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Abstract: The objective of this study was to identify novel acetylation (Ac) modifications of
the C1-inhibitor (C1-INH) and explain the association of the levels of autoantibodies against
acetylated C1-INH peptides with the risk of developing systemic lupus erythematosus (SLE).
Ac modifications of the C1-INH were identified and validated through in-gel digestion, nano-liquid
chromatography-tandem mass spectrometry, immunoprecipitation, and Western blotting by using
serum protein samples obtained from patients with SLE and age-matched healthy controls (HCs).
In addition, the levels of serum C1-INH, Ac-protein adducts, and autoantibodies against unmodified
and acetylated C1-INH peptides were measured. C1-INH levels in patients with SLE were significantly
lower than those in HCs by 1.53-fold (p = 0.0008); however, Ac-protein adduct concentrations in
patients with SLE were significantly higher than those in HCs by 1.35-fold (p = 0.0009). Moreover,
immunoglobulin M (IgM) anti-C1-INH367–385 Ac and IgA anti-C1-INH367–385 Ac levels in patients
with SLE were significantly lower than those in HCs. The low levels of IgM anti-C1-INH367–385

(odds ratio [OR] = 4.725, p < 0.001), IgM anti-C1-INH367–385 Ac (OR = 4.089, p = 0.001), and IgA
anti-C1-INH367–385 Ac (OR = 5.566, p < 0.001) indicated increased risks for the development of SLE
compared with HCs.
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1. Introduction

Systemic lupus erythematosus (SLE) is a multisystem, chronic autoimmune disease characterized
by a variety of variable clinical manifestations and a heterogeneous group of pathogenic autoantibodies
produced through a breakdown of tolerance to nucleic acids and proteins, especially chromatin [1,2].
According to the Taiwanese National Health Insurance Research Database, between 2003 and 2008, the
average prevalence of SLE in Taiwan was 97.5 new cases (female-to-male ratio, 7.8) per 100,000 persons
observed for 1 year; moreover, the highest prevalence in women was observed among those aged
30–39 years, and that in men was observed among those aged 70–79 years. The average SLE incidence
rate was 4.87 new cases (female-to-male ratio, 7.0) per 100,000 person-years; the highest incidence rate
in women was observed among those aged 40–49 years, and that in men was observed among those
aged >70 years. The average standardized mortality rate from SLE was 11.1 new cases (female-to-male
ratio, 4.5) per 100,000 person-years [1]. The etiology and pathogenesis of SLE include genetic ancestry,
environmental exposure, amines, viruses, post-translational modifications (PTMs), autoantibodies,
and periodontitis [2–6].

Research reported several autoantibodies for detecting SLE, including antinuclear antibodies,
anti-double-stranded DNA antibodies, anti-Smith antibodies, antinucleosome antibodies, antihistone
antibodies, antiribosomal P antibodies, antiphospholipid antibodies, anticomplement component 1q
antibodies, antiribonucleoprotein antibodies, and antiproliferating cell nuclear antigen antibodies [7].
Other autoantibodies against specifically modified epitopes from biological fluids are recognized in SLE,
including peroxynitrite (H1 histone), 4-hydroxy-2-nonenal (H2A histone), malondialdehyde (MDA;
catalase, superoxide dismutase, and human epithelial type 2 protein), trimethylation (H3 histone),
isomerization (H2A histone), carbamylation (fetal calf serum proteins), nitration (poly L-tyrosine), and
acetylation (Ac; H4, H2A, and H2B histones) [8–16].

Several case reports have indicated that patients with SLE exhibited a C1-inhibitor (C1-INH)
deficiency that caused serum C1-INH depletion owing to protein dysfunction [17–19]. The C1-INH,
a plasma protease C1-INH, is a serine-type endopeptidase inhibitor that controls C1 complex activation
and plays critical roles in regulating essential pathways including activation of the human complement
system, fibrinolysis, blood coagulation, and kinin system generation [18,20]. Furthermore, Meszaros et al.
reported that the level of anti-C1-INH immunoglobulin G (IgG) in patients with an SLE-acquired C1-INH
deficiency was significantly higher than that in healthy controls (HCs) [21]. Mandle et al. proposed that
autoantibody against the reactive center region of C1-INH results in acquired C1-INH deficiency [22].

