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Abstract: Next-generation sequencing technologies have enabled the discovery of numerous se-
quence variations among closely related crop varieties. We analyzed genome resequencing data
from 24 Korean temperate japonica rice varieties and discovered 954,233 sequence variations, in-
cluding 791,121 single nucleotide polymorphisms (SNPs) and 163,112 insertions/deletions (InDels).
On average, there was one variant per 391 base-pairs (bp), a variant density of 2.6 per 1 kbp. Of the
InDels, 10,860 were longer than 20 bp, which enabled conversion to markers resolvable on an agarose
gel. The effect of each variant on gene function was predicted using the SnpEff program. The variants
were categorized into four groups according to their impact: high, moderate, low, and modifier.
These groups contained 3524 (0.4%), 27,656 (2.9%), 24,875 (2.6%), and 898,178 (94.1%) variants, respec-
tively. To test the accuracy of these data, eight InDels from a pre-harvest sprouting resistance QTL
(qPHS11) target region, four highly polymorphic InDels, and four functional sequence variations
in known agronomically important genes were selected and successfully developed into markers.
These results will be useful to develop markers for marker-assisted selection, to select candidate
genes in map-based cloning, and to produce efficient high-throughput genome-wide genotyping
systems for Korean temperate japonica rice varieties.
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1. Introduction

Rice is the world’s second most important cereal crop, following only maize (Zea mays).
Worldwide, nearly 504 million metric tons of milled rice was produced from about
162 million hectares of paddy fields in 2019 (http://www.fao.org/faostat, accessed on
10 August 2021). Rice (Oryza sativa) can be classified into two main subgroups: indica and
japonica. Indica genotypes are grown in tropical regions, whereas japonica varieties are
grown in tropical or temperate regions. Generally, the genetic diversity of japonica varieties
is lower than that of indica varieties [1]. Korean japonica rice varieties belong to the temper-
ate japonica group and thus have a low level of genetic diversity. They exhibit low levels of
polymorphism with traditional molecular markers, including restriction fragment length
polymorphisms (RFLPs) and simple sequence repeats (SSRs), and this has hindered gene
mapping and marker-assisted selection. Korean japonica rice varieties, however, show wide
phenotypic variation in many important traits, including flowering time, plant architec-
ture, disease and pest resistance, seed size, grain quality, pre-harvest sprouting resistance,
and resistance to abiotic stress. Mapping and identification of the genes responsible for
this variation and the development of selective markers are therefore required to facilitate
molecular breeding.

Next-generation sequencing (NGS) technologies have revealed numerous sequence
variations in closely related varieties of temperate japonica rice, and have enabled the devel-
opment of a sufficient number of polymorphic markers to allow genotyping of populations
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derived from crosses between these varieties. Resequencing of the japonica variety Koshi-
hikari revealed 67,051 single nucleotide polymorphisms (SNPs) relative to the reference
japonica rice sequence, Nipponbare [2]. Moreover, 25,199 new SNPs were discovered by
resequencing two other Japanese japonica rice varieties (Rikuu132 and Eiko), and a core set
of 768 SNPs were selected for diversity and genetic analyses of biparental populations of
Japanese rice accessions [3]. In addition, whole-genome sequencing of Omachi, a Japanese
landrace of japonica rice, identified 132,462 SNPs, 16,448 insertions, and 19,318 deletions
that differed between the Omachi and Nipponbare genomes [4]. Whole-genome sequenc-
ing of six cultivars (five temperate japonica cultivars and one tropical japonica cultivar
(Moroberekan)) revealed that the Moroberekan genome contained five times more SNPs
than the temperate japonica cultivars when compared with Nipponbare [5]. Whole-genome
sequencing also revealed an average of 99,955 putative SNPs and 14,617 putative InDels
in comparison with Nipponbare in 10 closely related rice cultivars grown in Hokkaido,
the northernmost region of rice paddy cultivation in Japan [6].

