed 
[135]. These engineered exosomes delivered to GBM cells were able to 
decrease proliferation and elevate GBM cells’ apoptotic rate; instead, 
administration of the modified exosomes in a GBM rat model led to a 
substantial reduction of tumor volume [135]. An important challenge in 
applying cell-based gene therapy to brain tumors is the blood-brain 
barrier (BBB) [135]. In this regard, it is noteworthy that engineered 
exosomes showed the potential to penetrate the BBB and efficiently 
transfer their contents in the brain (Fig. 7) [135]. 

Trimethylation of histone H3 at lysine 27 (H3K27me3) is an epige-
netic modification to the DNA packaging protein, Histone H3, that acts 
as a transcriptional repressor of target genes (Fig. 7) [144,145]. H3K27 
trimethylation is catalyzed by the methyltransferase Enhancer of Zester 
Homolog 2 (EZH2), an enzyme with a crucial role in cancer development 
and growth [144–146]. EZH2 is indeed aberrantly overexpressed in 
several tumors (e.g., prostate cancer, breast cancer, and ovarian cancer), 
where it promotes tumor growth and metastasis [146]. Moreover, mu-
tations or altered functionality of this enzyme result in aberrant 
methylation or demethylation that can lead to malignancy [146]. In the 
context of glioma, EZH2 has been recently found to be overexpressed 
and linked to a reduced overall survival rate of glioma patients [125]. 
Besides, proliferation, invasion, and migration of glioma cells resulted 
markedly reduced when EZH2 was silenced, strongly suggesting its 
tumor promoter role. Of note, H3K27me3 expression was also signifi-
cantly inhibited by EZH2 silencing [138]. 

7.1. MEG3 lncRNA 

Mounting evidence indicates the role of lncRNAs, including MEG3, 
in the EZH2-regulated oncogenic processes [147]. In this regard, a study 
showed that MEG3 was downregulated in glioma cells, while EZH2 and 
miR-21-3p were upregulated; inhibition of EZH2, as well as MEG3 
overexpression, restrained cell proliferation, migration, and invasion of 
U251 glioma cells, and an increase in the binding between H3K27me3 
and the promoter region of MEG3 was also observed (Fig. 7) [138]. 
Overall, this study demonstrated that the EZH2-mediated H3K27me3 
enrichment on the MEG3 promoter may affect the growth and metastasis 
of glioma cells by targeting miR-21-3p [138]. 

7.2. CASC2 lncRNA 

CASC2, already described as tumor suppressor lncRNA in EC and 
CRC through targeting miR-21, was shown to similarly act in glioma 
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[139]. Here, CASC2 and miR-21 expressions and functions resulted 
negatively correlated both in glioma tissues and cell lines U251 and U87. 
CASC2 is indeed minimally expressed, and inhibits proliferation, 
migration, and invasion of glioma cells. miR-21 is instead overex-
pressed, and is responsible for glioma progression and malignancy 
[139]. Moreover, CASC2 is a target of miR-21 and the re is a reciprocal 
repression feedback loop between them [139]. Glioblastoma multiforme 
(GBM) is the most aggressive and malignant brain tumor; it is often 
diagnosed at late stages, and the survival rate is very low (Fig. 7) [148]. 

8. Oral, laryngeal and esophageal squamous cells carcinoma 

8.1. Oral squamous cell carcinoma 

Oral squamous cell carcinoma (OSCC) is the most prevalent type of 
head and neck cancer [149]. OSCC is thought to have caused 177,000 
deaths and 377,000 new cases worldwide in 2023 [150]. Surgery is the 
main form of treatment for OSCC, followed by radiation or chemo-
radiation therapy [151]. Despite treatment improvements, the five-year 
survival rate for OSCC is only 63%; this highlights the urgent need to 
better understand the molecular mechanisms behind OSCC pathophys-
iology and create more effective treatments [149]. Pseudogenes are 
DNA segments structurally resembling a gene but are non-functional in 
protein-coding [152]. They are usually located near the associated 
ancestral gene and play an important role in regulating gene expression 
[152]. Dysregulated pseudogenes are often associated with different 
human diseases and contribute to carcinogenesis [153]. Interestingly, a 
ceRNA mechanism where the pseudogene can competitively bind miR-
NAs to regulate the ancestral gene has also been shown [154]. In this 
regard, a recent study explored the relationship between PTEN and its 
pseudogene PTENp1 in OSCC [155]. Specifically, it was demonstrated 
that PTENp1, by sponging miR-21, mediates PTEN expression to inhibit 
OSCC cell proliferation and colony formation by triggering the cell cycle 
arrest through the AKT pathway [155]. QRT-PCR and western blotting 
analyses demonstrated that PTENp1 and PTEN expression levels were 
positively correlated but inversely correlated with miR-21 expression. 
This relationship between PTENp1 and PTEN expression was also 
confirmed in an OSCC mouse xenograft model (Fig. 8) [155]. 

8.1.1. GAS5 and MEG3 lncRNAs 
The involvement of the GAS5/miR-21/PTEN axis, previously 

described as having a crucial role in the sensitivity of NSCLC to DDP- 
based therapy, has been recently reported in OSCC [156]. Here, the 
tumor suppressor role of GAS5 and the ceRNA mechanism whereby 

GAS5 modulates miR-21 and PTEN expression were also confirmed 
[156]. QRT-PCR and western blotting analysis showed that GAS5 
knockdown led to the modification of several cell parameters, including 
a) increased expression of miR-21, b) increased expression of the cell 
proliferation markers proliferating cell nuclear antigen (PCNA), 
cyclinD1, and Ki-67, c) enhanced expression of the mesenchymal 
markers N-cadherin, vimentin, and snail 1), d) reduction of the epithe-
lial marker E-cadherin, overall suggesting an increase of the EMT pro-
cess (Fig. 8) [156]. OSCC progression has also been associated with 
lncRNA MEG3 activity in miR-21-associated fashion [157]. Indeed, the 
gene expression levels of MEG3 and miR-21 resulted in significantly 
lower and higher expression, respectively, in OSCC tissues compared to 
control tissues. In this context, dual luciferase assay suggested that 
MEG3 can selectively bind miR-21. In this regard, MEG3 overexpression 
showed the ability to inhibit cell proliferation and migration, whereas 
MEG3 knockdown showed opposite effects. Of note, miR-21 down-
regulation reversed the effects associated with MEG3 overexpression 
[157]. 

