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Introduction
Primary cilia form when the basal body migrates toward the 

cell cortex and nucleates the formation of a ninefold array of 

doublet microtubules called the axoneme (Sorokin, 1968). The 

axoneme is closed wrapped by the plasma membrane to form 

a fi nger-like projection, to which receptors and signaling mole-

cules involved in sensing sight, smell, and mechanical stress 

localize (Christensen et al., 2007). Not surprisingly, polarized 

traffi cking is important for the delivery of components to the 

primary cilium, and this involves a particle known as the intra-

fl agellar transport complex (IFT) and motor proteins of the 

kinesin-2 family (Scholey, 2003). Given the general role of 

Rabs in controlling polarized membrane traffi cking and impart-

ing identity to membrane subdomains (Zerial and McBride, 

2001; Pfeffer, 2003; Behnia and Munro, 2005), it is probable 

that specifi c Rabs function in membrane transport to primary 

cilia and help to defi ne this subdomain of the cell surface. 

Recently, two Rab-like GTPases, IFT27 and IFTA-2—Rabl4 

and Rabl5 in humans—were implicated in cilium function in 

Chlamydomonas reinhardtii and Caenorhabditis elegans, respec-

tively (Schafer et al., 2006; Qin et al., 2007). IFT27 has been 

implicated in membrane traffi cking and in signaling and cell cycle 

control events associated with cilia formation (Qin et al., 2007), 

but although IFTA-2 has been implicated in cilium function, 

it is not required for their formation (Schafer et al., 2006). 

However, both Rabl4 and Rabl5 lack the C-terminal prenyla-

tion motifs that are a signature of Rabs required for their targeting 

to specifi c membrane surfaces. Therefore, although Rabl4 and 

Rabl5 are important factors at cilia, their function is likely to be 

different than that of the canonical Rab GTPases in mammalian 

cells. Arl GTPases have also been implicated in primary cilia 

function. Arl6 is mutated in Biedl-Bardet syndrome 3 (Chiang 

et al., 2004), and mutations in ARL13b result in truncated primary 

cilia defective for Hedgehog signaling (Caspary et al., 2007). 

Exactly how they function is unclear, but by analogy with other 

Arl family members, such as Arl2 and Arl3, they may be impor-

tant for controlling microtubule function at cilia (Grayson et al., 

2002; Zhou et al., 2006). To understand how specifi c membrane 

traffi cking and tethering events contribute to the formation of 

cilia, we have investigated the requirement for specifi c Rabs 

and their GTPase-activating protein (GAP) regulators in primary 

cilium formation.
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 P
rimary cilia are sensory structures involved in 

morphogen signalling during development, liquid 

fl ow in the kidney, mechanosensation, sight, and smell 

(Badano, J.L., N. Mitsuma, P.L. Beales, and N. Katsanis. 

2006. Annu. Rev. Genomics Hum. Genet. 7:125–148; 

Singla, V., and J.F. Reiter. 2006. Science. 313:629–633.). 

Mutations that affect primary cilia are responsible for sev-

eral diseases, including neural tube defects, polycystic 

kidney disease, retinal degeneration, and cancers (Badano 

et al., 2006; Singla and Reiter, 2006). Primary cilia for-

mation and function requires tight integration of the micro-

tubule cytoskeleton with membrane traffi cking (Singla and 

Reiter, 2006), and this is poorly understood. We show 

that the Rab GTPase membrane traffi cking regulators 

Rab8a, -17, and -23, and their cognate GTPase- activating 

proteins (GAPs), XM_037557, TBC1D7, and EVI5like, 

are involved in primary cilia formation. However, other 

human Rabs and GAPs are not. Additionally, Rab8a spe-

cifi cally interacts with cenexin/ODF2, a basal body and 

microtubule binding protein required for cilium biogenesis 

(Ishikawa, H., A. Kubo, S. Tsukita, and S. Tsukita. 2005. 