Various high-throughput SNP assays have been developed in rice using SNPs discov-
ered through resequencing. These include a custom-designed Affymetrix array consisting
of 44,100 SNPs; an Illumina GoldenGate assay consisting of 1536 SNPs; and a suite of
low-resolution 384-SNP assays for the Illumina BeadXpress Reader [7–9]. A core set of
768 SNPs were used to develop an Illumina GoldenGate platform for diversity and genetic
analysis of Japanese temperate japonica rice varieties [2]. Two Illumina Infinium-based
6 K arrays, RiceSNP6K [10] and C6AIR [11], have been developed and used for diversity
analysis, QTL mapping, marker-assisted backcross breeding (MABB), and pedigree ver-
ification of breeding lines. The C7AIR SNP array, which contains 7,098 markers, is an
improved development of the previously released C6AIR [12]. The 700 K High Density
Rice Array (HDRA700K) has been used for genome-wide association studies (GWAS) [13].
The 1K-Rice Custom Amplicon, or 1k-RiCA, was developed using highly informative SNPs
within indica rice breeding pools for genetic and breeding purposes [14]. A core SNP array
based on 467 Kompetitive Allele-Specific PCR (KASP) markers has been used successfully
for rice germplasm assessment, genetic diversity, and population evaluation [15].

We previously analyzed genome resequencing data from 13 Korean temperate japonica
rice varieties and discovered 740,566 SNPs, from which we developed 1225 KASP mark-
ers [16–18]. These markers were successfully used for QTL mapping of several important
traits and MABB within Korean temperate japonica varieties [19–22]. However, the number
of varieties analyzed in these studies was too small; thus, it was necessary to identify more
of the sequence variation present in Korean temperate japonica rice varieties. We there-
fore analyzed genome resequencing data from 24 Korean temperate japonica rice varieties.
This revealed 954,233 sequence variations consisting of 791,121 SNPs and 163,112 inser-
tions/deletions (InDels). These results will be useful for the production of markers for
marker-assisted selection, and for the development of more comprehensive and efficient
high-throughput genome-wide genotyping systems for Korean temperate japonica rice
varieties. In addition, these data provide valuable information for the development of
DNA markers and the selection of candidate genes during map-based gene cloning with
populations derived from crosses between Korean temperate japonica rice varieties.

2. Materials and Methods

A total of 24 Korean temperate japonica rice varieties (Cheongho, Dami, Dongan,
Dongjin, Giho, Haechanmulgyeol, Hiami, Hwacheong, Hwayeong, Ilpum, Jinbu43, Jopy-
eong, Joun, Junam, Nampyeong, Odae, Saeilmi, Saenuri, Samgwang, Seogan, Seomyeong,
Sindongjin, Sobi, and Unbong40) were grown in a greenhouse of the National Institute
of Agricultural Sciences (NIAS) of the Rural Development Administration (RDA, Jeonju,
Korea). Genomic DNA was extracted from the leaves using the DNeasy Plant Mini Kit
(QIAGEN, Hilden, Germany).

Resequencing of the entire genome of 11 varieties (Cheongho, Dami, Dongan, Haechan-
mulgyeol, Jinbu43, Jopyeong, Saeilmi, Seogan, Seomyeong, Sindongjin, and Sobi) was
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performed using an Illumina HiSeq2000 instrument (Illumina, San Diego, USA) with a
paired-end library. Raw sequencing data from the remaining 13 japonica varieties were
reported previously [16].

Analysis of the resequencing data was performed according to the methods re-
ported by Kumagai et al. [23] using the Trimmomatic 0.36 [24], BWA-mem (v0.7.12) (https:
//sourceforge.net/projects/bio-bwa/, 25 August 2021), Picard 2.9.0 (http://broadinstitute.
github.io/picard/, 25 August 2021), GATK (v4.1.3.0) (https://github.com/broadinstitute/
gatk/, 25 August 2021), and SnpEff (v4.3t) [25] programs. Briefly, the low-quality bases and
adapter sequences in each read were removed using Trimmomatic. The reads were mapped
to the IRGSP-1.0 Nipponbare reference genome [26] using BWA-mem with the default
setting. After removing PCR duplicates with Picard 2.9.0, the variants were called for each
sample using the GATK HaplotypeCaller. The variants of each variety were combined
using GATK CombineGVCFs, and varieties were genotyped using GATK GenotypeGVCFs.
Hard filtering of variants was done using GATK VariantFiltration and GATK SelectVari-
ants with the filter “QD < 5.0, FS > 50.0, SOR > 3.0, MQ < 50.0, MQRankSum < −2.5,
ReadPosRankSum < −1.0, ReadPosRankSum > 3.5”. The effect of each variant site was
annotated using SnpEff; rice genome annotation information from the RAP database (RAP-
DB, https://rapdb.dna.affrc.go.jp/, 25 August 2021) [27] was used in the SnpEff analysis.
The position, genotypes of varieties, and annotation of variants were extracted using
SnpSift (v4.3t) [28]; in addition, SnpSift was used to extract variants with high and mod-
erate impact effects. InDels longer than 20 bp were extracted using GATK SelectVariants.
The nucleotide diversity (π), allele number, and frequency of alleles at each variant were
calculated using vcftools (v0.1.13) [29]. The polymorphism information content (PIC) value
was calculated based on the frequency of alleles.