8.2. Esophageal squamous cell carcinoma 

Esophageal squamous cell carcinoma (ESCC) is a typical form of 
cancer without therapeutic cures [158]. ESCC incidence rate varies 
greatly worldwide, with China having the highest incidence rate [159]. 
Due to the lack of accurate and sensitive diagnostic indicators, ESCC is 
mostly diagnosed at advanced stages when metastases have already 
occurred, therefore resulting in poor prognosis [160]. This is why there 
is an urgent need for new prognostic and therapeutic indicators [161]. In 
the last decade, several miRNAs, including miR-21, have been found 
dysregulated in ESCC and shown to be potentially involved in its onset 
and progression [162]. Therapeutic strategies leading to miRNA 
loss-of-function may thus represent a valid strategy to modulate and 
eventually counteract tumor growth. In this regard, a synthetic circular 
RNA sponge has been engineered to achieve the loss-of-function of 
miR-21 and miR-93 [163]. Luciferase assays proved the ability of the 
artificial sponge to efficiently sequester endogenous miR-21 and miR-93 
in a dose-dependent manner. Also, in vitro and in vivo functional ex-
periments demonstrated that the synthetic sponge inhibits cell prolif-
eration and migration, as well as tumor growth in a murine xenograft 
model [163]. In the context of ESCC, a recent study investigated the role 
of a newly discovered lncRNA imatinib-up-regulated (IUR) and its 
relationship with miR-21 [164]. IUR was found to be down-regulated 
and negatively linked with patient survival in ESCC; besides, IUR 
expression levels were positively correlated with PTEN mRNA 

Fig. 8. The figure illustrates the effect of miR-21 overexpression on oral squamous cell carcinoma proliferation, metastasis, and drug resistance.  
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expression levels. A ceRNA mechanism where IUR sponges miR-21 to 
modulate PTEN and affect ESCC cell proliferation and apoptosis was also 
suggested [164]. Indeed, IUR over-expression increased PTEN gene 
expression, whereas miR-21 overexpression showed the opposite effect; 
besides, both IUR and PTEN over-expression inhibited cell proliferation 
and promoted apoptosis, whereas miR-21 overexpression showed the 
opposite effect. Of note, IUR and miR-21 did not affect each other [164]. 

8.3. Laryngeal squamous cell carcinoma 

Laryngeal squamous cell carcinoma (LSCC) is a frequent kind of head 
and neck cancer, which is responsible for 2.4% of new cancer cases and 
2.1% of cancer-related fatalities [165,166]. LSCC primarily affects males 
over the age of 40 [167]. The frequency of LSCC is rising, and more 
young individuals are now suffering from this condition. Early-stage 
LSCC may be treated with surgery, chemotherapy, radiation, or a com-
bination of these treatments [168]. However, even after receiving active 
treatment, patients with advanced LSCC have a poor prognosis. Novel 
therapeutic strategies are therefore required, although the uncertain 
LSCC pathophysiology makes it challenging to create them [169]. 

8.3.1. GAS5 lncRNA 
Regarding the role of lncRNA-miR-21 interplay in LSCC, the 

miR143HG-miR-21, and the GAS5-miR-21 associations have been re-
ported [170,171]. Both lncRNAs, miR143HG and GAS5, act as tumor 
suppressors in LSCC, where they are downregulated and inversely 
correlated with miR-21 [170,171]. Tissue samples from 62 LSCC pa-
tients (44 males, 18 females) were used to measure miR143HG and 

miR-21 expression levels by qPCR and methylation-specific-PCR. Results 
demonstrated that miR143HG’s low expression levels are correlated 
with poor survival, and its overexpression increases miR-21 methylation 
[170]. In LSCC cells, miR143HG overexpression decreases miR-21 
expression levels and inhibits cell migration and invasion. The oppo-
site was instead observed with miR-21 overexpression [170]. To inves-
tigate the GAS5-miR-21 interplay, a total of 59 tissue samples from LSCC 
patients, along with the LSCC cell lines SUN1076 and SNU899, were 
used [171]. As mentioned above, qPCR results indicated that GAS5 is 
downregulated in LSCC tissues and cells, and its expression levels are 
correlated with LSCC patients’ clinicopathological traits [171]. GAS5 
overexpression suppresses cell proliferation and enhances cell apoptosis; 
besides, the apoptosis regulator, BCL2 associated x (BAX), and the 
cell-cycle progression promoter, cyclin-dependent kinase (CDK6), which 
are also miR-21 target genes, resulted increased and decreased respec-
tively both at gene and protein level. Of note, miR-21 overexpression 
reversed all these effects [171]. 

9. Thyroid cancer 

Thyroid cancer (TC) forms in the thyroid gland, a small butterfly- 
shaped gland at the base of the neck. This gland produces hormones 
that regulate metabolism and help to control body temperature, blood 
pressure, and heart rate [172]. Thyroid papillary carcinomas (TPC) are 
the most common thyroid cancers, with a prevalence of more than 80% 
[173,174]. Papillary carcinoma frequently involves a benign tumor with 
a good prognosis and effective treatment [173,174]. After thorough 
treatment, which typically includes thyroidectomy, radioactive iodine 

