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In mammals, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) has been
demonstrated to play a critical role in activating downstream signaling in response to viral
RNA. However, its role in ducks’ antiviral innate immunity is less well understood, and how
gene-mediated signaling is regulated is unknown. The regulatory role of the duck
laboratory of genetics and physiology 2 (duLGP2) in the duck RIG-I (duRIG-I)-mediated
antiviral innate immune signaling system was investigated in this study. In duck embryo
fibroblast (DEF) cells, overexpression of duLGP2 dramatically reduced duRIG-I-mediated
IFN-promotor activity and cytokine expression. In contrast, the knockdown of duLGP2 led
to an opposite effect on the duRIG-I-mediated signaling pathway. We demonstrated that
duLGP2 suppressed the duRIG-I activation induced by duck Tembusu virus (DTMUV)
infection. Intriguingly, when duRIG-I signaling was triggered, duLGP2 enhanced the
production of inflammatory cytokines. We further showed that duLGP2 interacts with
duRIG-I, and this interaction was intensified during DTMUV infection. In summary, our
data suggest that duLGP2 downregulated duRIG-I mediated innate immunity against the
Tembusu virus. The findings of this study will help researchers better understand the
antiviral innate immune system’s regulatory networks in ducks.
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INTRODUCTION

The innate immune system is the first line of defense against infectious pathogens. Pattern-
recognition receptors (PRRs) recognize microbial components or structures, known as pathogen-
associated molecular patterns (PAMPs), that activate the immune system (1). Typically, viruses
produce viral RNA and other PAMPs during the replication process and are recognized by PRRs to
activate innate immune responses (2, 3). The effective innate immune response is essential for host
survival during viral infection as the virus can also evade or inhibit the immune response in
many ways.
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PRRs include C-type lectin receptors, Toll-like receptors
(TLRs), nucleotide-binding oligomerization domain (NOD)-
like receptors (NLRs), and retinoic acid-inducible gene I (RIG-
I)-like receptors (RLRs) (4). Among them, RLRs respond to
intracellular viral double-stranded RNA (dsRNA) via a C-
terminal RNA helicase and C-terminal domain (CTD) as a
non-self-pattern and then activate downstream signaling (5).
The family of RLRs contains three members: (1) RIG-I, (2)
differentiation-associated gene 5 (MDA5), and (3) laboratory of
genetics and physiology 2 (LGP2), among which RIG-I and
MDA5 recognize the viral RNA and form a complex with the
mitochondrial antiviral-signaling protein (MAVS) in the
cytoplasmic. There are differential roles of RIG-I and MDA5 in
RNA virus recognition that have been found. It has been
demonstrated that 5’-triphosphate- or 5′-diphosphate-
containing RNA structure and small RNA duplexes (influenza
A, Newcastle disease, Sendai, vesicular stomatitis, measles, and
Hepatitis C viruses) are recognized by RIG-I (6–10).

Duck Tembusu virus (DTMUV) is a plus-strand RNA virus
belonging to the Flavivirus genus of the Flaviviridae family, which
comprises other arthropod-borne viruses such as Japanese
encephalitis virus (JEV) and dengue fever virus (DENV). Early in
2010, an outbreak of DTMUV was observed in Zhejiang and
Shanghai in China and rapidly spread throughout the country.
DTMUV infection causes nerve malfunction and disruption of the
reproductive system, which account for huge losses experienced by
duck breeding (11, 12). In addition to infecting ducks of various
breeds, thedisease can also infect otherpoultry suchas chickensand
geese (13) and can cause systemic lesions in infected mice (14),
indicating the possibility of cross-host transmission of DTMUV
from ducks to other non-avian animals. Importantly, the
neutralizing antibodies targeting DTMUV have been isolated
from humans (15). Therefore, effective prevention and treatment
of the disease are also important public health security. The innate
immune responsemediated by PRRs plays an important role in the
antiviral response, and DTMUV is no exception (16). At present,
there are a lot of diagnosis methods for DTMUV, but the antiviral
treatment options are few. Therefore, a systematic study of the
interaction betweenDTMUVand the host’s innate immune system
will help better to understand the duck’s antiviral innate
immune system.