To develop InDel markers in the qPHS11 region (22.0–25.0 Mbp on chromosome 11),
nine InDels in this region longer than 20 bp were selected, and primers were designed
based on their flanking sequences using the CLC Genomics Workbench (v6.0.1) program
(http://www.qiagen.com, 25 August 2021). To develop highly polymorphic InDel mark-
ers, four InDels with PIC values greater than 0.4 and without missing data were se-
lected, and primers were designed based on their flanking sequences. In order to find
sequence variations in the well-known agronomically important genes, the list of “Agro-
nomically important genes” in RAP-DB (https://rapdb.dna.affrc.go.jp, 25 August 2021)
was used. Among the found genes, four genes including Hd1, Hd6, GS3, and SD1 were
selected, and the primers were designed based on the flanking sequences of functional
sequence variations in those genes. The primer sequences of the markers are shown in
Supplementary Table S1.

Phylogenetic analysis of the 24 varieties was conducted using the SNPhylo [30] and
MEGA X programs [31]. Population structure for varieties was determined using the
STRUCTURE (version 2.3.4) [32,33] program, varying the number of clusters (K) from one
to fifteen, with five replications. The models, following admixture and correlated allele
frequency with a 5000 burnin length and a run length of 50,000, were used for conducting
model-based structure analysis. Output of STRUCTURE analysis was collected using the
STRUCTURE harvester [34], and the most probable K value was determined based on the
LnP(D) and Evanno’s ∆K [35].

3. Results
3.1. Detection of Variations in Genome Sequences

We analyzed the genome resequencing data of 24 Korean temperate japonica rice vari-
eties (Cheongho, Dami, Dongan, Dongjin, Giho, Haechanmulgyeol, Hiami, Hwacheong,
Hwayeong, Ilpum, Jinbu43, Jopyeong, Joun, Junam, Nampyeong, Odae, Saeilmi, Saenuri,
Samgwang, Seogan, Seomyeong, Sindongjin, Sobi, and Unbong40). The quantity of raw
genome sequence data from the different varieties ranged from 14.55 Gbp (Odae) to
55.99 Gbp (Junam) with a mean of 27.50 Gbp (Supplementary Table S2). After read map-
ping of the Nipponbare reference genome, the mapped nucleotides ranged from 13.28 Gbp

https://sourceforge.net/projects/bio-bwa/
https://sourceforge.net/projects/bio-bwa/
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://github.com/broadinstitute/gatk/
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https://rapdb.dna.affrc.go.jp/
http://www.qiagen.com
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(Odae) to 52.01 Gbp (Junam) with a mean of 25.61 Gbp. The mapping depth ranged from
35.58× to 139.35× with a mean of 68.35×. We identified 954,233 sequence variants, includ-
ing 791,121 SNPs and 163,112 InDels, between the 24 Korean japonica rice varieties. Overall,
chromosome 5 contained the lowest number of variants (20,602), and chromosome 11 the
highest (202,097). On average, there was one variant per 391 bp, a variant density of 2.6 per
1 kbp (Table 1).

Table 1. Number of variants per chromosome.

Chromosome No. of SNP No. of InDels No. of Variants 1 Variant Rate 2 Variant Density 3

1 51,577 12,651 64,228 673.7 1.5
2 40,194 9828 50,022 718.4 1.4
3 24,705 6669 31,374 1160.6 0.9
4 51,392 12,223 63,615 558.1 1.8
5 16,300 4302 20,602 1454.2 0.7
6 89,193 15,998 105,191 297.1 3.4
7 41,475 10,382 51,857 572.7 1.7
8 103,970 18,501 122,471 232.2 4.3
9 40,190 8938 49,128 468.4 2.1

10 74,963 13,057 88,020 263.7 3.8
11 168,447 33,650 202,097 143.6 7.0
12 88,715 16,913 105,628 260.6 3.8
All 791,121 163,112 954,233 391.1 2.6