In the present study, C1-INH modification was identified through one-dimensional sodium
dodecylsulfate-polyacrylamide gel electrophoresis (1D SDS-PAGE), in-gel digestion, and label-free
nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) by using serum proteins
obtained from patients with SLE versus HCs. Moreover, modifications of the C1-INH were confirmed
using immunoprecipitation (IP) and Western blotting. Serum levels of the C1-INH, modified protein
adducts, and autoantibodies were determined. Subsequently, we evaluated the associations of the
C1-INH, modified protein adduct, and autoantibody levels with risks of SLE pathogenesis in patients
with SLE versus HCs.

2. Results

2.1. Identification and Validation of Novel Ac Modifications of Serum C1-INH

Novel Ac modifications of the C1-INH in serum were identified from a single pair of each
of the nine pooled serum samples (HCs vs. patients with SLE) by using 1D SDS-PAGE, in-gel
digestion, nano-LC-MS/MS, and PTM finder in-house program through manual examination of
modified spectra (Figure 1A,B and Supplementary Figure S1). The average coverage of amino
acid sequences in the C1-INH was 32% (Supplementary Table S1). The acquired MS/MS spectra of
acetylated peptides in the C1-INH are presented in Figure 1C,D. The peptide moiety was identified as
b- and y-series ions. The peptide 367-LEDMEQALSPSVFKAIMEK-385 was identified as SLE specific
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and had an Ac modification at lysine (K) 380 with a mass increase of 42.010567 Da. The peptide
modified at K380 was identified as an unmodified b14 ion followed by a modified y6 ion (Figure 1C).
The initial masses of 367-LEDMEQALSPSVFKAIMEK-385 at charge states of 1 (z = 1) and 3 (z = 3) were
2165.075 and 722.699 Da, respectively. The masses of 367-LEDMEQALSPSVFKAIM*EK-385 charge
states of 1 (z = 1) and 3 (z = 3) were 2226.108 and 742.036 Da, respectively (Figure 1B). The peptide
310-MEPFHFKNSVIKVPMMNSK-328 was determined to be HC-specific. An Ac modification with a
mass increase of 42.010567 Da was identified at K316 and K321. The peptides modified at K316 and K321
were presented as an unmodified b7 ion followed by a modified y13 ion and unmodified b12 ion followed
by a modified y8 ion, respectively (Figure 1D). The initial masses of 310-MEPFHFKNSVIKVPMMNSK-328

at charge states of 1 (z = 1) and 3 (z = 3) were 2263.132 and 755.384 Da, respectively. The masses of
310-M*EPFHFKNSVIKVPM*MNSK-328 at charge states of 1 (z = 1) and 3 (z = 3) were 2382.174 and
794.058 Da, respectively (Figure 1B).
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Figure 1. Gel stained with Coomassie Brilliant Blue (CBB) and cut according to molecular weights of 
96–105 kDa (A). Identification of novel types of acetylation (Ac) modifications of the C1-inhibitor 
(INH) (B). Representative tandem mass spectrometry (MS/MS) spectra of the 367-
LEDMEQALSPSVFKAIMEK-385 peptide sequence and the modified peptide bearing the acetylated 
K380 residue (C). MS/MS spectrum of 310-MEPFHFKNSVIKVPMMNSK-328 and the modified peptide 
bearing the Ac-modified sites of K316 and K321 residues (D). 

