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ABSTRACT: Living systems rely on complex networks of
chemical reactions to control the concentrations of molecules in
space and time. Despite the enormous complexity in biological
networks, it is possible to identify network motifs that lead to
functional outputs such as bistability or oscillations. One of the
greatest challenges in chemistry is the creation of such
functionality from chemical reactions. A key limitation is our
lack of understanding of how molecular structure impacts on the
dynamics of chemical reaction networks, preventing the design
of networks that are robust (i.e., function in a large parameter
space) and resilient (i.e., reach their out-of-equilibrium function
rapidly). Here we demonstrate that reaction rates of individual
reactions in the network can control the dynamics by which the
system reaches limit cycle oscillations, thereby gaining information on the key parameters that govern the dynamics of these
networks. We envision that these principles will be incorporated into the design of network motifs, enabling chemists to develop
“molecular software” to create functional behavior in chemical systems.

■ INTRODUCTION

Vast metabolic and genetic networks of chemical reactions
allow living cells to sense their environment, react to stimuli,
and use nutrients for cell growth and division.1 Although these
networks are daunting in complexity, recurring patterns, so-
called network motifs, have been identified that create
functional behavior on a smaller scale.2,3 Simple motifs with a
few positive and negative feedback loops create functionality
such as bistable switching, adaptation, and oscillations.4−6 The
key challenge for chemistry is to translate the design principles
of living systems into robustly engineered artificial systems.7−9

Chemical reaction networks organized into different motifs give
rise to rich dynamic behavior, but programming their precise
output has proven very delicate. Early work has resulted in a
number of exciting examples ranging from functional out-of-
equilibrium systems that can perform logic operations10,11 to
dissipative self-assembling structures creating new forms of
smart materials.12−17 However, it is clear that we do not fully
understand how to engineer robustness and resilience in
molecular reaction networks.18−21

Strategies to obtain robustness and resilience usually rely on
modifying or increasing the networks’ connectivity,22−27 but
this approach fails to take into account the nature of chemical
reactions within the networks. A bottom-up construction of
complex molecular systems offers a novel route to directly
probe the influence of molecular reactivity on the dynamics of
reaction networks.28−30 We recently reported a rationally
designed, fully characterized enzymatic reaction network
showing limit cycle oscillations (Figure 1a).31 This two-node

oscillator integrates the autocatalytic production of the enzyme
trypsin with a tunable and delayed negative feedback induced
by trypsin-activated small molecules. Unlike most biological
systems, all rates in our network are known and can be
individually addressed.32 Here, we synthesized a small library of
pro-inhibitor molecules (Figure 1a) to finely tune rate
constants for nodes controlling the activation and the
termination of the negative feedback in topologically equivalent
CRNs.
We show how the steepness of the response of our negative

feedback can be controlled by the substituents in the pro-
inhibitor molecule and how this approach leads to more robust
networks that reach their stable limit cycle more quickly. It is
exactly this understanding of the dynamics of the networks that
allows us to identify the chemical principles that govern how
complex systems reach their out-of-equilibrium function.

■ RESULTS AND DISCUSSION

Our network combines a positive and a delayed negative
feedback loop. In the reaction network, trypsin (Tr) catalyzes
its own formation from the precursor trypsinogen (Tg).
Opposed to this positive feedback, Tr is inhibited by the
negative feedback that is composed of three sequential steps
(Figure 1a). In the activation step, Tr converts a pro-inhibitor
into an intermediate inhibitor (Int-I), which consists of a
glutamine (Gln) residue attached to a potent inhibitor for Tr.
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Another enzyme, aminopeptidase N (Ap), controls the release
of the inhibitor moiety by cleaving Gln in the delay step. In the
final step, Tr recognition of the active inhibitor closes the
negative feedback loop.
We tune the rates in the activation and inhibition steps by

modifying the pro-inhibitor structure. The combination of
three substituents on R1 and R2 sites results in nine pro-
inhibitors with different reaction rate constants for either the
activation or final inhibition step of the negative feedback loop
(Figure 1b). Substituents acetyl (Ac), methoxy ethylene glycol
(MEG), and acetyl aspartic acid (Ac-Asp) on position R1
influence the rate constant of activation (kact) of the negative
feedback loop by changing the affinity of the pro-inhibitor
toward Tr.32,33

On the other end of the molecule, changing the length of the
alkyl chain (methyl, ethyl, and propyl) of the inhibitor in
position R2 allows us to tune the rate constant of inhibition
(kinh) by changing the actual fit of the inhibitor in the active
pocket of Tr.34,35 Overall, we obtained a small family of
networks (chemical reaction networks (CRNs) 1−9) with the
same topology, but with different kinetics, as indicated by the
different lengths of arrows in Figure 1b (the shorter the arrow,
the stronger the interaction and the higher the reaction rate
constant).