Nat. Cell Biol. 7:517–524), and is the sole Rab enriched 

at primary cilia. These fi ndings provide a basis for under-

standing how specifi c membrane traffi cking pathways 

cooperate with the microtubule cytoskeleton to give rise 

to the primary cilia.
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Results and discussion
To fi nd Rabs involved in primary cilium formation, the 39 predicted 

human RabGAPs were tested for their ability to prevent primary 

cilium formation in telomerase-immortalized retinal pigmented 

epithelial (hTERT-RPE1) cells (Fig. 1 A and Fig. S1 A, available 

at http://www.jcb.org/cgi/content/full/jcb.200703047/DC1). 

This revealed that cells expressing TBC1D7, EVI5like, and 

XM_037557 (available from GenBank/EMBL/DDBJ under this 

accession no.) were compromised in their ability to form primary 

cilia (Fig. 1, A and B). Further support for a role of TBC1D7 and 

XM_037557 at primary cilia comes from the observation that 

they overlap with γ-tubulin to the basal body and that catalyti-

cally inactivate XM_037557 is present on the cilia (Fig. 1 C). 

Other GAPs either had no effect on primary cilia or, in the case 

of TBC1D3, caused a reduction in primary cilia accompanied 

with increased levels of cell death, and this is therefore unlikely 

to represent a specifi c effect (Fig. 1 A). Notably, GAPs that block 

Rab1-dependent secretion or Rab5-dependent endocytosis, 

TBC1D20 and RabGAP5 (Haas et al., 2005; unpublished data), 

respectively, did not have any effect on primary cilium formation 

(Fig. 1). General perturbation of membrane traffi cking is there-

fore unlikely to explain the effects of TBC1D7, EVI5like, and 

XM_037557 on primary cilia formation. EVI5like, TBC1D7, 

and XM_037557 therefore represent good candidates for GAPs 

controlling specifi c Rabs involved in primary cilium formation.

Strikingly, these GAPs showed great specifi city toward 

single Rabs when tested in biochemical assays (Fig. 2). 

Figure 1. A subset of RabGAPs can block 
primary cilium formation. (A) hTERT-RPE1 cells 
expressing human GFP-RabGAPs were induced 
to form primary cilia by serum starvation and 
then stained for acetylated tubulin (Ac-tubulin) 
as a marker for primary cilia. Primary cilium 
formation was counted (n = 100) and is plot-
ted for a representative series of experiments in 
the bar graph. The blue line marks the mean 
extent of cilium formation, and the red line is 
the 40% cutoff used to assign positive GAPs. 
TBC1D3 (asterisk) caused reduced cell viability 
and increased levels of apoptosis; TBC1D12, 
RUTBC1, RUTBC2, USP6, AK074305, and 
KIAA0882 gave similar effects and are not 
shown. (B) Images showing the effects of ex-
pressing EVI5like, TBC1D7, and XM_037557 
on primary cilia formation. Note the lack of a 
primary cilium and only residual basal body 
staining (arrows). EVI5 is shown as a negative 
control where primary cilium formation is nor-
mal (arrow). (C) hTERT-RPE1 cells expressing 
human GFP-tagged TBC1D7, XM_037557, or 
the inactive XM_037557R140A mutant were in-
duced to form primary cilia by serum starva-
tion and then stained for γ-tubulin as a marker 
for the basal body or acetylated tubulin as a 
marker for the cilium (arrows). DNA was stained 
with DAPI. Bars, 10 μm.
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This approach showed that EVI5like acts on Rab23, whereas 

XM_037557 acts on Rab8a, and TBC1D7 acts on Rab17 (Fig. 2). 

Consistent with these biochemical data and the effects of GAP 

expression (Figs. 1 and 2), dominant-negative forms of Rab8a, 

-17, and -23, but not the other Rabs tested, including Rab8b, 

prevented primary cilium formation (Fig. S1 B). Intriguingly, 

Rab23 has previously been implicated as a downstream compo-

nent in the Hedgehog signaling pathway (Eggenschwiler et al., 

2001, 2006; Evans et al., 2003), components of which localize to 

and function at primary cilia (Corbit et al., 2005). The function of 

Rab23 in Hedgehog signaling may therefore be due to a previ-

ously unknown requirement in primary cilium formation (Fig. 1 A 

and Fig. 2 A). Rab17 has been previously reported to be induced 

during cell polarization and to be involved in the function of 

apical sorting endosomes in polarized epithelial cells (Lutcke 

et al., 1993; Zacchi et al., 1998). Its identifi cation here (Fig. 2 B) 