Figure 1. Gel stained with Coomassie Brilliant Blue (CBB) and cut according to molecular
weights of 96–105 kDa (A). Identification of novel types of acetylation (Ac) modifications of
the C1-inhibitor (INH) (B). Representative tandem mass spectrometry (MS/MS) spectra of the
367-LEDMEQALSPSVFKAIMEK-385 peptide sequence and the modified peptide bearing the acetylated
K380 residue (C). MS/MS spectrum of 310-MEPFHFKNSVIKVPMMNSK-328 and the modified peptide
bearing the Ac-modified sites of K316 and K321 residues (D).
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Novel Ac modifications of the C1-INH in serum were validated using IP–Western blotting
(Figure 2). The Ac modifications of the C1-INH were confirmed in a pair of individual or pooled
serum samples (20 pairs of HCs vs. patients with SLE) through IP–Western blotting, which showed
a molecular weight of 96–105 kDa (Figure 2A). In the pair of individual serum samples, increased
acetylated C1-INH levels were observed in samples obtained from patients with SLE compared with
samples from HCs; however, in the pair of pooled serum samples, no difference in C1-INH levels
was observed between the samples from the patients and HCs (Figure 2A). Further, the results of
IP–Western blotting revealed no difference in C1-INH levels from 20 pairs of individual serum that
derived from pooled serum samples (Figure 2B).
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Figure 2. Acetylation modification of the C1-inhibitor (INH) validated using immunoprecipitation (IP)
and Western blotting. The percentage of sodium dodecylsulfate polyacrylamide gel electrophoresis
(SDS-PAGE) gel was 8%, and IP loading amount of serum proteins was 100 µg of IgG-removal serum
proteins. The C1-INH was immunoprecipitated from pooled serum samples (20 healthy controls
(HCs) and 20 patients with systemic lupus erythematosus (SLE)) using an anti-C1-INH antibody, and
samples were then subjected to Western blotting with an anti-acetylated-lysine antibody (upper panel).
Individually selected random serum samples (2 µg protein of HCs and patients with SLE) were used as
controls; these were simultaneously used for Western blotting with an anti-acetylated-lysine antibody
(A). IP–Western blotting was conducted using 20 pairs of aforementioned individual serum samples
(B). A duplicate SDS-PAGE gel was stained with Coomassie Brilliant Blue (CBB) as the loading control.
The red arrow indicates the immunoprecipitated C1-INH.
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2.2. Determination of Serum C1-INH Levels Using Western Blotting

Serum protein levels of the C1-INH were determined through Western blotting. The results
revealed that C1-INH levels in patients with SLE were significantly lower than those in HCs by 1.53-fold
(p = 0.0008; Figure 3A). Equal amounts of serum proteins were observed in this experiment (Figure 3A,
right bottom panel). The area under the receiver operating characteristic (ROC) curve (AUC) value,
sensitivity, and specificity of the serum C1-INH levels in patients with SLE versus HCs were estimated
on the basis of the ROC curve. The results obtained from Western blotting indicated that the AUC
value was 0.73, sensitivity was 77.5%, and specificity was 52.5% for SLE measurement at an optimal
cutoff value of 255624.4 (Figure 3B).

2.3. Autoantibodies Against C1-INH367–385 and C1-INH367–385 Ac Peptides

Autoantibody isotypes recognizing the C1-INH367–385 and C1-INH367–385 Ac peptides were
evaluated using an enzyme-linked immunosorbent assay (ELISA). The significance level of the
executed one-way analysis of variance (ANOVA) was set to p < 0.0167. The antibody titer of IgM
anti-C1-INH367–385 in patients with rheumatoid arthritis (RA) was significantly higher than that in
patients with SLE by 1.41-fold (p = 0.0056); however, the IgM anti-C1-INH367–385 Ac titer in patients
with SLE was significantly lower than that in HCs by 1.40-fold (p = 0.0095; Figure 4, left panel).
The levels of IgG anti-C1-INH367–385 and IgG anti-C1-INH367–385 Ac did not significantly differ among
patients with SLE, patients with RA, and HCs (Figure 4, middle panel). The antibody titer of IgA
anti-C1-INH367–385 Ac in patients with SLE was significantly lower than that in HCs by 1.36-fold
(p = 0.0004), and that in patients with RA was significantly higher than that in patients with SLE by
1.31-fold (p = 0.0012). However, the levels of IgA anti-C1-INH367–385 did not significantly differ among
patients with SLE, patients with RA, and HCs (Figure 4, right panel).
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Figure 3. Serum protein levels of the C1-inhibitor (INH) were determined using an anti-C1-INH
antibody through Western blotting using 40 pairs of individual serum samples in patients with systemic
lupus erythematosus (SLE) versus healthy controls (HCs). Average blot densitometric values were
examined using duplicate data (right, upper panel). A 6% sodium dodecylsulfate polyacrylamide gel
electrophoresis (SDS-PAGE) gel and 2 µg of serum proteins were used for Western blotting. A duplicate
SDS-PAGE gel was stained with Coomassie Brilliant Blue (CBB) as the loading control (right, bottom
panel). The red arrow indicates the C1-INH (A). Receiver operating characteristic (ROC) curves were
plotted according to blot densitometry of the C1-INH. The area under the ROC curve (AUC), sensitivity,
and specificity were further calculated (B).