Fig. 9. The figure displays the effect of miR-21 up and downregulation on thyroid cancer progression and metastasis.  
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therapy (RAI), and thyroid-stimulating hormone (TSH) suppression 
therapy, the 5-year survival rate is over 90%. Nevertheless, TPC 
metastasis can cause a significant recurrence rate; therefore, investi-
gating the molecular processes that underlie TPC is crucial [173,174]. 
The regulatory action of circRNAs also became crucial in PTC progres-
sion. Is this the case of the oncogenic circRNA called Circ-Pumilio 1 
(circPUM1), whose expression resulted increased in both PTC tissues 
and cells. On the other hand, circPUM1 knockdown results in the sup-
pression of cell proliferation, metastasis, and glycolytic processes in PTC 
cells [175]. Additionally, the anti-cancer impact of circPUM1 knock-
down on PTC was also linked to the miR-21-5p/MAPK1 axis. The 
mitogen-activated protein kinase 1 (MAPK1) is a target gene of 
miR-21-5p, and circPUM1competes with miR-21-5p for the binding to 
MAPK1. Therefore, circPUM1 knockdown downregulates MAPK1 by 
upregulating miR-21-5p (Fig. 9) [175]. The biological function of BST2 
interferon-stimulated positive regulator (BISPR), already known for 
promoting tumorigenesis in renal cell carcinoma [176] and oral cavity 

cancer [177], has been recently elucidated in TPC, as well as its rela-
tionship with miR-21-5p [178]. Microarray results showed that BISPR is 
highly expressed in TPC tissues compared to adjacent tissues, with lower 
expression levels. Moreover, low expression of BISPR in patients with 
TPC resulted positively correlated with higher survival time compared 
with patients with high BISPR expression [178]. Accordingly, BISPR 
knockdown counteracted TPC cell propagation and invasiveness and 
promoted apoptosis. In silico analysis, followed by dual luciferase re-
porter assay and RNA pull-down assay, indicated that miR-21-5p 
directly targets BISPR. Besides, BISPR prevents TPC cell proliferation 
and invasion by inhibiting miR-21-5p expression [178]. A further target 
of miR-21-5p is the anti-apoptotic gene B-cell lymphoma-2 (Bcl-2); in 
this respect, both miR-21-5p and BISPR knockdown suppressed Bcl-2 
mRNA and protein expression. Collectively, results clarify the BISPR 
role in TPC development, as well as its relationship with miR-21-5p and 
the downstream target Bcl-2 (Fig. 9) [178]. Thyroid cancer growth and 
metastasis resulted strongly correlated with the expression of the 

Fig. 10. The figure depicts the effects and molecular mechanisms of different miR-21-lncRNA axes in modulating Hepatocellular carcinoma progression 
and metastasis. 
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lncRNA OTUD6B antisense RNA 1 (OTUD6B-AS1) [179]. According to 
Wang et al. (2020), OTUD6B-AS1 functions as a tumor suppressor in TC, 
and its overexpression inhibits TC cell viability, migration, and invasion 
[179]. MiR-21 and miR-183-5p are both correlated with OTUD6B-AS1 
activity, and their overexpression compromises the suppressive action 
of OTUD6B-AS1 on TC cell proliferation and invasiveness (Fig. 9) [179]. 

10. Hepatocellular carcinoma 

Hepatocellular carcinoma (HCC) is one of the fastest-growing ma-
lignancies with the highest rates of cancer-related mortalities world-
wide. It is notably manifested in viral hepatitis but also in patients 
affected by chronic Hepatitis B and C with advanced fibrosis [180]. HCC 
incidence is higher in male individuals and in African and Asian pop-
ulations where viral hepatitis is endemic [181]. If diagnosed early, HCC 
can be cured by surgical approaches or liver transplant; however, in 

most cases, HCC is diagnosed at later stages where severe obstructive 
symptoms, liver impairment, and a high rate of intrahepatic and extra-
hepatic metastasis are evident [182]. LncRNAs and miRNAs dysregula-
tion have been associated with HCC cell metastasis, highlighting thus 
the potential of these epigenetic factors as novel HCC therapeutic targets 
[183,184]. 

10.1. GAS5 lncRNA 

Several studies have demonstrated the significant role of lncRNAs/ 
miR-21 regulatory interaction in HCC. According to Hu L et al., the 
lncRNA GAS5 acts as a tumor suppressor gene in HCC by down-
regulating miR-21 and its downstream targets [185]. Indeed, GAS5 and 
miR-21 expression in HCC tissues resulted lower and higher, respec-
tively, compared to the adjacent normal liver tissues. Notably, GAS5 and 
miR-21 expression levels were also correlated with clinicopathological 

Fig. 11. The figure depicts the effects and molecular mechanisms of different miR-21-lncRNA axes in modulating gastric cancer progression and metastasis.  
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parameters such as tumor size and TNM Classification of Malignant 
Tumors (TNM) stage [185]. Furthermore, the highly aggressive HCC cell 
line, HCCLM3, displayed the lowest level of GAS5 compared to the 
moderately and weakly aggressive cells, SMMC-7721 and Bel-7402, 
respectively [185]. Regarding the regulatory mechanism played by 
GAS5, the authors suggested that it may serve as a miR-21 sponge, hence 
sequestering miR-21 oncogenic function and affecting the expression of 
miR-21 targets, such as PDCD4 and PTEN. These targets play a key role 
in cancer cell migration and invasion and resulted downregulated in 
HCC tissues [185–187]. Previous studies reported a significant role of 
GAS5 in carcinogenesis and tumor progression, its prognostic value in 
various types of cancer [188], as well as the positive correlation between 
miR-21 overexpression and poor prognosis in HCC [189]. In this regard, 
a study by Hu L et al. (2016) provided further evidence of GAS5 and 
miR-21 prognostic value in HCC since GAS5 downregulation and sub-
sequent miR-21 overexpression were also associated with low survival 
rates in HCC patients (Fig. 10) [185]. 