The third member of RLRs, LGP2, was identified in earlier
studies and is considered to be the negative regulatory element of
the RLR pathway (17). These studies indicated that LGP2
competitively associates with viral RNA to interfere with the
recognition by RIG-I and MDA5; in addition, LGP2 forms a
complex with MAVS independent of viral infection or dsRNA
stimulation, thereby inhibiting the transduction of antiviral
signals (17, 18). However, many other studies have shown that
LGP2 plays a positive role in regulating the antiviral immune
response. Mice with an LGP2 gene deletion cannot effectively
produce type I interferon (IFN) during Picornaviridae infection.
This process occurs because LGP2 can promote RIG-I and
MDA5 recognition of viral RNAs through their ATPase
domains (19). Previous studies have shown that duRIG-I and
duMDA5 recognize the viral RNA of DMTUV and inhibit its
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replication (20). As an important regulator in the RLRs signaling
pathway, duck LGP2 (duLGP2) has been proved to regulate RLRs
family members’ duMDA5-dependent anti-DTMUV innate
immune responses (21). However, the regulatory role of duLGP2
in duRIG-I-mediated innate immunity against DTMUV infection
remains unclear. Previous studies showed that the identity of
duLGP2 in humans and mice was only 52.4 and 51.9%,
respectively (22). Therefore, it is reasonable to infer that the
function of duck LGP2 may be different from that of mammals.

In this study, we provided more detailed experimental data to
support the regulatory function of duLGP2 in the duRIG-I-
mediated signaling pathway. In addition, we investigated the
function of duLGP2 in duRIG-I-mediated anti-DTMUV innate
immunity and illustrated that duLGP2 plays a negative role in
duRIG-I-mediated limiting DTMUV viral replication and
infection. Furthermore, the interaction between duLGP2 and
duRIG-I was confirmed by co-immunoprecipitat ion
experiments. This interaction was intensified during DTMUV
infection, which inhibits duRIG-I-mediated antiviral
innateimmune signaling transduction. These results will
advance our knowledge of the biological role of LGP2 in
innate immunity and the relationship between LGP2 and
innate immunity in ducks.
MATERIALS AND METHODS

Cells and Virus
Duck embryo fibroblast (DEF) cells were prepared by enzyme
digestion from 10-day-old duck embryos according to the
method described previously (23). The human embryonic kidney
293 (HEK293) cells were kindly provided by Dr. Cheng (Shanghai
JiaotongUniversity). Cells weremaintained inDulbecco’smodified
Eaglemedium(DMEM,Gibco,Grand Island,NY,USA) containing
10% fetal bovine serum (FBS) (TransGen, Beijing, China), 1%
penicillin/streptomycin (Solarbio, Beijing, China), and all
incubations were performed in an incubator (5% CO2, 37°C). The
DTMUV-FX2010 strain used in this study was stored in our
laboratory (24). The virus titers were determined by median
tissue culture infective dose (TCID50) assay in DEF cells using the
Reed and Muench calculation (25).

Plasmids
The expression plasmids pduRIG-I-CARD, pduLGP2-Flag,
empty vector pCAGGS, and luciferase reporter promoter
plasmid pGL3-chIRF-7-Luc, pGL3-chIFNb-Luc, pGL3-chNF-
kB-Luc, and pTK-Renilla were previously described (21, 26,
27), the pduRIG-I-Flag and pduLGP2-HA plasmids were
constructed using Hieff Clone® Plus One Step Cloning Kit
(Yeasen, Shanghai, China) in this study. All plasmids were
verified by sequencing.

Cell Transfection, RNA Interference, and
Dual−Luciferase Reporter Assay
DEF cells were seeded in 6-well plates incubated overnight to
achieve 90%–100% confluence for further transfection. The
June 2022 | Volume 13 | Article 916350
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plasmids (2 mg/well) or siRNAs (100 nM) were transfected into
cells using Nulen PlusTrans™ Transfection Reagent (Nulen,
Shanghai, China). Three small interfering RNAs (siRNAs)
against the duLGP2 and one scramble siRNA as negative
control were designed and purchased from GenePharma Co.,
Ltd (Shanghai, China). The siRNA sequences used were as
described in Table 1. Knockdown mRNA efficiency was
determined for each siRNA by qRT-PCR analysis. For studies
involving siRNA and plasmid transfection, cells were transfected
with plasmid 24 h after transfection with siRNAs.