2.4. Determination of Serum Ac-Protein Adducts

Serum concentrations of the Ac-protein adducts in patients with SLE were significantly higher
than those in HCs by 1.35-fold (p = 0.0009; Supplementary Figure S2, upper panel). The results of the
ELISA conducted for determining the serum Ac-protein adduct revealed that the AUC value was 0.67,
sensitivity was 70.4%, and specificity was 50.0% for SLE determination at an optimal cutoff value of
0.299 (Supplementary Figure S2, bottom panel).

2.5. Associations of Decreased C1-INH Levels, Elevated Ac-Protein Adduct Levels, and Reduced Autoantibody
Titers against C1-INH367–385 and C1-INH367–385 Ac Peptides with Risks in Patients with SLE

Reduced levels of IgM anti-C1-INH367–385, IgM anti-C1-INH367–385 Ac, and IgA anti-C1-INH367–385

Ac were associated with 4.725-fold (p < 0.001, power = 0.737), 4.089-fold (p = 0.001, power = 0.892),
and 5.566-fold (p < 0.001, power = 0.848) higher risks, respectively, for the development of SLE
compared with HCs, indicating a significant difference after adjustment for age in the logistic regression
analysis (Table 1). In cases where the power value was <0.7 or the risk for development of SLE did
not differ significantly from that of HCs, the results of the age-adjusted odds ratios (ORs) were not
considered for the levels of the following: The C1-INH, Ac-protein adduct, IgG anti-C1-INH367–385,
IgA anti-C1-INH367–385, and IgG anti-C1-INH367–385 Ac (Table 1).
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erythematosus (SLE), and 40 patients with rheumatoid arthritis (RA); the plot was obtained using an
enzyme-linked immunosorbent assay (ELISA). OD450/620, optical density at 450/620 nm.

Table 1. Associations of levels of the C1-inhibitor (INH), acetylation (Ac)-protein adduct, and
anti-C1-INH367–385 and anti-C1-INH367–385 Ac peptide autoantibody isotypes with risks of SLE
development in 54 patients with systemic lupus erythematosus (SLE) versus 50 healthy controls (HCs).

Risk Factors Cut-off
HC SLE Univariate Logistic

Regression Model a
Age-Adjusted Logistic Regression

Model
N = 50 N = 54 ORs (95% CI) p-Value Power ORs (95% CI) p-Value Power

C1-INH > 255624.4 21 10 1 0.013 0.697 1 0.015 0.684
≤ 255624.4 19 30 3.315 (1.286, 8.548) 3.250 (1.256, 8.409)

Acetylation-protein adduct ≤ 0.299 25 16 1 0.035 0.568 1 0.035 0.570
> 0.299 25 38 2.375 (1.062, 5.314) 2.381 (1.063, 5.334)

IgM anti-C1-INH367-385 ≥ 0.762 38 24 1 0.001 0.663 1 <0.001 0.737
< 0.762 12 30 3.958 (1.705, 9.189) 4.725 (1.929, 11.573)

IgG anti-C1-INH367-385 ≥ 2.026 41 33 1 0.021 0.403 1 0.020 0.413
< 2.026 9 21 2.899 (1.172, 7.169) 2.957 (1.190, 7.349)

IgA anti-C1-INH367-385 < 2.718 37 33 1 0.164 0.231 1 0.183 0.219
≥ 2.718 13 21 1.811 (0.785, 4.178) 1.771 (0.763, 4.108)