10.2. Other lncRNAs 

A recent study demonstrates the implication of lncRNAs/miR-21 
regulatory cross-talk in drug resistance in HCC patients [190,191]. 
The multi-kinase inhibitor sorafenib is one the first-line treatment for 
advanced HCC patients. by targeting the serine/threonine protein ki-
nases Raf-1, B-Raf, as well as the vascular endothelial growth factor 
receptors (VEGFRs), and the platelet-derived growth factor receptor β 
(PDGFR-β), sorafenib showed to inhibit tumor growth, 
tumor-angiogenesis and induce apoptosis in a broad range of cancer 
cells [192]. However, the acquired resistance to sorafenib negatively 
reduces its effectiveness and anti-cancer properties [193]. Emerging 
studies demonstrated that Akt overexpression contributes to the ac-
quired resistance to sorafenib and that the inhibition of this pathway 
reverses the acquired resistance by switching autophagy from a pro-
tective to a death-promoting role in HCC [194]. In this regard, miR-21 
plays a key role in the acquired resistance of sorafenib by inhibiting 
autophagy through the Akt/PTEN pathway; indeed, sorafenib-resistant 
HCC (SR-HCC) cells showed increased miR-21 expression, decreased 
PTEN expression and Akt activation [195]. Tumor progression associ-
ated with Akt activation is also promoted by the lncRNA small nucleolar 
RNA host gene 1 (SNHG1), which is highly expressed in different types 
of cancer and promotes tumor growth and progression by regulating 
transcription of both local and distal genes [196–198]. In particular, 
SNHG1 was shown to enhance the transcription of the nearby gene so-
lute carrier family 3 member 2 (SLC3A2) to activate the PI3K/AKT 
pathway [197]. A novel regulatory lncRNA-miRNA mechanism, 
different from the lncRNA-mediated sponge regulatory network, which 
involves both SNHG1 and miR-21 in sorafenib resistance via Akt 
pathway activation, has recently been reported in HCC cells. Specif-
ically, sorafenib facilitates miR-21 translocation into the nucleus of HCC 
cells, where it promotes the expression of SNHG1. Then, SNHG1 con-
tributes to sorafenib resistance by increasing SLC3A2 expression that, in 
turn, activates the Akt pathway (Fig. 10) [191]. 

A further regulatory axis, circRNA-001241/miR-21, has recently 
been proposed in mediating sorafenib resistance in HCC patients [190]. 
Circ-001241, which was found to significantly upregulated in HCC tis-
sues and cells by acting as ceRNA, mediated HCC sorafenib-resistance by 
sponging miR-21-5p and increasing the expression of the tissue inhibitor 
of metalloproteinase 3 (TIMP3) (), a modulator of cell proliferation, 
migration, and invasion [190,199]. Conversely, the knockdown of 
circ-001241 significantly suppressed HCC cell proliferation and 
enhanced the sorafenib sensitivity. The enhanced expression of 
circ-00124 resulted also correlated with increased tumor size and poor 
prognosis, highlighting the clinical potential of the miR-21-5p/TIMP3 
axis as an index of HCC patients’ pathological stage (Fig. 10) [190]. 

11. Gastric cancer 

Gastric cancer (GC) is one of the most common gastrointestinal 
malignant cancers worldwide. GC is more prevalent in males, and 
Eastern Asia countries have the highest reported incidence [200]. 
Additionally, the majority of cases are linked to bacterial or viral in-
fections, such as Helicobacter pylori (H. pylori) or Epstein-Barr virus 
(EBV) [201,202]. Currently, there is no cure or a golden standard 
treatment strategy for GC, and the treatment options mainly depend on 
the disease stage. Treatments primarily aim to relieve symptoms rather 
than cure the disease [203,204]. Therefore, understanding the under-
lying carcinogenic mechanisms is needed for both early detection and 
setting targeted molecular therapeutic strategies. 

11.1. GAS5 lncRNA 

The involvement of lncRNAs/miR-21 regulatory interaction in GC 
occurrence and progression has been recently reported. In this regard, 
the association of GAS5 and miR-21 has been investigated both in vivo 
and in vitro [205]. Specifically, GAS5 expression resulted significantly 
downregulated in GC tissues and cells, whereas miR-21 expression was 
significantly increased. Moreover, overexpression of GAS5 inhibits 
proliferation, migration, and invasion of GC cells while promoting GC 
cell apoptosis [205]. MiR-21 has an oncogenic effect instead, and based 
on both in silico prediction and luciferase reporter assay, it is a target of 
GAS5. Indeed, overexpression of GAS5 in GC cells and xenograft mouse 
models led to a significant reduction of miR-21 expression, as well as the 
inhibition of GC cell tumorigenic ability and a decrease in tumor size 
(Fig. 11) [205]. 

11.2. MEG3 lncRNA 

Another lncRNA acting as a tumor suppressor in GC is MEG3 [188]. 
Regarding the relationship between MEG3 and miR-21, a recent study 
demonstrated that MEG3 is downregulated in GC cells and tissues, 
whereas miR-21 is upregulated [206]. Besides, experiments in vivo using 
a mouse xenograft tumor model showed that MEG3 negatively regulates 
miR-21; indeed, MEG3 overexpression suppresses tumor growth and 
metastasis, whereas miR-21 overexpression has opposite effects and 
promotes metastasis [206]. Interestingly, the MEG3/miR-21 axis mod-
ulates GC cell mobility through EMT inhibition, a physio-pathological 
process where epithelial cells lose their typical features and acquire 
mesenchymal characteristics [206,207]. EMT plays a key role in ma-
lignancy since it increases tumor invasiveness and metastatic activity 
[207]. In particular, MEG3 overexpression was shown to inhibit EMT by 
increasing the epithelial marker E-cadherin and decreasing the mesen-
chymal markers, N-cadherin, Snail, and β-catenin. Besides, MEG3 
overexpression suppressed gastric cancer cell mobility by down-
regulating the matrix metalloproteinases (MMPs), MMP-3 and MMP-9, 
and the vascular endothelial growth factor (VEGF) [206]. MMP-3 and 
MMP-9 are enzymes involved in t extracellular matrix (ECM) degrada-
tion to promote cell invasion, whereas VEGF promotes endothelial cell 
proliferation, migration and invasion [206]. Therefore, the 
MEG3/miR-21 axis participates in GC cell invasiveness and metastatic 
capability through EMT regulation. 