For the reporter gene assays, the cells (24-well plates) were
transiently transfected with firefly luciferase reporter (100 ng/
well) and pTK-Renilla luciferase reporter (50 ng/well) and
indicated expression plasmids or empty vector. After 36 h,
luciferase assays were performed as previously described (28)
using the Dual-Luciferase Reporter Assay Kit (Vazyme, Nanjing,
China). Firefly luciferase activity was normalized to
Renilla luciferase.

Viral Infection
For antiviral effect evaluation, DEF cells were transfected with
indicated expression plasmids. After 24 h post-transfection (hpt),
the transfected cells were washed twice with PBS and infected
with DTMUV-FX2010 (100 TCID50) for 1 h, after which the
media was changed to low-serummedia (2% FBS) after infection.
The infected cells were collected for RNA extraction. Viral
replication was measured by qRT-PCR described previously (29).

Co-Immunoprecipitation
For exogenous co-immunoprecipitation experiments, HEK293
cells were seeded in 100-mm dishes (7 × 106 cells/dish) overnight
and co-transfected indicated plasmids (10 mg) using a PEI 40K
transfection reagent (Servicebio, Wuhan, China). 24h after
transfection, HEK293 cells were stimulated with DTMUV or
PBS for 2 h, and cells were lysed at 24 hpi in 1 mL Western and
IP lysis buffer (25 mM Tris [pH=7.4], 150 mM NaCl, 1% NP-40,
5% glycerol) (New Cell & Molecular Biotech, Suzhou, China)
containing with protease inhibitor cocktail (New Cell &
Molecular Biotech). Cell debris was removed by centrifugation
(12,000 rpm for 15 min at 4°C), and the supernatant was taken as
the total protein fraction. 50 ml of supernatant was taken as input
samples, and the remaining samples were incubated with 20 mL
anti-Flag M2 magnetic beads (Sigma-Aldrich, Louis, MO, USA)
for 1 h at room temperature. The immunoprecipitated proteins
were analyzed by Western blot assay with the antibodies
as indicated.
Frontiers in Immunology | www.frontiersin.org 3
Western Blot
The cell lysates were eluted with SDS loading buffer (Beyotime)
and boiled for 5 min. Denatured protein samples were separated
by 10% SDS-PAGE (New Cell & Molecular Biotech) and
transferred to polyvinylidene difluoride (PVDF) membranes
(Millipore). Subsequently, the PVDF membranes were blocked
in NcmBlot blocking buffer (New Cell & Molecular Biotech) for
30 min at room temperature. Membranes were incubated with
mouse anti-Flag mAb (Nulen) (1: 2000), rabbit anti-HA mAb
(Cell signaling pathway Danvers, MA, USA) (1: 1000), mouse
anti-GAPDH mAb (ABclonal, Wuhan, China) (1: 5000) or
mouse anti-b-actin mAb (Abbkine, Wuhan, China) (1: 10000)
overnight at 4°C. and then incubated with HRP-conjugated goat
anti-mouse or -rabbit IgG antibodies (Abbkine) (1: 10000) for 1
h at room temperature. All membrane washing steps were
washed 3 times for 10 min each with 1×TBST at room
temperature. Immunoblotting was visualized using the ECL
Ultra kit (New Cell & Molecular Biotech).

qRT-PCR
Total RNA was extracted using the FastPure Cell/Tissue Total
RNA Isolation Kit (Vazyme). The resulting RNA was reversely
transcribed to cDNA using HiScript III All-in-one RT SuperMix
Perfect for qPCR (Vazyme). qRT-PCR was performed using the
Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix
(Yeasen) on the Roche 96 Light Cycler and under the conditions
described previously (23, 30). Primers were synthesized by
Tsingke Biotechnology Co., Ltd (Beijing, China), and
sequences are shown in Table 2. The relative expression of
each target gene was analyzed using the 2−DDCt method using
duck GAPDH as the internal reference. At least three
independent experiments were performed for each sample.