1 Sum of SNPs and InDels; 2 mean base pair length within which a variant occurs; 3 mean number of variants per 1 kbp.

The distributions of sequence variations per 100 kbp interval and nucleotide diversity
within a 100 kbp window over the 12 rice chromosomes are shown in Figure 1. Most in-
tervals contained SNPs, although their density was uneven across each chromosome.
Chromosomes 6, 8, 10, 11, and 12 had the widest ranges with variation density as high as
100–1000 per 100 kbp; the nucleotide diversity within a 100 kbp window was especially
high over large regions of chromosomes 6, 8, and 11. By contrast, variation density and
nucleotide diversity were mostly low on chromosome 5.
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Figure 1. Distributions of sequence variation and nucleotide diversity per 100 kbp on each of the
12 rice chromosomes. X-axis shows the physical distance along each chromosome in mega base-
pairs (Mbp). Left-hand Y-axis shows the common logarithm of the number of variations; blue bars
show variation frequency. Right-hand Y-axis shows nucleotide diversity within 100 kbp windows
(π), represented by the orange line. The positions of well-known agronomically important genes
harboring sequence variations in 24 Korean temperate japonica rice varieties were indicated by
red arrows.

The distribution of InDel sizes is shown in Figure 2. InDel size ranged from 1 to 234 bp,
although 1 bp InDels occurred most frequently (75,490 InDels). Further information about
each InDel, including genotypes of varieties and annotation, is provided in Supplemen-
tary Table S3. InDels longer than 20 bp can be converted to markers resolvable on agarose
gels, which enables their practical use in ordinary laboratories. We identified 10,860 InDels
longer than 20 bp; their full details are provided in Supplementary Table S4.
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To test the usefulness of the InDel data, we designed nine InDel markers in the region
of qPHS11, a major QTL for pre-harvest sprouting resistance found in the recombinant
inbred line (RIL) population derived from a cross between Odae and Unbong40 [19].
An analysis showed that eight markers revealed polymorphisms between the parental
varieties, Odae and Unbong40, and one marker failed to amplify by PCR (Figure 3a).
We also designed four highly polymorphic InDel markers with PIC values greater than
0.4. All of these revealed polymorphisms between the 24 varieties, as expected (Figure 3b).
These results confirmed that the InDels identified in this study enabled the development of
accurate and useful markers.

3.2. Prediction of the Effects of Variation on Gene Function

The effects of the sequence variations on gene function were predicted using the SnpEff
program [25]. The impacts of the effects were categorized into four groups: high, moder-
ate, low, and modifier. These groups contained 3524 (0.4%), 27,656 (2.9%), 24,875 (2.6%),
and 898,178 (94.1%) variants, respectively (Table 2). Frameshift mutations were the most
common variants in the high-impact group (2518), whereas missense mutations were the
most common variants in the moderate-impact group (25,436) (Table 3). Synonymous muta-
tions were the most common variants (19,629) in the low-impact group, whereas variations
in upstream gene sequences were the most common variants (361,453) in the modifier
group (Table 3). Additional information about variants with high and moderate impact is
provided in Supplementary Table S5. The variation identified in this study will be very use-
ful for selecting candidate genes in specific target regions during map-based gene cloning
with populations derived from crosses between Korean temperate japonica varieties.
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Figure 3. Development of markers based on sequence variation between 24 Korean japonica rice
varieties. (a) Development of InDel markers in the qPHS11 region. (b) Development of markers based
on highly polymorphic InDels. (c) Development of gene-based markers; gene names are given on the
right-hand side of the photograph. M: standard size markers; 1–24 represent the varieties Cheongho,
Dami, Dongan, Dongjin, Giho, Haechanmulgyeol, Hiami, Hwacheong, Hwayeong, Ilpum, Jinbu43,
Jopyeong, Joun, Junam, Nampyeong, Odae, Saeilmi, Saenuri, Samgwang, Seogan, Seomyeong,
Sindongjin, Sobi, and Unbong40, respectively.
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Table 2. Classification of variants by predicted effects on gene function.