11.3. Other lncRNAs 

Given GC invasiveness and recurrent nature, there has been growing 
interest in assessing the competitive inhibition of oncogenic miRNAs 
activity by utilizing the sponging mechanism of circRNA (Fig. 11) [208, 
209]. CircRNA is indeed an efficient miRNA sponge, mainly due to its 
higher resistance to nuclease degradation compared to its linear coun-
terpart RNA [210]. In this regard, a recent study demonstrated that 
synthetic circRNA sponges are a valuable strategy for a targeted 
loss-of-function of specific miRNAs, both in vivo and in vitro. In 
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particular, an artificial circRNA was demonstrated to inhibit GC cell 
proliferation through sequestering miR-21 oncogenic functions; miR-21 
suppression promoted, in turn, the upregulation of downstream gene 
targets such as DAXX, a key tumor suppressor gene [208]. Han J et al. 
(2016) reported that circ_0027599 upregulated the expression of 
runt-related transcription factor 1 (RUNX1) in GC cells through 
sponging miR-21-5p [211]. Both circ_0027599 and RUNX1 () are 
downregulated in GC. Accordingly, either circ_0027599 or RUNX1 
overexpression repressed the malignant behavior of GC cells by inhib-
iting their viability, invasion, migration, and colony formation. Besides, 
circ_0027599 overexpression repressed tumor growth in a murine 
xenograft model. On the other hand, RUNX1 knockdown reverted the 
effect of circ_0027599 overexpression on GC cell behavior, suggesting 
circ_0027599 positively regulates RUNX1 expression. Further in-
vestigations on the relationship between circ_0027599, miR-21-5p, and 
RUNX1 suggested that RUNX1 is a direct target of miR-21-5p, and 
circ_0027599, positively regulates RUNX1 expression acting as a sponge 
for miR-21-5p (Fig. 11) [211]. A further lncRNAs/miR-21 axis involved 
in GC progression engages circ_ANO5, miR-21 and its target gene leu-
kemia inhibitory factor receptor (LIFR), known for anticancer properties 
in different cancers, including pancreatic cancer, hepatocellular carci-
noma [212,213]. Interestingly, the circ_ANO5/miR-21-5p/LIFR axis was 
implicated in the anti-tumor molecular mechanism of the local anes-
thetic lidocaine [212]. Several studies highlighted the benefits of lido-
caine in cancer treatment, including GC. Indeed, lidocaine was shown to 
promote apoptosis and inhibit proliferation and malignant behavior of 
GC cells through several signaling pathways, including MAPK and NF-κB 
[214–216]. Concerning the above-mentioned axis, lidocaine promoted 
circ_ANO5 upregulation and miR-21-5p downregulation, resulting in a 
decrease in GC cell viability migration and invasion. This effect was 
instead reversed with either miR-21-5p overexpression or circ_ANO5 
depletion [212]. Moreover, a ceRNA mechanism was also proposed 
where circ_ANO5 sponges miR-21-5p counteract its oncogenic functions 
and allow the expression of its target gene LIFR (Fig. 11) [212]. 

12. Other cancers 

12.1. GAS5 lncRNA 

The GAS5-miR-21 interaction is one of the most accounted for having 
a high impact on cancer growth and progression; indeed, as previously 
described, this axis plays a crucial role in OC, CRC, NSCLC, OSCC, LSCC, 
HCC, and GC regulation. In addition, a possible role of GAS5 and miR-21 
has also been described in bladder cancer and osteosarcoma (OS) lung 
metastasis [217,218]. In bladder cancer, GAS5 targets miR-21 to regu-
late PTEN and affect cell proliferation and apoptosis; besides, high levels 
of GAS5 (and low levels of miR-21) in bladder cancer patients are 
associated with relatively longer survival rates [217]. In patients with 
OS, a common primary bone malignancy that typically affects adoles-
cents [219], GAS5 is downregulated (while miR-21 is upregulated) 
compared to healthy controls [218]. Lungs are considered one of the 
most common sites for OS metastasis [220,221]; in this regard, GAS 
expression levels in OS patients with lung metastasis are even lower than 
in patients without metastasis (while miR-21 expression levels are even 
higher), suggesting a correlation between GAS5 (and miR-21) expres-
sion levels and the disease severity [218]. Furthermore, GAS5 down-
regulation also enhances migration and invasion of OS cells promoting 
EMT, as indicated by the decrease (at gene and protein level) of the 
epithelial marker E-cadherin and the increase of mesenchymal marker 
vimentin [218]. 

12.2. CASC2 lncRNA 

Similarly to what is described in CC [65], the CASC2/miR-21/PTEN 
regulatory axis can also modulate pancreatic cancer development and 
progression [222]. CASC2 resulted indeed downregulated in different 

pancreatic cancer cell lines (CAPAN-1, BxPC-3, JF305, PANC-1, and 
SW1990) compared with normal human pancreatic HPDE6-C7 cells 
[222]. Besides, CACS2 was shown to inhibit cell migration and invasion 
by targeting miR-21, ultimately leading to the decrease of the miR-21 
target gene, PTEN (as demonstrated by qRT-PCR and Western blot 
analysis) [222]. It is important to mention that a high global burden, 
poor prognosis and inadequate therapeutic interventions characterize 
pancreatic cancer [223]. These findings suggest the relevance of the 
novel regulatory CASC2/miR-21/PTEN axis in pancreatic cancer 
development, which might pave the way for a new therapeutic or 
prognostic approach. 