may indicate that sorting to the primary cilium is analogous to 

apical-basolateral sorting in polarized epithelial cells (Ang et al., 

2004). Further support for this proposal comes from the identifi -

cation of Rab8a as the target of XM_037557 (Fig. 2 C), as Rab8 

is known to be involved in polarized traffi cking from recycling/

sorting endosomes in epithelial cells (Ang et al., 2003, 2004).

To further defi ne the steps at which Rab8a, -17, and -23 

might act, their localization was then examined in hTERT-RPE1 

cells induced to form primary cilia by serum starvation. Screening 

the human Rabs revealed that Rab8a was the only Rab that could 

be detected on primary cilia when expressed as a GFP-tagged 

protein (Fig. 3 A and Fig. S2 A, available at http://www.jcb.org/

cgi/content/full/jcb.200703047/DC1). This localization was 

then confi rmed using specifi c antibodies to Rab8a (Fig. 3 B; 

Hattula et al., 2006). Strikingly, cells overexpressing Rab8a 

typically showed signifi cantly (P < 0.05) longer cilia than con-

trol cells, as defi ned by the extent of both acetylated tubulin 

staining and the GFP-Rab8a–positive ciliamembrane (Fig. 3 C), 

suggesting that it is a limiting factor for primary cilium formation. 

In contrast, none of the other Rabs tested (Fig. S2 A), including 

Rab8b (Fig. 3 D), were found at primary cilia or had any obvi-

ous effect on cilium formation. Confi rming previous  reports 

(Zacchi et al., 1998; Evans et al., 2003), Rab23 was found pre-

dominantly at the plasma membrane (Fig. 3 D), whereas Rab17 

was present in punctate structures showing partial overlap 

with endocytic markers (Fig. 3 D and Fig. S2 B). In addition, 

Rabl4 and GTPases of the Arl family implicated in micro-

tubule and cilia formation (Chiang et al., 2004; Schafer et al., 

2006; Zhou et al., 2006; Qin et al., 2007) were also absent 

from primary cilia (Fig. S2 A). Consistent with previous re-

ports, the only other GTPases tested showing cilium targeting 

were Rabl5 and Arl13b (Fig. S2 A); however, although both 

Figure 2. Identifi cation of target Rabs for 
EVI5like, TBC1D7, and XM_037557. Bio che m-
ical GAP assays were performed using a 
re p   resentative set of human Rabs and the 
candidate RabGAPs EVI5like (A), TBC1D7 (B), 
and XM_037557 (C). GTP hydrolysis is plot-
ted in pmol/h. The asterisk indicates nonspe-
cifi c activation of the target Rab. Error bars 
indicate SD. 
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are important for cilium function, neither is essential for cil-

ium formation (Schafer et al., 2006; Caspary et al., 2007). 

Therefore, Rab8a is the sole Rab on primary cilia and, by anal-

ogy, with the function of other Rabs, may serve to defi ne this 

membrane domain (Zerial and McBride, 2001; Pfeffer, 2003; 

Behnia and Munro, 2005).

Because of its potential role in defi ning the membrane 

domain of the primary cilium, Rab8a was investigated further. To 

test the role of endogenous Rab8a in primary cilium formation, 

conditions were established for gene silencing using siRNA 

 duplexes in hTERT-RPE1 cells using the Golgi apparatus and pri-

mary cilium protein IFT20 as a positive control (Follit et al., 2006) 