Chromosome
Impact of Variant Effects

Sum 1
High Moderate Low Modifier

1 350 2747 2360 58,771 64,228 (6.7%)
2 254 2088 1779 45,901 50,022 (5.2%)
3 76 632 591 30,075 31,374 (3.3%)
4 310 2405 2119 58,781 63,615 (6.7%)
5 61 557 581 19,403 20,602 (2.2%)
6 238 2057 1792 101,104 105,191 (11.0%)
7 187 1618 1489 48,563 51,857 (5.4%)
8 393 2698 2530 116,850 122,471 (12.8%)
9 198 1429 1322 46,179 49,128 (5.1%)
10 266 2250 2009 83,495 88,020 (9.2%)
11 903 6906 6074 188,214 202,097 (21.2%)
12 288 2269 2229 100,842 105,628 (11.1%)

Total 2 3524
(0.4%)

27,656
(2.9%)

24,875
(2.6%)

898,178
(94.1%) 954,233

1 Number (percentage of chromosome); 2 number (percentage of impact).

Table 3. Classification of variants by their effects.

Impact of SNP Effect SNP Effect No.

HIGH

Frameshift 2518
Stop_gained 478

Stop_lost 147
Splice_acceptor_variant 143

Splice_donor variant 127
Start_lost 74

Gene_fusion 34
Feature_ablation 3

Sum 3524

MODERATE

Missense_variant 25,436
Inframe_insertion/deletion 2219

5_prime_UTR_truncation&exon_loss_variant 1

Sum 27,656

LOW

Synonymous_variant 19,629
Splice_region_variant 3481

5_prime_UTR_premature_start_codon_gain_variant 1736
Stop_retained_variant 25

initiator_codon_variant 4

Sum 24,875

MODIFIER

upstream_gene_variant 361,453
intergenic_region 301,015

downstream_gene_variant 144,322
intron_variant 48,461

3_prime_UTR_variant 24,980
5_prime_UTR_variant 13,281

non_coding_transcript_exon_variant 4663
intragenic_variant 3

Sum 898,178

In order to identify sequence variations in the well-known agronomically important
genes, we referred to the genes in the list of “Agronomically important genes” in RAP-
DB (https://rapdb.dna.affrc.go.jp, 25 August 2021), which included 73 genes. We found
sequence variations in 18 genes among them (Table 4, Supplementary Table S6). Especially,

https://rapdb.dna.affrc.go.jp
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the sequence variations in SD1, GS3, HD6, HD3B, HD1, Hd18, Pia, Pb1, and Ptr genes
were identical with those that have been reported to be functional variations. Based on
these results, we designed four functional markers for Hd1, Hd6, GS3, and SD1 genes.
A 43 bp deletion causing a frameshift in the first exon was found in Hd1 [36,37], and was
used to design a marker for Hd1. The genome resequencing data analysis showed that
Joun and Unbong40, which are early-maturing varieties, contained the deletion genotype,
while other varieties contained the reference genotype; this finding was confirmed by
an analysis using the marker for Hd1 (Figure 3c). An SNP causing the loss of the stop
codon was found in Hd6 and used to design a marker. HD6 encodes the α-subunit of a
protein kinase, CASEIN KINASE II (CK2); the Nipponbare allele contains a premature stop
codon, whereas the allele found in Kasalath, an indica variety, does not [38]. The genome
resequencing data analysis showed that only Odae contained the Kasalath allele, while all
the other tested varieties had the Nipponbare allele. An analysis with the Hd6 marker
confirmed this result (Figure 3c). GS3 regulates grain length [39]. An SNP causing a
premature stop codon was found in GS3 and was used to design a marker. The genome
resequencing data analysis showed that Dami, Sindongjin, and Sobi, which are large-
grained varieties, contained the premature stop codon, while the other varieties possessed
the reference genotype; this finding was confirmed by an analysis using the GS3 marker
(Figure 3c). Mutations in SD1 reduce culm length [40]. An SNP causing an amino acid
change was found in this gene and used to design a marker. The genome resequencing data
analysis showed that Ilpum, Jopyeong, Odae, Junam, and Seogan contained the variant sd1
genotype, but the other varieties contained the reference genotype. An analysis with the
marker for the sd1 variant confirmed this finding (Figure 3c).

Table 4. Summary of sequence variations in well-known agronomically important genes.