IgM anti-C1-INH367-385 Ac ≥ 0.855 27 13 1 0.002 0.853 1 0.001 0.892
< 0.855 23 41 3.702 (1.605, 8.538) 4.089 (1.725, 9.694)

IgG anti-C1-INH367-385 Ac ≥ 1.501 43 39 1 0.091 0.250 1 0.090 0.252
< 1.501 7 15 2.362 (0.872, 6.397) 2.371 (0.874, 6.432)

IgA anti-C1-INH367-385 Ac ≥ 0.465 36 17 1 <0.001 0.850 1 <0.001 0.848
< 0.465 14 37 5.597 (2.409, 13.005) 5.566 (2.380, 13.016)

a OR, odds ratio.

3. Discussion

This is the first study to identify novel Ac modifications of serum C1-INH and to compare the
autoreactivity against acetylated C1-INH peptides of patients with SLE with that of HCs. Protein
Ac and deacetylation, N-terminal Ac, and lysine Ac are reversible and pivotal for many vital
cellular processes [23]. Histone protein Ac can stimulate gene expression and perform chromatin
remodeling and transcriptional activation through destabilizing histone–histone and histone–DNA
interactions [24]. Spange et al. reported that acetylated non-histone proteins influenced signaling,
DNA binding, protein–protein interaction, localization, and the degradation and function of proteins;
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furthermore, acetylated non-histone proteins were related to immune functions and tumorigenesis [25].
An imbalance between lysine acetyltransferases and lysine deacetylases can cause various diseases,
including autoimmunity, diabetes, neurodegenerative disorders, cardiac hypertrophy, and cancer [23].
In our study, we identified and verified novel Ac modifications (K316, K321, and K380) of serum
C1-INH (Figure 1, Figure 2 and Supplementary Table S1); additionally, the results obtained from
the observation of autoantibody isotypes against unmodified and acetylated C1-INH peptides from
patients with SLE and HCs are presented in Figure 4.

The C1-INH is an acute-phase protein belonging to the serpin superfamily, and the protein’s
level rises during inflammation [26]. The C1-INH can control proteases, including kinin (plasma
kallikrein), complements (C1r and C1s), plasmin (fibrinolysis), and coagulation factors (Xla, Xlla, and
XIIf) involved in inflammatory responses [27]. The C-terminal serpin domain of the C1-INH may
exhibit inhibitory activity [28]. The N-terminal domain of the C1-INH may display anti-inflammatory
properties in diseases other than hereditary angioedema (HAE) [29]. The native form of the C1-INH
can inhibit plasma kallikrein, the C1 complex, and plasmin; however, plasmin can also degrade the
denatured form of the C1-INH [28]. Ansari et al. proposed that lysine Ac causes destabilization of
the native protein conformation structure [30]. Dhillon and Adams reported that patients with SLE
experience abnormalities in fibrinolysis (e.g., impaired fibrinolysis) [31]. Plasmin proteolytic cleavage
of the C1-INH was reported to cause the loss of protease inhibition that occurs during inflammatory
processes [27]. In this study, patients with SLE exhibited low C1-INH levels, and the C1-INH levels in
patients with SLE were significantly lower than those in HCs, whose levels were on average 1.53-fold
higher than those of patients with SLE (Figure 3A). The decreased levels of C1-INH (AUC = 0.73)
demonstrated acceptable discriminative value for distinguishing patients with SLE from those without
(Figure 3B).