Statistical Analyses
Expression levels and endogenous housekeeping gene, GAPDH,
were analyzed using the 2−DDCt method (31). All experimental
data were presented as mean ± standard error of the mean
(SEM). Student’s t- and one-way analysis of variance (ANOVA)
tests were used to determine the statistical significance of the
differences using GraphPad Prism 8.0.1 software (GraphPad
Software Inc., SanDiego, CA). P < 0.05 was considered to be
statistically significant, P < 0.01 was highly significant, and P <
0.001 was extremely significant.
RESULTS

pduRIG-I-Flag and pduLGP2-Flag
Expression Plasmids are Expressed
in DEF Cells
To detect the expression pduRIG-I-Flag and pduLGP2-Flag, the
DEF cells were co-transfected with indicated expression
plasmids. The duLGP2 and duRIG-I expression levels were
detected by Western blot. As shown in Figure 1A, Flag-tag
duRIG-I and duLGP2 plasmids were coexpressed in DEF cells.
TABLE 1 | The sequences of siRNAs.

siRNAs Sequences (5′-3′) Positions

si-NC (sense) UUCUCCGAACGUGUCACGUTT –

si-NC (antisense) ACGUGACACGUUAGAATT
si-LGP2-1 (sense) CCGUCUACAACAAGAUCAUTT 417
si-LGP2-1 (antisense) AUGAUCUUGUUGUAGACGGTT
si-LGP2-2 (sense) CGGACGAUGUUUACUUCUATT 1638
si-LGP2-2 (antisense) UAGAAGUAAACAUCGUCCGTT
si-LGP2-3 (sense) GAGAAGAGGAGGUACAAGATT 1925
si-LGP2-3 (antisense) UCUUGUACCUCCUCUUCUCTT
June 2022 | Volume 13 | Article 916350

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Duck LGP2 Downregulates RIG-I Signaling
siRNA Knock Downed of Endogenous
duLGP2 in DEF Cells
To knockdown endogenous duLGP2 in DEF cells, each siRNA
was transfected into DEF cells, and knockdown efficiency was
assessed by qRT-PCR in 24 hpt. The results showed that
si-diLGP2-1 and si-duLGP2-3 had a pronounced effect on
duLGP2 mRNA expression (P < 0.01) (Figure 1B). However,
the si-duLGP2-3 with better knockdown efficiency (68.8%, P <
0.01) were used for the following experiments.

DuLGP2 Involved in the Regulation
of duRIG-I-Mediated IFN-b
Signaling Pathway
The structure of full-length RIG-I without RNA ligand showed
that RIG-I is in a signaling-repressed in mammals (32).
Therefore, we choose pduRIG-I-CARD to detect the regulation
role of duLGP2 on duRIG-I signaling. LGP2 protein has been
proved to inhibit RIG-I-mediated IFN-b, IRF-3/7, and NF-kB
promoter activities in mammalian cells (33). DEF cells were co-
transfected with indicated expression plasmids, firefly luciferase
reporter gene, and internal reference plasmids to investigate
whether duLGP2 regulates duRIG-I-mediated IFN-b
expression. The results demonstrated that overexpression of
duLGP2 derepresses the duRIG-I-mediated IFN-b promoter
activity in a dose-dependent manner (Figure 2A). Moreover,
Frontiers in Immunology | www.frontiersin.org 4
duLGP2 may inhibit duRIG-I-mediated IFN-b transcription via
IRF-7 rather than the NF-kB signaling pathway (Figure 2B). In
contrast, knockdown of duLGP2 led to an opposite effect on the
IFN-b and IRF-7 signaling pathway, and there were still no
significant changes for NF-kB (Figure 2C).
DuLGP2 Regulates the Expression of
duRIG-I-Mediated Cytokines
To further examine the regulatory role of duLGP2 on the duRIG-
I signaling pathway, DEF cells were co-transfected with indicated
expression plasmids, and the duRIG-I signaling-related
cytokines mRNA expression levels were detected by qRT-PCR.
The results showed that duRIG-I-mediated MAVS, type I IFNs,
ISGs and MHCs were all significantly down-regulated by
duLGP2 overexpression (Figures 3A, F–L), and the expression
of duRIG-I-mediated proinflammatory cytokines were
upregulated by duLGP2 (Figures 3B–E). In contrast,
knockdown of duLGP2 led to an opposite effect on the duRIG-
I-mediated type I IFNs, ISGs, and MHC-I (Figures 4F, G–K),
and although the express ion of duRIG-I-mediated
proinflammatory cytokines (IL-1b, -6 and -8) was upregulated
by knockdown of duLGP2 at 12-24 hpt, but down-regulated at 36
hpt (Figures 4B–E).
TABLE 2 | Primer sequences used in this study.