The pro-inhibitor (Pro-I) is the source of the negative
feedback and is therefore responsible for carrying the reaction
back to its original state. As evidence for the fine-tuning of the
negative feedback, we first confirm in batch experiments that
each CRN containing a different pro-inhibitor can exhibit the
desired function. The response of the reaction network in batch
conditions gives an initial rise in [Tr] before decaying to
equilibrium in which the active inhibitor is bound irreversibly to
Tr. The series of experiments in Figure 2a show that all
networks exhibit similar behavior, but also demonstrate that the
subtle changes in the pro-inhibitor molecules have changed the
details of the response.
There are clear trends of gradual changes in peak position,

area under the peak, and maximum [Tr] obtained. We analyzed
the peak characteristics of individual responses in detail (see
Supporting Information S2), but here we wish to highlight (in
purple) how the modifications on Pro-I influence the time
required to bring the maximum [Tr] from the peak back to
zero. This “inhibition time” gives information on the “strength”
of the negative feedback. We find that the inhibition time
correlates negatively to the inhibition rate constant kinh, and this
trend is consistent for the three different substituents in R1
(Figure 2b).
The library of CRNs also provides deeper insights into the

nature of the negative feedback. Choosing two series of CRNs
allows us to experimentally isolate the influences of the various
rate constants in our enzymatic reaction network on the
negative feedback loop. We used CRNs 4, 5, and 6 (with
various substituents for R2) to investigate the impact of changes
in the inhibition rate constant (kinh) and CRNs 3, 6, and 9
(with various substituents for R1) for changes in the activation
rate constant (kact). Figure 2c shows the various responses of
the negative feedback all starting with initial trypsin
concentrations [Tr]0 = 100 μM. In the absence of Tg, the
negative feedback initiates immediately, as can be seen in the
decay in [Tr] and the simultaneous increase observed in [Act-
I]. Figure 2c shows Tr is inhibited faster in the series 6 > 5 > 4
(requiring less time to reach [Tr] = 0). Furthermore, the Act-I
production during the reaction is significantly slower in the
same series. In contrast, changes in the kact (CRNs 3, 6, and 9)
do not influence the time to fully inhibit Tr nor the amount of
Act-I that is produced in the reaction.
The effect of kinh and kact on the negative feedback reaction is

studied in more detail by following how [Tr] changes as a
function of [Act-I]. To evaluate the kinetic interplay between
the key enzyme Tr and the active inhibitor that is eventually
produced in the solution, we determined the gradient (d[Tr]/
d[Act-I], Figure 2d). We note that this gradient changes from a
gradual (dTr/dAct-I = −0.99) to a much steeper, so-called
ultrasensitive,36 response (dTr/dAct-I = −4.41) when changing
from methyl- to ethyl- to propylamine inhibitor (4, 5, 6) (e.g.,
higher rate constant kinh) in the network. This is important, as
proper balancing of the time scales of opposing chemical
reactions is necessary in order to obtain sustained oscillatory
behavior under out-of-equilibrium conditions.6 Consequently, a
gradual decay in [Tr] as a function of [Act-I] is expected to lead
to a negative feedback loop that would be less to counteract the
autocatalytic production of Tr in a timely fashion. Importantly,
Figure 2d demonstrates that the steepness of the gradient
responds only to changes in R2 (kinh), as the CRNs with
changes in R1 (Ac, MEG, or Ac-Asp groups on R1) all show the
same response. Thus, the kinetics of the feedback loop are
dominated by the structure of the active inhibitor.

Figure 1. Enzymatic reaction network with modified pro-inhibitors
leading to a library of CRNs. (a) Topology of the enzymatic reaction
network composed of enzymes trypsinogen (Tg), trypsin (Tr), and
aminopeptidase (Ap) and a synthetic pro-inhibitor. Modifications to
the pro-inhibitor were achieved by conventional synthetic procedures
(see Supporting Information S1). Substituents acetyl (Ac), methoxy
ethelene glycol (MEG), and acetyl aspartic acid (Ac-Asp) and amino-
methyl (Me), ethyl (Et), or propyl (Pr)-benzenesulfonyl fluoride were
used for R1 and R2, respectively. (b) Illustration of CRN matrix
composed of nine different pro-inhibitors combined from R1 × R2.
The rate constants for activation, kact, and inhibition, kinh, were
determined in isolated reactions (see Supporting Information S1).
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Next, we used simulations to investigate the effect of
increasing the strength of the negative feedback on the
robustness of the networks under out-of-equilibrium con-
ditions.19,20 Figure 3a illustrates how we use flow (with flow
rate constant kf)