In our study, Ac-protein adduct levels were significantly higher in patients with SLE compared
with HCs (Supplementary Figure S2). A report from van Bavel et al. revealed that apoptosis-associated
Ac on histone H2B was an epitope resulting in autoantibody production in a prediseased lupus mouse
model [32]. Also using a lupus mouse model, Dieker et al. indicated that apoptosis-induced Ac of
histone 4 (H4) may play a pathogenic role [16]. Another study proved that autoantibodies against
acetylated histone peptides (H2B and H4) were correlated with disease activity in SLE [12]. Thus,
Ac-protein adducts can induce autoreactivity to increase the pathogenic risk in patients with SLE; this
also signifies that autoantibodies can neutralize Ac-protein adducts. Furthermore, Alaskhar Alhamwe
et al. reported that histone modifications including acetylation, phosphorylation, methylation, and
ubiquitination may play regulating roles in the development of allergic diseases [33]. In addition
to histone acetylation, we investigated other histone modifications that may play a role in the
development of SLE. Lupus-derived antibody LG11-2 can react with H2BK14 after apoptosis-induced
phosphorylation [32,34]. Additionally, van Bavel et al. found that apoptosis-induced methylation of
H3K27 was targeted by autoantibodies in SLE [14]. Suzuki et al. revealed that antihistone antibodies
can bind to ubiquitinated H2A in SLE [35]. Additionally, histone modifications can also affect the
development of RA [36]. Lloyd et al. indicated that autoantibody reactions with acetylated histone
2B may play a role in RA pathogenesis [37]. Otherwise, studies on autoantibodies targeted by other
histone modifications (including phosphorylation, methylation, and ubiquitination) in RA have not
been conducted.

Immune system disorders featuring a C1-INH deficiency, including HAE and SLE, involve
autoantibodies against the C1-INH [21,38]. Alsenz et al. proposed that anti-C1-INH autoantibodies
inactivate the 105-kDa C1-INH to release cleaved 96-kDa C1-INH and thus activate C1s [39]. He et al.
revealed that two amino acid sequences, 446-LLVF-449 and 452-QQPF-455, may be potential epitopes
in the C1-INH that recognize anti-C1-INH autoantibodies [40]. Meszaros et al. reported that the
anti-C1-INH IgG titer was significantly higher in patients with SLE than in HCs, and an elevated
anti-C1-INH IgG titer was correlated with the duration and activity of the disease [21]. Mandle
et al. proposed that anti-C1-INH IgG blocks C1-INH inhibition of C1s to activate the complement
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system [22]. According to our findings, the C1-INH367–385 peptide is not an autoantigen for IgM,
IgG, or IgA induction. However, the levels of IgM anti-C1-INH367–385 and IgG anti-C1-INH367–385 in
patients with SLE were not significantly lower than those in HCs according to a one-way ANOVA
(Figure 4A). Furthermore, the levels of the IgG anti-C1-INH367–385 Ac peptide could not be induced
in patients with SLE; however, the levels of IgM anti-C1-INH367–385 Ac and IgA anti-C1-INH367–385

Ac in patients with SLE were significantly lower than those in HCs (Figure 4B). Serum IgM and IgG
inductions represent short-term and long-term immune responses that can neutralize autoantigens.
Observations of immune responses from short- to long-term, the levels of autoantibodies recognizing
C1-INH367–385 and C1-INH367–385 Ac peptides increased from IgM (0.75-fold and 0.71-fold) to IgG
(0.91-fold and 0.94-fold) in patients with SLE compared with HCs (Figure 4, left and middle panels).
Thus, Ac-protein adducts could not be removed through short-term immune responses, but the
levels of anti-C1-INH367–385 Ac autoantibody increased progressively to neutralize the C1-INH367–385

Ac peptide in long-term immune responses. Moreover, low levels of IgA anti-C1-INH367–385 Ac
could not neutralize the C1-INH367–385 Ac peptide (Figure 4, right panel). Decreased levels of IgM
anti-C1-INH367–385, IgM anti-C1-INH367–385 Ac, and IgA anti-C1-INH367–385 Ac were also associated
with increased risk for the development of SLE compared with HCs (Table 1). Hodkinson et al.
indicated that patients with low levels of IgA and IgM may be at an increased risk of infection
complications at mucosal sites [41]. Moreover, Traverso et al. indicated that anti-MDA peptide
autoantibodies can eliminate the accumulation of harmful MDA-modified protein adducts; however,
higher serum levels of MDA-modified protein adducts may indicate the presence of harmful proteins
that cannot be efficiently removed by autoantibodies [42]. No studies have reported whether elevated
Ac-protein adduct levels in patients with SLE are harmful. As suggested by the current study, increased
levels of Ac-protein adduct may be a risk factor for SLE; however, the corresponding power was
<0.7 (Table 1). Furthermore, autoantibodies against other epitope modifications, including those of
N-homocysteinylation, citrullination, MDA, malondialdehyde-acetaldehyde (MAA), carbamylation,
acetylation and nitration in non-histone proteins have also been implicated in the etiopathogenesis of
SLE and RA [10,13,15,43–47]. Especially, anti-citrullinated and anti-acetylated protein antibody response
increase the risk of disease relapse in patients with RA following disease modifying antirheumatic
drug (DMARD) treatment [48]. In this study, the levels of anti-C1-INH367–385 Ac peptide antibodies
in compared patients with RA with HCs were not significantly different (Figure 4B). Further, we
need identify new Ac modifications of serum C1-INH in patients with RA and measure the levels of
anti-acetylated CI-INH peptide antibody in patients with RA compared with HCs.