Primer name Primer sequence (5′-3′) Purpose

qLGP2-F GTGGTGGAGCTGGAGAAGAG qRT-PCR
qLGP2-R CCCTGTTCTCCTCAAAGGTG
qMAVS-F ACATCCTGAGGAACATGGAC qRT-PCR
qMAVS-R AGACCTCCTGCAGCTCTTCG
qIL-1b-F TCATCTTCTACCGCCTGGAC qRT-PCR
qIL-1b-R GTAGGTGGCGATGTTGACCT
qIL-2-F GCCAAGAGCTGACCAACTTC qRT-PCR
qIL-2-R ATCGCCCACACTAAGAGCAT
qIL-6-F TTCGACGAGGAGAAATGCTT qRT-PCR
qIL-6-R CCTTATCGTCGTTGCCAGAT
qIL-8-F AAGTTCATCCACCCTAAATC qRT-PCR
qIL-8-R GCATCAGAATTGAGCTGAGC
qIFN-a-F TCCTCCAACACCTCTTCGAC qRT-PCR
qIFN-a-R GGGCTGTAGGTGTGGTTCTG
qIFN-b-F AGATGGCTCCCAGCTCTACA qRT-PCR
qIFN-b-R AGTGGTTGAGCTGGTTGAGG
qOAS-F TCTTCCTCAGCTGCTTCTCC qRT-PCR
qOAS-R ACTTCGATGGACTCGCTGTT
qPKR-F AATTCCTTGCCTTTTCATTCAA qRT-PCR
qPKR-R TTTGTTTTGTGCCATATCTTGG
qMx-F TGCTGTCCTTCATGACTTCG qRT-PCR
qMx-R GCTTTGCTGAGCCGATTAAC
qMHC-I-F GAAGGAAGAGACTTCATTGCCTTG qRT-PCR
qMHC-I-R CTCTCCTCTCCAGTACGTCCTTCC
qMHC-II-F CCACCTTTACCAGCTTCGAG qRT-PCR
qMHC-II-R CCGTTCTTCATCCAGGTGAT
qGAPDH-F ATGTTCGTGATGGGTGTGAA qRT-PCR
qGAPDH-R CTGTCTTCGTGTGTGGCTGT
qDTMUV-F CGCTGAGATGGAGGATTATGG qRT-PCR
qDTMUV-R ACTGATTGTTTGGTGGCGTG
F, forward primer; R, reverse primer; q, qRT-PCR.
A

B

FIGURE 1 | Expression of pduLGP2-Flag and pduRIG-I-Flag, and
Knockdown of duLGP2 by siRNAs in DEF cells. (A) DEF cells were transiently
transfected with the expression plasmids or empty plasmids pCAGGS.
Western blot was performed at 36 hpt. (B) DEF cells were transiently
transfected with siRNAs. The duLGP2 relatively mRNA expression was
detected at 36 hpt using qRT-PCR. All samples were analyzed in triplicate,
and all data were expressed as means ± SEM. ***Extremely significant (P <
0.001); ns, no significant difference.
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DuLGP2 Promotes DTMUV Replication in
DEF Cells Overexpressing duRIG-I
Previously, duRIG-I has been proved to inhibit DTMUV
replication in vitro (34, 35). To examine whether duLGP2 can
regulate RIG-I-mediated anti-DTMUV ability, the co-
overexpressing duRIG-I and duLGP2 or empty vector
pCAGGS DEF cells were inoculated with DTMUV-FX2010.
The results showed that viral titers of duLGP2-overexpressing
DEF cells were higher than those of the control cells at all the
tested time points, and it was upregulated by 7.26- (P < 0.001),
4.29- (P < 0.001), and 3.10-fold (P < 0.01), at 12, 24, and 36 hpi,
respectively (Figure 5).
Frontiers in Immunology | www.frontiersin.org 5
DuLGP2 Inhibits duRIG-I Mediated IFN-b
Signaling Pathway During
DTMUV Infection
To investigate whether duLGP2 regulates duRIG-I-mediated
IFN-b expression during DTMUV infection. DEF cells were
co-transfected with indicated expression and reporter gene
plasmids. The results showed that duLGP2 led to significant
down-regulation of duRIG-I-mediated IFN-b promoter activity
during DTMUV infection, and this regulatory effect is likely
exerted via the IRF-7 signaling pathway. However, the duRIG-I-
mediated NF-kB activity displayed a degree of up-
regulation (Figure 6).
A