12.3. MEG3 lncRNA 

Wu et al. (2020) found that the lncRNA MEG3 can inhibit tumor 
growth, tumor metastasis, and melanoma formation by modulating the 
miR-21/E-cadherin axis [224]. Melanoma is one of the most aggressive 
forms of cutaneous cancer arising from the melanocytes [225]. Localized 
melanoma can be surgically removed, ensuring the best prognosis. On 
the other hand, when undiagnosed or misdiagnosed, melanoma 
aggressively metastasizes and presents a poor prognosis [225,226]. 
Therefore, accurate diagnostic biomarkers are urgently needed to 
improve the overall survival rates in melanoma patients. In this regard, 
it was reported that MEG3 and E-cadherin mRNA and protein expression 
levels are positively correlated in melanoma cell lines; besides, a positive 
correlation regarding their functionality also exists since both MEG3 and 
E-cadherin suppress melanoma formation and growth and metastasis 
[224]. In fact, MEG3 upregulation inhibits melanoma formation, 
whereas E-cadherin knockdown increases melanoma metastasis and 
progression, overall confirming MEG3 tumor suppressor functions. Dual 
luciferase assay suggested that miR-21 is a downstream target of MEG3, 
and E-cadherin is a downstream target of miR-21 [224]. 

12.4. Other lncRNAs 

The lncRNA X-inactive specific transcript (XIST) is also down-
regulated in OS tissues and cells, and it is associated with OS recurrence 
and patients’ low survival [227]. Lentivirus-mediated overexpression of 
XIST in osteosarcoma cells and a xenograft mouse model suggested a 
tumor suppressor role of this lncRNA; indeed, XIST inhibits OS forma-
tion and progression and suppresses the EMT process [227]. This 
inhibitory effect is associated with a ceRNA mechanism, where XIST 
competitively binds miR-21-5p to increase the expression of pro-
grammed cell death 4 (PDCD4), a tumor suppressor frequently 
down-regulated in various types of cancer [227,228]. The 
XIST/miR-21-5p/PDCD4 axis may thus represent a potential biomarker 
or therapeutic target for OS [227]. Finally, a potential prognostic marker 
and therapeutic target in prostate cancer (PC) is the circSLC8A1/miR-21 
axis. Functional in vitro analysis using PC cells demonstrated that this 
axis can modulate cell proliferation and migration [229]. Besides, gene 
ontology (GO) enrichment analysis showed that the circSLC8A1/miR-21 
axis is involved in regulating cell proliferation, migration, angiogenesis, 
and EMT, while KEGG pathway analysis showed that the 
circSLC8A1/miR-21 axis is related to the MAPK signaling pathway 
[229]. 

13. Conclusion 

In recent years, there has been an increasing recognition of the po-
tential diagnostic and therapeutic applications of ncRNA molecules. The 
advancements in high-throughput sequencing technologies and machine 
learning algorithms have facilitated the discovery of novel ncRNAs and 
their cellular roles, as well as novel lncRNA-miRNA regulatory axes with 
potential prognostic and diagnostic value in various human pathological 
conditions, including cancer. The article delves into the recent discov-
eries regarding the roles and pathophysiological implications of the 
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Table 1 
Signaling pathways relevant to Mir-21, functional implications, and role of lncRNA in various types of cancer.  

lncRNA Type of Cancer Target gene/Signalling Pathways 
regulated 

Role of 
lncRNA 

Functional Implications References 

BISPR Thyroid papillary 
carcinoma (TPC)  

Oncogenic ↑ development and progression of TPC [232] 

BRE-AS1 Breast cancer ↑ PTEN expression Tumor 
suppressor 

↓ cell proliferation, migration, invasion [56] 

CASC2 Pancreatic carcinoma PTEN/Akt Tumor 
suppressor 

↓ cancer migration and invasion [222] 

Non-small cell lung 
cancer (NSCLC) 

PTEN/PI3K/Akt Tumor 
suppressor 

↑ inhibitory effect of cisplatin on cell viability [233,234] 

Lung adenocarcinoma 
(LUAD) 

CASC2/miR-21/p53 axis; ↓ miR-21 
expression and ↑ p53 expression 

Tumor 
suppressor 

↓ cell proliferation and ↑ apoptosis [233,234] 

Colorectal cancer (CRC)  Tumor 
suppressor 

↓ advanced tumor node metastasis stage and tumor size [95] 

Cervical cancer ↑ PTEN expression and ↓ p-AKT 
protein 

Tumor 
suppressor 

↑ sensitization of cervical cancer to cisplatin (DDP) and 
↓ cancer cell proliferation, advanced tumor-node- 
metastasis stage and tumor size 

[65] 

Glioma ↓ miR-21 expression Tumor 
suppressor 

↓ tumor size, cell proliferation, migration, invasion and 
↑ apoptosis 

[139,235] 

CASC7 Breast cancer miR-21-5p/FASLG axis Tumor 
suppressor 

↓ advancement of breast cancer, cell proliferation, 
migration, and invasion 

[54] 

Circ_ANO5 Gastric cancer Circ_ANO5/miR-21-5p/LIFR axis Tumor 
suppressor 

↓ cell proliferation, migration, invasion, tumor growth 
in vivo and ↑ apoptosis 

[236] 

Circ-21 Breast cancer ↑ PARP-1 and ↓ VEGF expression Tumor 
suppressor 

↑ drug efficacy and the antitumor activity of 
doxorubicin and ↓ tumor cell proliferation 

[55] 

circACAP2 Colorectal cancer (CRC) circRNA-ACAP2/hsa-miR-21-5p/ 
Tiam1 regulatory feedback circuit; ↓ 
Tiam1 expression 

Oncogenic ↑ cell proliferation, migration, and invasion [98] 

circEPB41L2 Colorectal cancer (CRC) PTEN/AKT signaling pathway Tumor 
suppressor 

↓ cell proliferation, migration, invasion and ↑ apoptosis [90] 

circPUM1 Thyroid papillary 
carcinoma (TPC) 

miR-21-5p/MAPK1 axis Oncogenic ↑ cell growth, metastasis, and glycolytic processes. [237] 

CircRNA_0027599 Gastric cancer miR-21-5p/RUNX1 axis Tumor 
suppressor 

↓ cell viability, colony formation, migration, invasion, 
cell cycle process in vitro and tumor growth in vivo 

[238] 