Gene Name Gene ID Trait No. of Variation Sites 1 Reference

OsWD40-19 Os01g0620100 Cold tolerance 2 [41]
RD Os01g0633500 Grain color 3 [42]

HESO1 Os01g0846450 Days to heading 1 [43]
SD1 Os01g0883800 Culm length 2 [40]

SMG1 Os02g0787300 Grain size 1 [44]
GS3 Os03g0407400 Grain size 1 [45]
Hd6 Os03g0762000 Days to heading 1 [38]
Pi21 Os04g0401000 Blast disease resistance 1 [46]

NAL1 Os04g0615000 Leaf width 1 [47]
HD3B Os06g0142600 Days to heading 1 [48]
Hd1 Os06g0275000 Days to heading 5 [37]

BZR1 Os07g0580500 Plant architecture 1 [49]
Hd18 Os08g0143400 Days to heading 1 [50]

GATA28 Os11g0187200 Days to heading 4 [43]
Pia (RGA4) Os11g0225100 Blast disease resistance 20 [51]
Pia (RGA5) Os11g022530 Blast disease resistance 21 [51]

Pb1 Os11g0598500 Blast disease resistance 29 [52]
Ptr Os12g0285100 Blast disease resistance 16 [53]

1 Number of high- or moderate-impact effect variation sites.

3.3. Structure and Phylogenetic Analysis

The SNPhylo program extracts SNP data which meet the criteria of ≥ MAF (Minor Al-
lele Frequency) and ≤ missing rate threshold and are in approximate linkage equilibrium
with each other from large SNP datasets produced by resequencing [30]. By using this
program, 1758 representative SNPs were extracted with criteria of MAF higher than 0.1,
missing rate lower than 0.1, and LD (Linkage Disequilibrium) threshold of 0.5 from all
SNPs detected in 24 Korean japonica rice varieties. These SNPs were used in the following
population structure and phylogeny analysis.
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The population structure of 24 Korean japonica rice varieties was analyzed by using
STRUCTURE 2.3.4 software. The Evanno’s ∆K values identified three genetically distinct
populations (i.e., K = 3; Supplementary Figure S1), A, B, and C (Figure 4a). Then, MEGA X
programs were used to construct a phylogenetic tree of the 24 Korean japonica rice varieties.
This analysis also divided the varieties into three groups (Figure 4b): Group A (Samgwang,
Haechanmulgyeol, Junam, Seomyeong, Seogan, Hwayeong, Sobi, Dami, and Sindongjin);
Group B (Dongan, Nampyeong, Dongjin, Saeilmi, Cheongho, Saenuri, Hiami, Giho, Ilpum,
Hwacheong, and Joun); and Group C (Unbong40, Jopyeong, Jinbu43, and Odae).
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4. Discussion

In this study, we identified 954,233 sequence variants, 791,121 SNPs, and 163,112 In-
Dels. We found 50,555 new SNPs, in addition to the 740,566 SNPs reported in our previous
study [16], and performed a novel analysis of InDels. This result reveals ample sequence
variation in Korean japonica rice varieties and may explain the wide phenotypic variation
observed in many important traits, including flowering time, plant architecture, disease and
pest resistance, seed size, grain quality, pre-harvest sprouting resistance, and resistance
to abiotic stress. Using the SnpEff program, we predicted the effect of each variant on
gene function: 3524 variants were predicted to have high-impact effects as they involved
frameshift mutations, the gain or loss of a stop codon, or changes at splice donor or ac-
ceptor sites. These types of variants are extremely likely to be associated with variation
in phenotypic traits. Moreover, 27,656 variants were missense mutations, in-frame inser-
tion/deletions, or 5_prime_UTR_truncation and exon_loss_variants, which are predicted to
have moderate effects on function and are thus also likely to be related to phenotypic varia-
tion. In addition, we cannot exclude the possibility that the remaining variants, predicted to
have a low or modifier impact on function, are related to variation in phenotypic traits.
Our analysis provided the position, genotypes of tested varieties, and full annotation of
each variant, including its predicted effect on function. These data will be very helpful for
future map-based cloning of genes underlying important traits in populations derived from
crosses between Korean japonica varieties. In particular, within a target region associated
with a trait, candidate genes can be identified based on the presence of variants that have a
high or moderate impact on gene function.

The need for high-throughput genome-wide genotyping systems using arrays is
increasing rapidly as marker-assisted selection and genomic selection become more popular
techniques for plant breeding [54,55]. Highly polymorphic SNPs, SNPs affecting the
function of known genes controlling agronomical traits, and SNPs located within a target
gene interval are commonly used to develop high-throughput genome-wide genotyping
systems [10,11,14,15]. Using the information produced by this study, suitable SNPs can be
easily selected to develop genotyping systems for Korean japonica rice varieties. This is the
goal of our future research.