C

B

FIGURE 2 | duLGP2 regulates the duRIG-I-mediated IFN-b signaling pathway. (A) DEF cells were transiently co-transfected with the IFN-b promoter construct and indicated
expression plasmids or empty plasmids pCAGGS. (B) DEF cells were transiently co-transfected with plasmids IRF-7 or NF-kB promoter construct with indicated expression
plasmids or empty plasmids pCAGGS. (C) DEF cells were transiently transfected with siduLGP2-3 or si-NC, and the cells were transfected with indicated plasmids 24 h after
transfection with siRNAs. Cell samples were lysed at 24 hpt, and luciferase activities were quantified by normalization with Renilla luciferase activity. All samples were analyzed
in triplicate, and all data were expressed as means ± SEM. *Significant difference (P < 0.05); **Highly significant difference (P < 0.01); ***Extremely significant (P < 0.001); ns, no
significant difference.
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A B C

D E F

G H I

J K L

FIGURE 3 | Overexpression of duLGP2 regulates duRIG-I-mediated cytokines expression. DEF cells were transiently co-transfected with indicated expression
plasmids or empty plasmids pCAGGS. Cell samples were collected for analysis of cytokine detection at different time points. (A) MAVS (B) IL-1b (C) IL-2 (D) IL-6
(E) IL-8 (F) IFN-a (G) IFN- b (H) OAS (I) PKR (J) Mx. (K) MHC-I (L) MHC-II. The relative expression of gene mRNA was calculated using the 2−DDCt method with
GAPDH serving as a normalization gene and mean control values as a baseline reference, and the values in the control groups (pCAGGS co-transfection) were set to
1. All samples were analyzed in triplicate, and all data were expressed as means ± SEM. *Significant difference (P < 0.05); **Highly significant difference (P < 0.01);
***Extremely significant (P < 0.001); ns, no significant difference.
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A B C

D E F

G H I

J K L

FIGURE 4 | Knockdown of duLGP2 regulates duRIG-I-mediated cytokines expression. DEF cells were transiently transfected with siduLGP2-3 or si-NC, and the
cells were transfected with indicated plasmids or empty plasmids pCAGGS 24 h after transfection with siRNAs. Cell samples were collected for analysis of cytokine
detection at different time points. (A) MAVS (B) IL-1b (C) IL-2 (D) IL-6 (E) IL-8 (F) IFN-a (G) IFN- b (H) OAS (I) PKR (J) Mx. (K) MHC-I (L) MHC-II. The relative
expression of gene mRNA was calculated using the 2−DDCt method with GAPDH serving as a normalization gene and mean control values as a baseline reference,
and the values in the control groups (pCAGGS co-transfection) were set to 1. All samples were analyzed in triplicate, and all data were expressed as means ± SEM.
*Significant difference (P < 0.05); **Highly significant difference (P < 0.01); ***Extremely significant (P < 0.001); ns, no significant difference.
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DuLGP2 Regulates the Expression of
duRIG-I Mediated Cytokines During
DTMUV Infection
To further examine the regulatory role of duLGP2 on the duRIG-
I signaling pathway during DTMUV infection. DEF cells were
co-transfected with indicated expression plasmids. After 24 hpt,
Frontiers in Immunology | www.frontiersin.org 8
the cells were infected with DTMUV-FX2010, and the duRIG-I
signaling-related cytokines expression levels were detected by
qRT-PCR. As expected, the results indicated that the RIG-I
downstream key adaptor protein MAVS, type I IFNs (IFN-a
and -b), ISGs (PKR, OAS, and Mx), and MHC-I were
significantly down-regulated by duLGP2 during DTMUV
infection (Figures 7A, F–K). In addition, duLGP2 upregulated
the expression of duRIG-I mediated several key pro-
inflammatory cytokines during DTMUV infection, including
IL-1b, -2, -6, and -8 (Figures 7B–E).