Figure 3. Rab8a is the sole Rab present on 
primary cilia. (A) hTERT-RPE1 cells expressing 
human GFP-Rab8a (green) were grown in nor-
mal serum or induced to form primary cilia by 
serum starvation and then stained for acetyl-
ated tubulin (red) as a marker for primary cilia. 
(B) hTERT-RPE1 cells grown in normal serum or 
induced to form primary cilia by serum starvation 
were stained for Rab8a (green) and acetylated 
tubulin (red). (C) The length of primary cilia, 
defi ned by acetylated tubulin (Ac-Tub) staining, 
was measured in control hTERT-RPE1 cells (2.6 ± 
0.8 μm) and hTERT-RPE1 cells stably express-
ing GFP-tagged Rab8a (4.8 ± 0.9 μm). The 
length of the Rab8a-positive structure (GFP) 
was also measured (6.7 ± 1.5 μm). These 
numbers are plotted on the graph with bars to 
show the standard from the mean (n > 100). 
(D) hTERT-RPE1 cells expressing Rab8b, -17, 
and -23 tagged with GFP (green) were induced 
to form primary cilia by serum starvation and 
then stained for acetylated tubulin (red) as a 
marker for primary cilia. DNA was stained with 
DAPI (blue). Bars, 10 μm.

Figure 4. Rab8a is required for primary cilium formation. (A and B) hTERT-RPE1 cells treated with control, IFT20, Rab8a, or GMAP210 siRNA duplexes 
were induced to form primary cilia by serum starvation for 48 h. The cells were fi xed and stained for acetylated tubulin (red) as a marker for primary cilia 
and IFT20 or Rab8a (green). DNA was stained with DAPI (blue). Bar, 10 μm. (C) The number of cells forming primary cilia was counted in cells treated as 
indicated in the fi gure. The results are plotted as a bar graph, and the standard error is shown (n = 3; 100 cells per condition).
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and the Golgi protein GMAP210 as a negative control (Fig. 4). As 

expected, IFT20-depleted cells were unable to form primary cilia 

(Fig. 4, A and C; Follit et al., 2006). Consistent with its unique 

 localization, Rab8a-depleted cells showed strongly reduced pri-

mary cilium formation (Fig. 4, B and C). Cells depleted of the 

Golgi protein GMAP210 showed the same degree of primary cil-

ium formation as control cells (Fig. 4 C). Along with the GAP-

mediated Rab8a inactivation (Fig. 1), these results show that 

endogenous Rab8a plays an important role at the primary cilium.

In general, Rabs are thought to function by promot  ing teth-

ering interactions between membranes, and between membranes 

and the cytoskeleton (Behnia and Munro, 2005). Although 

several effector proteins for Rab8 have been reported in the 

literature, they are mainly associated with actin function, and none 

of them provide an obvious link between microtubule fun ction 

and membrane traffi c (Sahlender et al., 2005; Hattula et al., 

2006). Furthermore, it is not known if they show any specifi city 

for Rab8a or -8b. We reasoned that because of its unique local-

ization, Rab8a should have specifi c effector proteins at the 

primary cilium. We therefore performed two-hybrid screening 

using Rab8a and counterscreened the positive clones obtained 

against Rab8b using established methods (Fuchs et al., 2005). 

Figure 5. Cenexin 3 is a Rab8a effector at the primary cilium. (A) 13 overlapping fragments of cenexin 3 capable of interacting with Rab8a but not Rab8b 
were identifi ed using yeast two-hybrid screening of a testis cDNA library. All contain a 20-amino-acid C-terminal region absent from cenexin 1. A schematic 
of the different cenexin splice variants and these clones is shown in the fi gure; brown, green, blue, and pink indicate the alternatively spliced regions of 
cenexin at the N and C termini; interactions are shown by a plus sign and a lack of interaction by a minus sign. Cenexin 3∆C20, lacking the Rab8 binding 
domain, did not interact with Rab8a or -8b. These data are summarized in the fi gure. (B) Binding assays were performed using the Rabs indicated in the 
fi gure and the C-terminal domain of cenexin 3 (aa 397–657), or the cenexin 3 C-terminal domain lacking its last 20 amino acids (∆C20). For cenexin, the 
entire bound fraction and 20% of the input material are loaded on the gels shown. For Rabs, 1 μg of the input is shown. (C) hTERT-RPE1 cells expressing hu-
man FLAG–cenexin 1 or 3 (green) were grown in normal serum or induced to form primary cilia by serum starvation and stained for γ-tubulin or acetylated 
tubulin (red) as a marker for primary cilia. DNA was stained with DAPI (blue). Bar, 10 μm. (D) The extent of primary cilium formation in hTERT-RPE1 cells 
expressing cenexin 1, cenexin 3, cenexin 3∆C20, Cen3R8BD, and Cen3R8DB∆C20 relative to the untreated control was counted and plotted in the bar 
graph (n = 3; 100 cells per condition). Error bars indicate SD. (E) A model for primary cilium formation. Microtubules and the basal body are shown in 
green, and arrows mark the Rab-regulated membrane traffi cking pathways. The cilia membrane domain defi ned by Rab8a is marked in blue, and circular 
red arrows indicate the points of GAP regulation.
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Using this approach, we found that the cenexin/ODF2 splice 