37 to maintain the network out-of-equilibrium.
In flow, our system exhibits sustained oscillations only in a
limited parameter space. Hence, we first determined (using our
previously published numerical search method)32 the range of
feed concentrations, as well as flow rates, that will lead to
sustained oscillations for each of the CRNs.
Figure 3b shows the parameter window (composed from the

feed concentrations [Ap]0, [Pro-I]0, and flow rate) as a
“volume” of the oscillatory regime.38 Using a computer script,
we took slices of the 3D plot in the (kf, [Ap])-planes to
determine the apparent optimal [Pro-I]0

opt (i.e., the feed
concentration of the pro-inhibitor giving the largest parameter
space with sustained oscillations; see Supporting Information
S3.2.2). If we repeat this procedure for all CRNs, we find that
there are significant differences in the size of parameter space in
which sustained oscillations can be found (Figure 3c). We
compared the areas of the parameter space that leads to
sustained oscillations for each CRN in Figure 3d. In contrast to
the results in batch conditions, the robustness of the oscillatory
regime increases to similar degrees as a function of both kinh
(differences along dashed lines) and kact (differences among

colored squares). Nonetheless, we find that the network is most
robust with the propyl derivative of the active inhibitor.
Of particular interest is not the size of the oscillatory regime

but how fast our system reaches the stable limit cycle.39,40

Figure 4a illustrates in a phase portrait how the network
approaches the limit cycle from various points. The number of
orbits that is required to reach the limit cycle is a first indication
of the resilience of the network, as the system attempts to
“recover” the “perturbed” states.41 The system’s recovery from
a perturbation determines how sustained oscillations in Figure
4b are established after a certain period in which the higher
amplitudes in the beginning of the experiments relax to their
limit cycle values. Hence, this decay essentially provides
information on the attractor strength of the network that
“pulls” the network into oscillations.
The decay toward sustained oscillations can be quantified

using a mathematical model that we have adapted from our
previous studies. We implemented an additional algorithm that
locates the local maxima of the oscillations in the simulations.
Subsequently, we fit the maxima in the relaxation period with
an exponential function ( f(t) = a0 + a1 exp(bt)) as depicted in
Figure 4b. The magnitude of the exponent that results from the
fitting algorithm can then be plotted as a function of [Ap]0 and
flow (see Supporting Information S3.2.3), creating “attractor

Figure 2. Network properties in equilibrium conditions. (a) Experiments with CRNs 1−9 carried out in identical batch conditions (i.e., with initial
conditions [Tg]0 = 130 μM, [Pro-I]0 = 260 μM, [Tr]0 = 0.2 μM, [Ap]0 = 0.8 U mL−1). Trypsin concentration is determined by a fluorescent assay
(see Methods summary). (b) The inhibition time (purple domain in (a)) is defined as t(Tr,max) − t(Tr=0.2) and plotted as a function of kinh (c)
Experiments with CRN series 4, 5, 6 and 3, 6, 9 carried out in identical batch conditions in the absence of Tg ([Pro-I]0 = 200 μM, [Tr]0 = 100 μM,
[Ap]0 = 0.8 U mL−1). The concentrations of methyl- to ethyl- to propylamine inhibitors (4, 5, 6) are depicted in gray, light blue, and dark blue
squares, respectively. Inhibitor concentrations are determined by UV detection after being separated by HPLC (see Methods summary). (d) The
response of the negative feedback determined the gradient (d[Tr]/d[Act-I]) in which [Tr] decreases from 80 μM to 20 μM (see Supporting
Information S2).36

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.7b00632
J. Am. Chem. Soc. 2017, 139, 8146−8151

8148

http://pubs.acs.org/doi/suppl/10.1021/jacs.7b00632/suppl_file/ja7b00632_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.7b00632/suppl_file/ja7b00632_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.7b00632/suppl_file/ja7b00632_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.7b00632/suppl_file/ja7b00632_si_001.pdf
http://dx.doi.org/10.1021/jacs.7b00632


landscapes” in the previously found [Pro-I]0
opt as shown for

networks 1−3 (Figure 4c).