CircRNA-001241 Hepatocellular carcinoma 
(HCC) 

miR-21-5p/TIMP3 axis; ↓ miR-21-5p 
and ↑ TIMP3 expression 

Tumor 
suppressor 

↓ sorafenib-resistance and cell proliferation [239] 

CircSLC8A1 Prostate Cancer circSLC8A1/miR-21 axis Tumor 
suppressor 

↓ angiogenesis, cell proliferation and migration [229] 

DGCR5 Colorectal cancer (CRC)  Tumor 
suppressor 

↓ progression in clinical stages and cancer cell 
proliferation in vitro 

[94] 

Glioma miR-21/Smad7 and miR-23a/PTEN 
axis 

Tumor 
suppressor 

↓ cell proliferation, migration, invasion and ↑ apoptosis [136] 

GAS5 Hepatocellular carcinoma  Tumor 
suppressor 

↓ tumor size, TNM stage, cancer migration and invasion [185] 

Gastric cancer  Tumor 
suppressor 

↓ tumorigenic ability and tumor size [205] 

Lung Metastasis of 
Osteosarcomas 

↑ E-cadherin and ↓ vimentin, ZEB1, 
and ZEB2 

Tumor 
suppressor 

↓ EMT and cancer migration and invasion [218] 

Bladder cancer  Tumor 
suppressor 

↑ antiproliferative and proapoptotic effects [217] 

Non-small cell lung 
cancer (NSCLC) 

NBAT1/miR-21/SOX7 axis Tumor 
suppressor 

↑ IR-induced cell apoptosis of A549 cells [240,241] 

Colorectal cancer (CRC) miR-21/LIFR axis Tumor 
suppressor 

↓ tumor growth, metastasis and invasion [82] 

Oral squamous cell 
carcinoma (OSCC) 

miR-21/PTEN axis Tumor 
suppressor 

↓ EMT, cancer proliferation, migration and invasion [156] 

Ovarian cancer GAS5/miR-21/SPRY2 signaling 
pathway; ↓ miR-21 and ↑ SPRY2 
expression 

Tumor 
suppressor 

↓ advanced clinical stage [80] 

Laryngeal Squamous Cell 
Carcinoma (LSCC) 

↑ BAX mRNA expression (apoptosis) 
and ↓ CDK6 mRNA expression 
(proliferation) 

Tumor 
suppressor 

↓ cell proliferation and ↑ apoptosis [171] 

HLA-F-AS1 Ovarian cancer miR-21-3p/PEG3 axis Tumor 
suppressor 

↓ cancer development in vivo and in vitro [81] 

IUR Esophageal squamous cell 
carcinoma 

↑ PTEN expression Tumor 
suppressor 

↓ cell proliferation and ↑ apoptosis [242] 

LINC00312 Colorectal cancer (CRC) LINC00312/miR-21/PTEN axis Tumor 
suppressor 

↓ cancer proliferation and metastasis [93] 

Acute Myeloid Leukemia 
(AML) 

miR-21/PTEN axis Tumor 
suppressor 

↓ proliferation rate of AML cells [101] 

LINC00968 Lung adenocarcinoma miR-21-5p/SMAD7 axis Tumor 
suppressor 

↓ cancer progression, disease relapse, and recurrence 
rates 

[243] 

LOC100507144 Colorectal cancer (CRC) CD44/Nanog/Sox2/miR-302/miR-21 
axis 

Oncogenic ↑ EMT, cancer progression, migration and metastasis [96] 

(continued on next page) 
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miR-21-lncRNA regulatory axis in cancer onset and development. The 
data collected suggests that specific lncRNAs such as MEG3, CASC2, and 
GAS5 are strongly associated with miR-21 in various types of cancer, 
including gastric, cervical, lung, and glioma. These lncRNAs are well- 
known for their ability to suppress tumors and are commonly down-
regulated in different types of tumors. On the other hand, their over-
expression has been linked with preventing tumor formation and 
development by modulating various mechanisms and oncogenic 
signaling pathways. Our work emphasizes the significance of these 
regulatory pathways in cancer and their potential for use in cancer 
therapy as diagnostic and prognostic markers. Indeed, due to their sta-
bility in serum and other body fluids, non-invasive detection, and tissue- 
specific expression patterns, NcRNAs represent promising and robust 
diagnostic biomarkers [230,231]. For instance, lncRNA resistance to 
ribonuclease degradation makes them a suitable candidate for detection 
in various biological samples and body fluids, including blood, urine, 
and tissue biopsies [230]. Most importantly, the specificity and dysre-
gulation of lncRNAs expression in different human cancers provides a 
unique opportunity for the development of highly specific therapeutic 
biomarkers. Therefore, elucidating novel miR-21-lncRNA regulatory 
axis in cancer may play an essential role in grasping cancer patho-
physiology and could lead to innovative treatments for human cancer. 

While the complexity of miR-21-lncRNA regulatory cross-talk in cancer 
remains enigmatic, high-throughput sequencing technologies and 
functional genomics approaches promise further elucidation of their 
functional roles in cancer. 

14. Future perspective 

Although the mentioned studies present a major first step into un-
derstanding the complex regulatory cross-talk in cancer pathophysi-
ology, the full extent of these regulatory networks remains to be 
determined. It is also worth noting that the existing studies on lncRNA 
have largely concentrated on their function as ceRNA or miRNA 
sponges. One area of interest is exploring other regulatory functions of 
lncRNA in cancer-related pathways. For example, investigating the role 
played by lncRNA in epigenetic modifications, primarily methylation 
and acetylation, could be an interesting approach to gaining helpful 
information in this field. Additionally, since most of the regulatory cross- 
talks investigated so far involve a binary correlation, an interesting 
future avenue could be the discovery of large interconnected networks. 
In this context, secondary indirect interactions may also uncover a 
profound complex regulatory network playing an essential role in cancer 
pathophysiology. Moreover, the molecular requirements for optimal 

Table 1 (continued ) 

lncRNA Type of Cancer Target gene/Signalling Pathways 
regulated 

Role of 
lncRNA 

Functional Implications References 

LOXL1-AS1 Cervical squamous cell 
carcinoma (CSCC) 