variant 3 (cenexin 3) but not variant 1 (cenexin 1) interacted 

specifi cally with Rab8a, whereas the previously described Rab8 

effector optineurin bound to both Rab8a and -8b (Fig. 5 A 

and Fig. S3, available at http://www.jcb.org/cgi/content/full/

jcb.200703047/DC1; Sahlender et al., 2005). Deletion of the 

last 20 amino acids of cenexin 3 abolished the interaction with 

Rab8a, suggesting that this region forms part of the Rab8a bind-

ing domain (Fig. 5 A and Fig. S3). Confi rming these fi ndings, 

the interaction of Rab8a with cenexin 3 could be reconstituted 

using purifi ed proteins, and this interaction was lost when the 

last 20 amino acids of cenexin 3 were deleted (Fig. 5 B). Impor-

tantly, cenexin 3 did not bind to other related Rabs, including 

Rab8b (Fig. 5 B), and therefore has the properties expected of 

a Rab8a-specifi c effector protein.

Cenexin/ODF2 is a basal body protein with three splice 

variants, differing in their N and C termini, that function in 

the nucleation or anchoring of microtubules at the centriole 

(Ishikawa et al., 2005). In light of the fi nding that cenexin 3 is an 

effector for Rab8a, we reinvestigated cenexin 1 and 3 to deter-

mine the relationship between primary cilium targeting and their 

Rab8a interaction properties. As previously reported, cenexin 1, 

which lacks the Rab8a binding domain, was present on the cen-

trioles in the basal body both before and after serum starvation, 

but not on the microtubules of the primary cilium (Fig. 5 C). 

Strikingly, cenexin 3, although found on the basal body before 

induction of cilia, like Rab8a, relocated to the primary cilium on 

induction by serum starvation (Fig. 5 C). Furthermore, expres-

sion of the Rab8a binding domain of cenexin 3 (Cen3R8BD) 

had a dominant-negative effect on primary cilium formation 

(Fig. 5 D), supporting the idea that the Rab8a binding properties 

of cenexin 3 are important for its function. In contrast, full-

length cenexin 1 and 3, or cenexin 3 lacking the Rab8a binding 

domain, had no inhibitory effect on primary cilium formation 

when overexpressed (Fig. 5 D). The interaction of Rab8a with 

cenexin 3 may therefore provide a link between membrane traf-

fi cking and tethering reactions and microtubule function at the 

primary cilium.

Based on the fi ndings presented here and observations 

from the literature (Zacchi et al., 1998; Eggenschwiler et al., 

2001, 2006; Evans et al., 2003), we propose a working model 

for the function of Rab8a, -17, and -23 at primary cilia (Fig. 5 E). 