We selected the network series 1−3 to elucidate the
correlation between the relaxation dynamics and the
modifications on R2 in the Pro-I. The landscapes in Figure 4c
characterize how fast the limit cycle of the networks is
approached and clearly show the considerable enlargement and
deepening of the regions with steep decays within the series
Me, Et, Pr. The broader basin of attraction in combination with
the larger exponents indicates that networks consisting of the
propyl inhibitors are more resilient. We experimentally
validated the trend found by numerical simulations, by studying
the CRNs in flow, using feed concentrations [Ap]0 and the flow
rate predicted by the simulations in Figure 4c. Our previous
work on CRN 231 (Figure 4e) showed that this network
reached sustained oscillations after approximately four oscil-
lations. In comparison, Figure 4d−f shows that CRNs 1−3 all
exhibit oscillatory behavior, but the transition time required to
reach the desired oscillations is significantly reduced within the
series. Remarkably, CRN 3, containing a propyl inhibitor,
establishes sustained oscillations almost immediately (after the
first oscillation). In contrast, CRN 1, containing a methyl
inhibitor, requires at least seven oscillations to reach the
sustained oscillations.
To verify that an enhanced resilience can be attributed to the

propyl inhibitor, we performed a similar experiment using CRN
9. This control experiment shows that sustained oscillations are
also reached significantly faster (requiring only two oscil-
lations), indicating that more resilient networks can be
engineered by tuning of R2 on the Pro-I (Supporting
Information Figure S4.3). Notably, the trend of increasing
resilience with larger kinh coincides with the same trend
observed for the increase in robustness with larger kinh and can
all be traced back by the changes in kinetics of the negative
feedback loop as shown in Figure 2f.

■ CONCLUSIONS
We have shown how careful tuning of the reactivity of different
parts of small molecules allows us to systematically engineer the
responsiveness of enzymatic reaction networks. Using oscillat-
ing networks as a paradigm, we show that molecular
engineering can be used to change the steepness of the
response in the negative feedback loop, thus creating networks
that not only show sustained oscillations over a larger
parameter space, but also reach these oscillations much more
rapidly. Our experimental observations are supported by a
detailed computational analysis of the networks and identify the
principles that govern how molecular structure impacts the
dynamics of out-of-equilibrium systems. These studies pave the
way for the future forward engineering of robust and resilient
functional out-of-equilibrium systems using “molecular soft-
ware”. Creative application of synthetic chemistry can be used
to create a range of new chemical reaction networks with
desired functional outputs. We believe that a focus on the
strength of the individual, local interactions between
components in a network will also lead to a further
understanding of the functioning of biological networks.8,24,42

■ METHODS
Full details of the synthesis and characterization of all compounds,
kinetic studies, computational simulations, and flow experiments
appear in the Supporting Information.

Batch Experiments. For the batch experiments of the full
networks, various pro-inhibitors (260 μM) were mixed independently
with trypsinogen (130 μM), trypsin (0.2 μM), and aminopeptidase

Figure 3. Robustness in out-of-equilibrium enzymatic reaction
networks. (a) Network motif with a continuous influx of reactants
([Tg]0, [Ap]0, [Pro-I]0). (b) Phase plot showing the predicted
conditions for sustained oscillations. We identified a value of [Pro-I]0
for which the region of (kf, [Ap]0)-space (in which sustained
oscillations are observed) is largest (indicated by [Pro-I]0

opt). (c)
Phase plots at the optimal conditions for [Pro-I]0 as a function of the
parameters [Ap]0 and kf. The flow rate constant kf (in h−1) is obtained
by dividing the applied flow rate (in μL h−1) over the volume of the
reactor (in μL) in the simulations. (d) Normalized areas, in which the
simulations predict oscillations, as a function of both kinh (differences
along dashed lines) and kact (differences among colored squares).
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(0.830 U/mL) in 100 mM Tris buffer, pH 7.7, containing 20 mM
CaCl2. For the batch experiments with the isolated negative feedback,
various pro-inhibitors (200 μM) were mixed independently with Tr
(100 μM) and aminopeptidase (0.830 U/mL) in 100 mM Tris buffer,
pH 7.7, containing 20 mM CaCl2. Aliquots were taken from the
reaction mixture to monitor trypsin activity by a fluorogenic assay (vide
inf ra) and inhibitor concentration by an HPLC analysis (vide inf ra).
Trypsin Activity Assay. Trypsin activity was measured by mixing