4. Materials and Methods

4.1. Patients and Controls

Serum specimens from 144 female patients (54 with SLE (41.17 ± 11.65 years), 40 with RA
(54.85 ± 10.66 years), and 50 HCs (42.00± 8.41 years)) were collected from the Department of Laboratory
Medicine and the Division of Allergy, Immunology, and Rheumatology, Department of Internal
Medicine, Shuang-Ho Hospital (New Taipei City, Taiwan). Patients with SLE or RA were diagnosed
by rheumatologists and met appropriate classification criteria. Patients with RA met the appropriate
classification criteria: Either the 2010 American College of Rheumatology (ACR)/European League
Against Rheumatism classification criteria [49] or the 1987 ACR classification criteria [50]. Patients with
SLE met the 1997 ACR SLE classification criteria [51]. This study was approved by the Taipei Medical
University-Joint Institutional Review Board, and all volunteers signed an informed consent form
before participating in the study (No. 201104003 (2011/06/22) and 201501059 (2015/05/09)). The PTM
of the serum C1-INH protein was identified in triplicate using 1D SDS-PAGE, in-gel digestion, and
nano-LC-MS/MS by using pooled serum protein samples randomly selected from nine patients with
SLE and nine age-matched HCs. In addition, the acetylated C1-INH protein was confirmed through
IP coupled with Western blotting using serum samples randomly selected from another 20 pairs of
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pooled or individual serum samples. Serum C1-INH levels were determined through Western blotting
using individual serum samples of 40 patients with SLE and 40 HCs. Serum Ac-protein adduct levels
were assessed in 54 patients with SLE and 50 HCs. Autoantibodies against unmodified peptides and
their acetylated peptides were evaluated among 54 patients with SLE, 40 patients with RA, and 50 HCs
(Supplementary Figure S1). Serum was stored at −20 ◦C before use. The clinical and demographic
characteristics of patients with SLE, patients with RA, and HCs are presented in Supplementary Table
S2. The ages of patients with SLE did not differ significantly from those of HCs; however, the ages of
patients with SLE differed significantly from those of patients with RA (Supplementary Table S2).

4.2. In-Gel Digestion and PTM Identification Using Nano-LC-MS/MS

Serum protein concentrations were measured using a Bradford protein assay according to the
protocol of Chang et al. [52]. In the measurement, 50 µg of pooled serum protein samples from
nine HCs and nine patients with SLE was analyzed using 8% SDS-PAGE, and the gel band was cut
corresponded to the molecular weights of 96–105 kDa (Figure 1A). The in-gel digestion was operated
in triplicate according to the protocol of Uen et al. [53]. Tryptic peptides were separated in a nano-flow
high-performance liquid chromatography system (Agilent Technologies 1200 series, Waldbronn,
Germany) in triplicate by using an Agilent C18 column (100 mm × 0.075 mm, 3.5 µm in diameter) that
was coupled with an LTQ-Orbitrap DiscoveryTM hybrid mass spectrometer with a nanoelectrospray
ionization source (Thermo Electron, Waltham, MA, USA). An MS/MS dataset was analyzed using
Xcalibur 2.0 SR1 software (Thermo Electron), and peptide sequences were identified using the
SEQUEST algorithm against a human protein sequence database (UniProt; http://www.uniprot.org/,
2016/11) [54]. Furthermore, our PTM finder-in-house program was used to identify modified peptide
sequences and sites of serum C1-INH [53]. All modified MS1 spectra were manually confirmed, and
fragmented ions were labeled as b, y, y-NH3, and b-H2O ions. Detailed methods are presented in
Supplementary Information.