This model draws a parallel to the function of Rab8 in polarized 

epithelial cells, where it is needed for transport from a sorting 

endosomal compartment to the cell surface (Ang et al., 2003, 

2004). At primary cilia, we propose that Rab8a defi nes the pri-

mary cilium membrane domain by two mechanisms: fi rst, by 

controlling the delivery of material to this specifi c region of the 

plasma membrane from a Rab17-positive endosomal compart-

ment, and second, by linking the plasma membrane with cilia 

microtubules through the basal body and ciliary microtubule 

binding protein cenexin 3. In this model, Rab23, reported to 

act as a downstream component in Hedgehog signaling from 

primary cilia (Evans et al., 2003; Eggenschwiler et al., 2001, 

2006), is required for retrograde transport away from primary 

cilia. The identifi cation of specifi c Rab GTPases acting at pri-

mary cilia and their GAP regulators provides a basis for future 

work on membrane traffi cking at primary cilia and may also be 

relevant for other multiciliated cells, such as those found in lung 

epithelia (Sorokin, 1968). Finally, these fi ndings may also prove 

useful for understanding diseases where signaling pathways as-

sociated with primary cilia have become aberrantly activated 

(Badano et al., 2006; Michaud and Yoder, 2006; Singla and 

Reiter, 2006; Christensen et al., 2007).

Materials and methods
Reagents
Rabbit antibodies to Rab8a were a gift from J. Peränen (Institute of Biotech-
nology, University of Helsinki, Helsinki, Finland; Hattula et al., 2006). 
Other antibodies were as follows: sheep anti-GM130 (Shorter et al., 
1999), mouse anti-EEA1 (clone 14; Becton Dickinson); mouse anti-human 
transferrin receptor (CBL137; Chemicon); mouse anti–γ-tubulin (GTU88; 
Sigma-Aldrich); mouse anti–acetylated tubulin (6-11B-1; Sigma-Aldrich); 
and rabbit anti-FLAG (F7425; Sigma-Aldrich). Rabbit anti-IFT20 was raised 
against full-length recombinant human IFT20 expressed in bacteria and 
affi nity purifi ed using the same protein coupled to Affi gel-15 (Bio-Rad Labo-
ratories, Inc.). Donkey secondary antibodies were obtained from Jackson 
ImmunoResearch Laboratories. The methods used for cloning and construc-
tion of EGFP-tagged human Rabs and N-terminally tagged EGFP- and Myc-
tagged human RabGAPs have been described previously (Haas et al., 
2005; Fuchs et al., 2007). EGFP-tagged Arl expression constructs were 
provided by S. Munro (Medical Research Council, Laboratory of Mole-
cular Biology, Cambridge, UK). Cenexin/ODF2 splice variants were ampli-
fi ed from testis and fetal cDNA (CLONTECH Laboratories, Inc.) and 
subcloned into pcDNA3.1 to create an N-terminal fusion to the FLAG tag. 
All constructs were verifi ed by DNA sequencing (DNA sequencing service, 
Max Planck Institute of Biochemistry, Martinsried, Germany).

Rab GTPase assays
The purifi cation of GST-tagged human Rab GTPases, hexahistidine-tagged 
TBC domain proteins from bacteria, and RabGAP assays were performed 
as described previously (Haas et al., 2005). Standard assays were per-
formed for 60 min at 37°C, using 100 pmol GST-Rab and 10 pmol hexa-
histidine-tagged TBC domain protein. All proteins tested corresponded to 
the full-length open reading frames.

Rab binding assays
For binding assays, 10 μg GST-Rab protein were bound to 25 μl of packed 
glutathione–Sepharose (GE Healthcare) in 1 ml total volume of PBS for 
60 min at 4°C. The beads were fi rst washed three times in 500 μl with nucleo-
tide exchange buffer (NE100: 20 mM Hepes-NaOH, pH 7.5, 100 mM 
NaOAc, 10 mM EDTA, and 0.1% [vol/vol] NP-40), followed by two 
washes in 500 μl nucleotide loading buffer (NL100: 20 mM Hepes-NaOH, 
pH 7.5, 100 mM NaOAc, 0.1 mM MgCl2, and 0.1% [vol/vol] NP-40). 
The beads were then resuspended in 200 μl NL100, and 20 μl of 100 mM 
GTP and 10 μg effector protein was added. Binding was then allowed 
to proceed for 60 min at 4°C, rotating to mix. The beads were then washed 
three times with 500 μl NL100, and bound proteins were eluted by the ad-
dition of elution buffer (NE200: 20 mM Hepes-NaOH, pH 7.5, 200 mM 
NaCl, 20 mM EDTA, and 0.1% [vol/vol] NP-40), rotating at 4°C for 15 min. 
Beads were pelleted by centrifugation at 2,000 g for 1 min, and the super-
natant was transferred to a fresh tube. To remove contaminating Rabs, 
50 μl of packed glutathione–Sepharose was added to the eluate and incu-
bated for 10 min at 4°C with mixing. The beads were pelleted by centrifu-
gation at 2,000 g for 1 min, and the supernatant was transferred to a fresh 
tube. This procedure was repeated three times. Eluted proteins were then 
precipitated using trichloracetic acid and analyzed on 12% minigels 
stained with Coomassie brilliant blue.