↓ miR-21 and ↑ RHOB expression Tumor 
suppressor 

↓ cell invasion and migration [68] 

MALAT1 Colorectal cancer (CRC)  Oncogenic ↑ cell invasion, migration ability, and tumor formation [97] 
MEG3 Gastric cancer MEG3/miR-21 axis Tumor 

suppressor 
↓ EMT, cell mobility, tumor growth and metastasis [206] 

Melanoma miR-21/E-cadherin axis; ↓ miR-21 
and ↑ E-cadherin expression 

Tumor 
suppressor 

↓ tumor growth, tumor metastasis and formation [224] 

Non-small cell lung 
cancer (NSCLC) 

miR-21-5p/PTEN axis; ↑ PTEN 
expression (involved in PI3K/AKT 
signaling pathway) 
miR-21-5p/SOX7 axis; ↑ SOX7 
expression 

Tumor 
suppressor 

↓ cell migration and invasion and ↑ cisplatin sensitivity [244,245] 

Breast cancer PI3K/Akt pathway Tumor 
suppressor 

↓ tumorigenesis and progression in the clinical stage [63] 

Cervical cancer MEG3/miR-21/PTEN axis Tumor 
suppressor 

↓ tumor grade and metastasis [66,67] 

Chronic Myeloid 
Leukemia (CML)  

Tumor 
suppressor 

↓ imatinib resistance, cell proliferation and ↑ cell 
apoptosis 

[104] 

Glioma  Tumor 
suppressor 

↓ cell proliferation, migration, and invasion [246] 

Oral squamous cell 
carcinoma (OSCC)  

Tumor 
suppressor 

↓ cell proliferation and migration [157] 

miR143HG Laryngeal squamous cell 
carcinoma  

Tumor 
suppressor 

↓ rate of cell migration, invasion and ↑ methylation of 
miR-21 

[247] 

NBAT1 Endometrial cancer ↑ PTEN expression Tumor 
suppressor 

↓ cell proliferation, migration, invasion and ↑ apoptosis [78] 

Glioma NBAT1/miR-21/SOX7 axis; ↑ SOX7 
expression 

Tumor 
suppressor 

↓ cell proliferation, migration, and invasion, 
progression and metastasis 

[134] 

OTUD6B-AS1 Thyroid cancer  Tumor 
suppressor 

↓ tumor size, clinical stage, lymphatic metastasis, cell 
viability, migration and invasion 

[248] 

Colorectal cancer (CRC) OTUD6B-AS1/miR-21-5p/PNRC2 
axis; ↑ PNRC2 expression 

Tumor 
suppressor 

↓ EMT, cell proliferation, migration, invasion and ↑ cell 
apoptosis 

[249] 

PLAC2 Non-small cell lung 
cancer (NSCLC)  

Tumor 
suppressor 

↓ cancer cell migration and invasion [250] 

RUNX1-1T1 Endometrial cancer ↓ mature miR-21 expression Tumor 
suppressor 

↓ the maturation process of miR-21 and cell 
proliferation 

[77] 

SNHG1 Hepatocellular carcinoma Akt pathway Oncogenic ↑ sorafenib resistance and ↓ its ability to induce 
apoptosis and autophagy 

[191] 

SNHG9 Non-small cell lung 
cancer (NSCLC)  

Tumor 
suppressor 

↓ cell proliferation and cancer progression [251] 

TCL6 Retinoblastoma cancer PTEN/PI3K/AKT signaling pathway 
involved in TCL6/miR-21 axis; ↑ 
PTEN expression 

Tumor 
suppressor 

↓ cell proliferation and ↑ apoptosis [252] 

WDFY3-AS2 Kidney renal clear cell 
carcinoma (KIRC) 

WDFY3-AS2/TIMP3 pathway Tumor 
suppressor 

↓ tumor grade, size, lymph node metastasis, distant 
metastasis, and TNM stage 

[253] 

XIST Osteosarcoma (OS) XIST/miR-21-5p/PDCD4 axis; ↑ 
PDCD4 expression 

Tumor 
suppressor 

↓ EMT, cell invasion and migration [227]  
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ceRNA activity remain largely obscure; indeed, those ceRNA networks 
are influenced by various factors, including the abundance of regulatory 
molecules, probable interplay with RBPs and RNA editing, which may 
significantly impact the cellular final fate [46]. 

The studies demonstrating the significance of the miR-21-lncRNA 
regulatory axis provide a valuable perspective in understanding the 
complex mechanistic pathways underlying human cancer. Nonetheless, 
it is worth mentioning that most studies investigating the miR-21- 
lncRNA regulatory axis and their interaction are based on in silico bio-
informatics and machine learning algorithms miRNA predictions. 
Therefore, more in vivo and in vitro studies, as well as animal models, are 
needed to verify and validate these regulatory cross-talks and further 
highlight their clinical utility for understanding human cancer patho-
physiology; indeed, it is also imperative that forthcoming studies delve 
into finding the best pre-clinical models to study human lncRNAs in-
teractions. In addition, many of these studies used dual luciferase assays 
to confirm the downstream targets of lncRNAs and associated cancer- 
related signaling pathways, and only a few have investigated the 
expression levels with clinicopathological parameters such as tumor size 
and TNM stage. Therefore, the absence of clearly established and veri-
fied lncRNA tailored to particular types of cancer and stages presents a 
major hurdle in their practical application in a clinical setting. Thus, 
more functional studies are needed to elucidate the clinical relevance 
and validate the potential prognostic tool of these regulatory molecules. 

In summary, these regulatory cross-talks point out the existence of 
novel and complex RNA networks in human cancer and suggest using 
these networks in cancer therapy and diagnosis (Table 1). Implementing 
miRNA and lncRNA-targeted therapies in clinical practice remains in its 
infancy; indeed, numerous obstacles of both a clinical and regulatory 
nature must be overcome before these therapies can become clinically 
relevant. 
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