The development of markers resolvable on agarose gels is important for genetic
research and breeding. InDels longer than 20 bp are easily visualized on agarose gels
and can thus be used in ordinary laboratories without the need for expensive equipment.
Shen et al. [56] identified InDels between the rice varieties Nipponbare and 9311, and used
InDels of 25–50 bp to construct 108 InDel markers. A further 346 markers based on InDels
of 30–55 bp were developed following a comparison of the sequences of two indica and one
japonica rice reference genomes [57]. InDels longer than 20 bp were detected by positional
multiple sequence alignments between wild rice species and four cultivated rice varieties,
and enabled the development of 541 genome-wide markers that discriminated between
alleles from cultivated rice and seven AA-genome wild rice species [58]. We identified
10,860 InDels longer than 20 bp (Supplementary Table S4), and used this information to
develop and successfully use eight InDel markers in the qPHS11 target region, as well as
four other highly polymorphic InDel markers (Figure 3a,b). These results show that the
InDel data generated by this study will be very useful for developing markers for fine-
mapping and marker-assisted selection, as well as for the construction of a genome-wide
InDel marker set for Korean japonica rice varieties.

Interestingly, a large difference in the numbers of sequence variations among chromo-
somes was observed. Chromosome 11 contained the highest number of variants (202,697),
and chromosome 5 the lowest number of variants (20,602). A similar result has been re-
ported by resequencing a Japanese temperate japonica rice variety, Koshihikari [2]. In com-
parison between Koshihikari and Nipponbare, which is the reference genome, chromosome
11 showed the highest number of SNPs (12,216), and chromosome 5 the second lowest
number of SNPs (1032). Moreover, in resequencing 10 Japanese temperate japonica rice
varieties released in Hokkaido, chromosome 11 contained the highest number of SNPs
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(10,870–18,779), and chromosome 5 the lowest number of SNPs (1563–2834) in compari-
son with Nipponbare [6]. In the study by Arai-Kichise et al. [5], six Japanese temperate
japonica rice varieties were resequenced, and chromosome 11 contained the second highest
number of SNPs (12,215–27,182), while chromosome 5 had the lowest number of SNPs
(1184–6119) in comparison with Nipponbare [5]. Such a large difference seems to be seen
only in temperate japonica rice varieties. The Moroberekan, a tropical japonica rice variety,
did not show a large difference in SNP numbers: 61,350 on chromosome 5 and 61,169 on
chromosome 11 [5]. The differences in the numbers of SNPs between chromosome 5 and
chromosome 11 were much smaller in two Korean Tongil-type indica varieties: 72,242 and
87,759 on chromosome 5 vs. 121,783 and 126,752 on chromosome 11 [59]. The cause of the
large differences in the numbers of sequence variations among chromosomes in temperate
japonica rice varieties is unclear and needs further research.

Overall, the genomic variation found in this study will facilitate the development of
markers for mapping important genes and for marker-assisted selection, together with the
development of a high-throughput genome-wide genotyping system for Korean japonica
rice varieties.

5. Conclusions

Through analyzing genome resequencing data from 24 Korean temperate japonica
rice varieties, we discovered 954,233 sequence variations, including 791,121 SNPs and
163,112 InDels. The effect of each variant on gene function was predicted using the
SnpEff program and was included in annotation. Eight InDels from a pre-harvest sprouting
resistance QTL (qPHS11) target region, four highly polymorphic InDels, and four functional
sequence variations in well-known agronomically important genes were selected and
successfully developed into markers. These results will be useful to develop markers for
marker-assisted selection, to select candidate genes in map-based cloning, and to produce
efficient high-throughput genome-wide genotyping systems for Korean temperate japonica
rice varieties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12111749/s1, Figure S1: Estimation of population using LnP(D) derived ∆K for K from
1 to 15, Table S1: Primer sequences of markers developed in this study, Table S2: Summary of genome
resequencing data, Table S3: Information about InDels detected in this study, Table S4: Information
about InDels longer than 20 bp detected in this study, Table S5: Information about variants with high
or moderate effects on gene function, Table S6: Information about variants with high or moderate
effects on gene function in well-known agronomically important genes.
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