Assay for primary cilium formation
Human telomerase-immortalized retinal-pigmented epithelial cells (hTERT-
RPE1; CLONTECH Laboratories, Inc.) were grown at 37°C and 5% CO2 
in a 1:1 mixture of DME and HAMS F12 containing 10% calf serum, 
2.5 mM L-glutamine, and 1.2 g/liter sodium bicarbonate. For transfection, 
0.5–1.0 × 105 cells were plated in 6-well plates. For Rabs and GAP con-
structs, 0.5 μg plasmid DNA were mixed with 3 μl Fugene-6 according 
to the manufacturer’s protocol (Roche Diagnostics) and then added to 
1 well of the 6-well plate. For cenexin constructs, 50 ng plasmid DNA 
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was mixed with 1 μg pBluescript-II as a carrier to avoid aggregation prob-
lems seen with high-level expression using the standard protocol. To in-
duce pri mary cilium formation, the growth medium was replaced with 
medium lacking serum. After 48–72 h, the cells were placed on ice for 
1 h, processed for fl uorescence microscopy, and analyzed as described 
previously (Haas et al., 2005). RNA interference was performed using a 
published method (Haas et al., 2005). All siRNA duplexes were obtained 
from Dharmacon, Inc., and the target sequences were as follows: control, 
C G U A C G C G G A A U A C U U C G A ; Rab8a, C A G G A A C G G U U U C G G A C G A , 
G A A U U A A A C U G C A G A U A U G , G A A C A A G U G U G A U G U G A A U , G A A C-
U G G A U U C G C A A C A U U ; IFT20, G G A A G A G U G C A A A G A C U U U ; GMAP-
210, G C C A G A G A C A A U C U A G C A C .

Image acquisition
Cells to be imaged were fi xed in −20°C methanol for 5 min and washed 
three times with PBS. For EEA1 staining, cells were fi xed for 20 min in 3% 
(wt/vol) PFA, quenched for 10 min with 50 mM ammonium chloride, and 
permeabilized with 0.1% (vol/vol) Triton X-100 for 5 min to allow labeling 
of internal cell structures. Alternatively, all solutions were made in PBS, and 
antibody staining was performed for 60 min using a 1,000-fold dilution of 
antiserum or purifi ed antibody at a fi nal concentration of 1 μg/ml. Second-
ary antibodies were conjugated to Alexa 488 or Cy3, and DNA was 
stained with DAPI. Coverslips were mounted in 10% (wt/vol) Moviol 4–88, 
1 μg/ml DAPI, 25% (wt/vol) glycerol in PBS. Images were collected using 
an Axioskop 2 with a 63× Plan Apochromat oil-immersion objective of 
NA 1.4, standard fi lter sets (Carl Zeiss MicroImaging, Inc.), a 1300 × 
1030 pixel cooled charge-coupled device camera (model CCD-1300-Y; 
Princeton Instruments) and Metavue software (Visitron Systems). Images 
were cropped in Photoshop 7.0 or CS2 (Adobe) without contrast or other 
adjustments and sized and placed using Illustrator 11.0 or CS2 (Adobe).

Online supplemental material
Fig. S1 shows the effects of RabGAP and dominant-negative Rab expression 
on primary cilium formation. Fig. S2 shows Rab localization to primary cilia 
in serum-starved hTERT-RPE1 cells. Fig. S3 gives full details of the Rab8a–
cenexin 3 yeast two-hybrid interaction. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200703047/DC1.
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