4.3. IP and Western Blotting

The IP of serum C1-INH was performed using a mouse anti-C1-INH monoclonal antibody (M01,
Abnova, New Taipei City, Taiwan). Immunoprecipitated C1-INH (100 µg of protein in 8% gel) or serum
protein (2 µg of protein in 6% gel) was separated in SDS-PAGE gels and was assessed using Western
blotting. Ac modifications of the C1-INH were verified using a rabbit polyclonal acetylated-lysine
antibody (#9441 Cell Signaling Technology, Danvers, MA, USA). C1-INH protein levels were evaluated
using a mouse anti-C1-INH monoclonal antibody (M01, Abnova). Detailed methods are presented in
Supplementary Information.

4.4. Measurement of Autoantibodies against C1-INH367–385 and C1-INH367–385 Ac Peptides

The 367–385 amino acid sequences of the human C1-INH peptide, namely
LEDMEQALSPSVFKAIMEK (named C1-INH367–385), and acetylated C1-INH peptide, namely
LEDMEQALSPSVFK(Ac)AIMEK (named C1-INH367–385 Ac), were synthesized (Yao-Hong
Biotechnology, New Taipei City, Taiwan). Autoantibody isotypes (IgG, IgM, and IgA) against the
C1-INH367–385 and C1-INH367–385 Ac peptides were detected using an ELISA according to the protocol
of Chang et al. [52]. In total, 144 serum samples were tested in duplicate. The optical density was
estimated at 450 nm with the reference standard at 620 nm. Detailed methods are presented in
Supplementary Information.

4.5. Determination of Serum Ac-Protein Adducts

Ac-protein adduct concentrations were determined using the ELISA with minor modification
according to the protocol of Chang et al. [52]. A total of 104 serum samples were determined in
duplicate. Detailed methods are presented in Supplementary Information.

http://www.uniprot.org/
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4.6. Statistical Analyses

Student’s t test was used to test the significance of differences in Ac-protein adducts and blot
densitometry of serum C1-INH levels. Levels of autoantibodies against the C1-INH367–385 and
C1-INH367–385 Ac peptides were tested using a one-way ANOVA among multiple groups. The mean
difference between any two groups was determined using Scheffe’s post hoc test, and the significance
level was tested using the Bonferroni method with adjusted p values (p < 0.0167). Data are presented
as the mean ± standard deviation. The adjusted OR and their 95% confidence intervals (CIs) for SLE
risk were calculated using univariate and multiple logistic regression models, and the corresponding
statistical power was estimated. The diagnostic performance, including the AUC value, sensitivity,
and specificity, was assessed using ROC curves, and the 95% CIs were calculated. A p value of <0.05
was set as the significance level, unless otherwise indicated. Statistical analyses were performed using
SAS (version 9.3, SAS Institute, Cary, NC, USA) and GraphPad Prism (version 5.0, Graphpad Software,
San Diego, CA, USA).

5. Conclusions

We directly identified novel Ac modifications of the C1-INH protein in serum and determined the
association of autoantibodies against C1-INH367–385 and C1-INH367–385 Ac peptides with the risk of
SLE development. Our findings indicate that low IgM anti-C1-INH367–385, IgM anti-C1-INH367–385 Ac,
and IgA anti-C1-INH367–385 Ac levels are associated with increased risks of the development of SLE.
A larger cohort is required to verify the present results.

Supplementary Materials: Figure S1: Flow chart, Figure S2: Concentrations of serum acetylation (Ac)-protein
adducts were determined using an enzyme-linked immunosorbent assay (ELISA) in 54 patients with systemic
lupus erythematosus (SLE) versus 50 healthy controls (HCs),Table S1: Identification of the C1-inhibitor (INH)
protein, Table S2: Demographic and clinical characteristics of individual healthy controls (HCs), patients with
systemic lupus erythematosus (SLE), and patients with rheumatoid arthritis (RA).
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