100 μL of the quenched reaction mixture with 3 mL of 5 μg/mL
bis(Cbz-L-Arg)-rhodamine fluorogenic substrate in 50 mM Tris-HCl,
pH 7.7. The increase in fluorescence intensity (λex = 450 nm, λem =
520 nm) was monitored for 40 s, and the initial, linear slope was
compared to a calibration curve to find the concentration of active
trypsin (see Supporting Information S2).
Determination of Inhibitor Species Concentration. A 140 μL

amount of the quenched reaction mixture was filtered to remove all
enzymes. The organic compounds in the filtrate were separated by
analytical HPLC and were monitored in time with UV detection at
265 nm. Appropriate peaks were integrated, and a calibration curve
was used to determine the concentration of inhibitor species. The
calibration curve is provided in the Supporting Information S2.
Flow Experiments. Four glass syringes were loaded with

trypsinogen (8 mg/mL, 338 μM in 4 mM HCl, 36 mM CaCl2),
trypsin (27 μg/mL, 1.16 μM in 500 mM Tris-HCl, 20.5 mM CaCl2,
pH 7.7), pro-inhibitor (5 times the desired final concentration in the
CSTR, which varies, in 2 mM HCl), and aminopeptidase (10 times the
desired final concentration in the CSTR, which varies, in 10 mM Tris-
HCl, 10 mM MgCl2, pH 7.7) and connected with tubing to the four
inlets of a 118.2 μL polydimethylsiloxane reactor. Typical reactor flow
rates lie in the range of 20−35 μL h−1. Fractions of the total flow rate

were 0.5 for trypsinogen, 0.2 for both trypsin and pro-inhibitor, and
0.1 for aminopeptidase. Subsequently, these fractions multiplied by the
syringe concentrations determine the feed concentrations of the
reactor as reported in Figure 4.

Two additional glass syringes were loaded with a buffer solution (50
mM Tris-HCl, pH 7.7) and a fluorogenic substrate solution (25 μM
bis(Cbz-L-Arg)-rhodamine in 500 μM HCl). First, the outflow of the
reactor was coupled to a mixing chamber of 10 μL, in which the
content was diluted with the buffer solution. Subsequently, the diluted
reaction content was connected to a dolomite T-junction chip and
mixed with the fluorogenic substrate solution, to monitor trypsin
activity online. Fractions of the buffer and fluorogenic solution flow
rates depend on the out-flow rate of the reactor, which varies for each
experiment (see Supporting Information S4 for further details).
Fluorescence intensity (at λex = 470 nm, λem = 525 nm) was monitored
on an Olympus IX81 inverted microscope.

Computation. At the core of all our simulations, trajectories of the
individual species are simulated by numerical integration from an
initial state of the system. We analyzed the key characteristics of
simulated responses to identify and classify the steady states using a
classification algorithm written in Matlab.31 The overall response is
considered a sustained oscillation when at least three consecutive
peaks show no difference (within a defined confidence interval of
97%) to their neighbors. The time series in the algorithm are ran for
300 h.

To identify the optimal feed concentrations, [Pro-I]0
opt, we

calculated the probability (i.e., size of oscillatory regime in the (kf,
[Ap])-planes) to maintain the desired behavior of the network (i.e.,
oscillations) as normalized volumes for each network.32 For the
construction of attractor plots, we wrote an algorithm that identifies

Figure 4. Resilience in enzymatic reaction networks. (a) Illustration of a system approaching a limit cycle as the programmed behavior of our
network. (b) Illustration of the fitting algorithm applied to a time trace showing oscillations in [Tr](t). The computer algorithm recognizes the
sustained oscillations when at least three peaks have identical amplitudes (indicated by a purple background). If such a case exists, the script identifies
the local maxima of the response (and fits them with an exponential function of the form f(t) = a0 + a1 exp(bt). (c) Comparison of attractor
landscapes of CRNs 1−3 at their respective [Pro-I]0

opt, based on calculated exponential decays in the relaxation period explained in (b) (see
Supporting Information S4 for more details). The [Pro-I]0

opt used in these landscapes are [1]0
opt = 1.70 mM, [2]0

opt = 1.50 mM, and [3]0
opt = 0.80

mM. Each grid in the phase plots represents a simulation of 150 h with the steepness of the decay (e.g., the magnitude of the exponent) indicated by
the color bar. (d−f) Experiments with CRNs 1−3 in flow conditions were carried out in a continuously stirred tank reactor with an internal volume
of 118.2 μL. Six glass syringes were loaded: 4 containing [Tg]0, [Tr]0, [Ap]0, [Pro-I]0 and 2 containing a buffer solution and a fluorogenic substrate,
respectively (see Supporting Information S4). The experiments are carried out with [Tg]0 = 167 μM, [Tr]0 = 0.2 μM, and [Ap]0, [Pro-I]0 and kf as
reported in the graphs. See Methods summary for experimental details.
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and fits the local maxima in the relaxation period. The resulting
exponents were summarized and plotted using a surf function in
Matlab to obtain Figure 4c. See Supporting Information for more
details.
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