DuLGP2 Interacts With duRIG-I
Our study indicated that duLGP2 is a negatively regulatory
molecule functioning of the duRIG-I-mediated signaling
pathway. However, the mechanisms involved in this regulation
are currently unknown. Reciprocal co-immunoprecipitation
assays were performed to determine if duLGP2 regulates
duRIG-I through interaction between the proteins. As
shown in Figure 8, when the lysates were immunoprecipitated
with anti-Flag-tag magnetic beads, duLGP2 could be
detected via an immunoblotting assay using an anti-HA
antibody in immunoprecipitated protein complexes. The
result suggested an interaction between duRIG-I and
duLGP2, and this interaction was intensified during
DTMUV infection.
DISCUSSION

RLRs have been identified as major PRRs that respond to viral
RNA in the cytoplasm (5). RIG-I, a member of the RLRs family,
recognizes RNA structures of multiple viruses, including
DTMUV RNA, which is activated and binds to adaptor
protein MAVS, leading to NF-kB and IRF-3/7 pathway
activation (34, 36). LGP2, the third member of the RLRs
family, lacks the CARD domains compared with RIG-I and
MDA5 and has been proven a regulatory factor of the RIG-I and
MDA5 signaling pathway (36, 37), and the regulatory function of
LGP2 in RLRs-mediated signaling pathways is controversial.
Previous studies have also proven that duLGP2 has high
homology with mammals (22), and it is speculated that the
function of duLGP2 may be similar to that in mammals. A recent
study from our group demonstrated that duLGP2 plays a
negative role in duMDA5-dependent anti-DTMUV innate
immune responses (21). However, the regulatory effect of
duLGP2 on duRIG-I-mediated anti-DTMUV infection is
currently not known.

It is well established that type I IFN plays an important role in
antiviral immunity. Previous studies have shown that IRF-7 and
NF-kB are key transcriptional regulators that activate type I IFN
and inflammatory cytokines ducks (27, 38). The present
experiment indicates that the duRIG-I-mediated IFN-b
promoter activity was effectively down-regulated by co-
transfection with duLGP2, and this effect may be the result of
inhibition of IRF-7 rather than an NF-kB dependent signaling
pathway (Figure 2). Furthermore, the qRT-PCR results showed
FIGURE 5 | duLGP2 inhibits duRIG-I-mediated anti-DTMUV activity. Cells were
transiently co-transfected with indicated expression plasmids or empty plasmids
pCAGGS. Cells were infected with DTMUV at 24 hpt and collected for analysis
of virus replication at different time points. All samples were analyzed in triplicate,
and all data were expressed as means ± SEM. **Highly significant difference (P
< 0.01); ***Extremely significant (P < 0.001).
FIGURE 6 | Overexpression of duLGP2 regulates the duRIG-I-mediated IFN-b
signaling pathway during DTMUV infection. DEF cells were transiently co-transfected
with IFN-b, IRF-7, or NF-kB promoter construct with indicated expression plasmids
or empty plasmids pCAGGS. Cells were infected with DTMUV at 24 hpt and lysed
at 12 hpi, and luciferase activities were quantified by normalization with Renilla
luciferase activity. All samples were analyzed in triplicate, and all data were expressed
as means ± SEM. **Highly significant difference (P < 0.01); ***Extremely significant
(P < 0.001).
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that the duRIG-I-mediated expression level of adaptor protein
MAVS, pro-inflammatory cytokines, Type I IFNs, and ISGs was
significantly down-regulated by overexpression duLGP2
(Figure 3), and these results have been validated by
Frontiers in Immunology | www.frontiersin.org 9
knockdown of duLGP2 endogenous expression (Figures 2, 4).
It remains controversial how LGP2 regulates RIG-I function (19,
32, 37, 39–41). The present study indicated that duLGP2 might
function as a negative regulator in duRIG-I signaling.
A B C

D E F

G H I

J K L

FIGURE 7 | duLGP2 regulates duRIG-I-mediated cytokine expression during DTMUV infection. DEF cells were transiently co-transfected with indicated expression
plasmids or empty plasmids pCAGGS. Cells were infected with DTMUV at 24 hpt and collected for analysis of cytokine detection at different time points. (A) MAVS
(B) IL-1b (C) IL-2 (D) IL-6 (E) IL-8 (F) IFN-a (G) IFN- b (H) OAS (I) PKR (J) Mx. (K) MHC-I (L) MHC-II. The relative expression of gene mRNA was calculated using
the 2−DDCt method with GAPDH serving as a normalization gene and mean control values as a baseline reference, and the values in the control groups (pCAGGS co-
transfection) were set to 1. All samples were analyzed in triplicate, and all data were expressed as means ± SEM. *Significant difference (P < 0.05); **Highly
significant difference (P < 0.01); ***Extremely significant (P < 0.001); ns, no significant difference.
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DTMUV is a viral disease that is currently very serious to the
duck industry. Both duRIG-I and duMDA5 participate in the
anti-virus immune response, and duRIG-I has a more
pronounced anti-DTMUV effect than duMDA5 (34). RIG-I is
a well-known strong inducer of the type I IFN response (3).
Moreover, the expression of RIG-I is positively regulated by
IFNs, IL-1b, and LPS (42–47). An intense inflammatory
reaction is induced by DTMUV infection, which may lead to
the host’s death (48). Since the duRIG-I expression is strongly
induced in response to DTMUV infection, it is likely to play an
important role in host defense (49–53). We speculate that the
duRIG-I-mediated immune response during DTMUV
infection may be one of the reasons for this strong
inflammatory response. Consequently, it is important to
understand the duRIG-I-mediated anti-DTMUV immune
function regulation.

Studies of knockout mice have shown that the loss of LGP2
is highly susceptible to encephalomyocarditis virus infection
(19). Additionally, the effect of porcine RIG-I against RNA
virus infection was positively regulated by LGP2. In contrast,
another study showed that LGP2 binds to protein kinase
activator A (PACT) to blocks of RIG-I-mediated IFN-b
promoter signaling (54). In the absence of RNA ligands, the
CARDs fold back to the C-terminal portion of RIG-I, which
causes it to be in an auto-inhibited state (55). Upon
recognizing the viral RNA of flavivirus, the RIG-I undergoes
a conformational change to trigger type I IFN signaling (56,
57). Multiple studies demonstrate that DTMUV can impair the
Frontiers in Immunology | www.frontiersin.org 10
host’s innate immune response via non-structural proteins
resulting in viral escape (58–60). A recent study showed that
duck interferon-induced protein 35 (IFI35) binds to duRIG-I
to counteract its antiviral signal, the interaction enhanced by
DTMUV infection (61), which indicated that the virus evades
host immunity by several mechanisms. The present study
suggests that duRIG-I-mediated IRF-7 signaling was down-
regulated by duLGP2 during DTMUV infection, leading to the
down-regulation of IFN-b promoter activity (Figure 6).
Additionally, the mRNA expression of cytokines was
detected during DTMUV infection. As expected, the results
showed that duRIG-I-mediated type I IFNs (IFN-a and -b)
and downstream ISGs (OAS, PKR, and Mx) were found to be
significantly down-regulated in the duLGP2 overexpression
group during DTMUV infection (Figure 7). Type I IFNs was
considered the most important cytokine involved in the
antiviral immune response, which directly and/or indirectly
drives antiviral effects through the induction of other
mediators and induces the activation of immune cells (62).
These results collectively indicate that the anti-DTMUV
antiviral capability of duRIG-I was down-regulated by
duLGP2, which ultimately resulted in enhanced DTMUV
replication in vitro (Figure 5). Additionally, we demonstrate
that regulation of the duLGP2 is achieved by direct binding of
the duRIG-I, and this interaction was intensified during
DTMUV infection (Figure 8).

Interestingly, duRIG-I-CARD- or full-length duRIG-I-
(DTMUV infection) mediated pro-inflammatory cytokines
(IL-1b, IL-2, IL-6, IL-8) expression level was significantly
promoted by overexpression of duLGP2 (Figures 2, 7).
Recently, DTMUV has been proven to cross the blood-brain
barrier into the central nervous system and cause
nonsuppurative encephalitis in ducklings. The blood-brain
barrier will eventually be destroyed by the virus, thus
triggering a subsequent “inflammatory storm”. There is no
doubt that RLRs play an important role in DTMUV
infection-mediated inflammatory response (49, 63). The
present experiment shows that duLGP2 is involved in the
expression of inflammatory factors in the duRIG-I-mediated
anti-DTMUV immune response and the regulatory role of
duLGP2 on the duRIG-I may via NF-kB signaling pathway
and contribute to promoting inflammation and regulating
inflammatory responses (Figure 6).

In conclusion, our study provides further evidence for the
regulatory role of duLGP2 in duRIG-I-mediated anti-DTMUV.
Although LGP2 per se function impacts RLRs has been
controversial, we demonstrated that duLGP2 negatively affects
duRIG-I-mediated anti-DTMUV immune responses.
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