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Abstract

Although microbial communities are ubiquitous in nature, relatively little is known about the

structural and functional roles of their constituent organisms’ underlying interactions. A com-

mon approach to study such questions begins with extracting a network of statistically signif-

icant pairwise co-occurrences from a matrix of observed operational taxonomic unit (OTU)

abundances across sites. The structure of this network is assumed to encode information

about ecological interactions and processes, resistance to perturbation, and the identity of

keystone species. However, common methods for identifying these pairwise interactions

can contaminate the network with spurious patterns that obscure true ecological signals.

Here, we describe this problem in detail and develop a solution that incorporates null models

to distinguish ecological signals from statistical noise. We apply these methods to the initial

OTU abundance matrix and to the extracted network. We demonstrate this approach by

applying it to a large soil microbiome data set and show that many previously reported pat-

terns for these data are statistical artifacts. In contrast, we find the frequency of three-way

interactions among microbial OTUs to be highly statistically significant. These results dem-

onstrate the importance of using appropriate null models when studying observational

microbiome data, and suggest that extracting and characterizing three-way interactions

among OTUs is a promising direction for unraveling the structure and function of microbial

ecosystems.

Introduction

Microbes play essential roles in many, if not most, ecosystems. They play particularly impor-

tant roles in regulating agricultural systems [1], human health [2], and may even have an effect

on mental health and behavior [3]. Yet despite the importance of microbes and the recent tech-

nological advances in the field, essential questions remain about the composition and ecologi-

cal structure of these microbial communities. For instance, how do communities change in

response to internal dynamics and external perturbations, and how could we design commu-

nities with novel functionality? Deeper insights into the variables that shape the structure and
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function of microbial communities would have wide-ranging significance, both practical and

theoretical.

One difficulty in scientifically addressing questions about microbial communities comes

from the inability to culture the vast majority of microbes in a laboratory environment [4].

Instead, microbial community composition must be inferred from sequence data obtained by

environmental DNA sampling. This limitation restricts our ability to test for causal mecha-

nisms that drive a microbial community’s structure and composition. Instead, observational

data is often drawn from multiple samples across time or habitats [5–9]. Complicating these

efforts is a lack of robust statistical methods for analyzing these observational data in a way

that reliably controls for plausible sources of variability and the spurious co-occurrence net-

work patterns they can produce. Here, we present and test methods for extracting statistically

significant co-occurrence patterns among microbes and for interpreting the induced network

structure.

A common design for a microbial community observational study has the following form.

Using high-throughput sequencing technologies, genetic data is extracted from a set of loca-

tions, such as soil, water, or host-associated habitats including fecal samples or cheek swabs.

The observed DNA sequences are then binned into operational taxonomic units (OTUs),

which are taxonomic categories for microbes and are based on a DNA sequence similarity

threshold (usually 97% for 16S rRNA gene). This step is necessary due to the difficulty in

objectively defining microbial species, since these taxa reproduce asexually and many have

the ability to transfer genes horizontally. The OTUs are placed into an abundance matrix A,

where each element Ai,j gives the number of sequences representing a particular OTU i
observed in a particular sample or location j. This matrix is then used to identify pairwise

interactions, under the assumption that OTUs whose abundances correlate across samples

are likely to be ecologically related, either symbiotically or through similar environmental

preferences. To obtain correlation values, a similarity measure is computed for each pair of

vectors of OTU abundances across locations [6], and statistically significant similarities are

interpreted as potential ecological interactions. The set of such pairwise interactions among

the sampled OTUs can be transformed into a network of microbial interactions, where

nodes are OTUs and significant pairwise correlations are represented as edges in the net-

work. This network’s structure can then be used to understand the community’s organiza-

tion and function.

Such microbial interaction networks have many uses, not the least of which is making com-

plex data visually interpretable. They also facilitate the investigation of underlying ecological

processes that shape microbial communities. Past work on microbial networks has examined

many of their structural properties, including an OTU’s degree (number of connections), an

OTU’s betweenness centrality (a geometric measure of its network position), the network’s fre-

quency of three-way interactions (the clustering coefficient), and the network’s average path

length (a measure of system compactness). These properties have been measured for networks

derived from a variety of habitats, including soil [5], marine [8], and freshwater communities

[9]. For instance, nodes in a network that have high degree or high centrality may be inter-

preted as keystone taxa [8, 10, 11]. Recent work has shown that these keystone taxa play impor-

tant roles in structuring microbial communities in plant-microbe interactions [12]. A group of

OTUs that tend to co-occur may correspond to taxa that share an ecological niche due to habi-

tat filtering, or that participate in a symbiotic interaction [6]. Similarly, groups of OTUs that

tend to mutually exclude each other may represent competitive interactions within a given

niche. We may also compare the structure of these microbial communities with that of other

biological networks [11], e.g., in order to understand whether principles from macroecology

also hold for microbial communities.

Nulls models for microbial co-occurrence networks
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Network structure can also shed light on how a microbial community may respond to envi-

ronmental perturbations. A right-skewed degree distribution among OTUs may be evidence

for robustness to high levels of random removal of species, or sensitivity to the targeted

removal of the keystone taxa [6, 7]. This network property may be related, for instance, to pre-

dicting whether a person’s gut microbiome will recover after a course of antibiotics. Similarly,

network structure can facilitate the identification of community assembly processes, for

instance, by comparing the structural signatures of neutral processes where all taxa are demo-

graphically equivalent, versus those produced by niche-structured processes like niche parti-

tioning and competitive exclusion [13–16]. Greater insight into assembly dynamics may

facilitate predictions of community response to natural or artificial perturbations [6].

The broad importance of microbial interaction networks makes it essential that they be reli-

ably and accurately extracted from OTU abundance matrices, and that patterns in the resulting

network structure be properly interpreted. However, within the standard approach to extract-

ing these networks from co-abundance matrices are underlying statistical assumptions that

can contaminate the network with spurious or misleading patterns. Specifically, spurious pat-

terns in microbial co-occurrence networks may arise from matrix sparsity, the choice of corre-

lation function, and the use of thresholds. Separate problems may arise when abundance data

is normalized, making it compositional. Addressing the issues of compositional data is beyond

the scope of this paper; however, in our conclusions we offer a brief discussion of their rela-

tionship to the methods described here. In the following sections we examine the conse-

quences of spurious patterns in the data and leverage the ensuing errors as a motivation for the

use of null models as the foundation for the statistical methods we introduce. Our methods are

statistically principled methods, being based on standard null models, and allow us to more

accurately distinguish ecological signals from statistical noise, both in the abundance matrix

itself and in the distribution of edges in the derived network.

We demonstrate these techniques using a previously studied soil microbiome data set from

North and South America [5]. Because we draw from a rich history of research on spurious

correlations and on null network models, we limit the scope of our analysis to a single previ-

ously studied data set and demonstrate that previous analysis drew erroneous conclusions

about the soil community. We leave the application of these tools to other data sets for future

work. We find that some measures of network structure are barely distinguishable from ran-

dom noise, while others are more plausibly the result of ecological interactions. A notable

example of the latter category is the network’s clustering coefficient, the density of three-way

OTU interactions, which remains statistically significant when compared to each of our null

models. We close with a brief discussion of the utility of null models in studying observational

data and the ecological significance of triangles and modularity in microbial co-occurrence

networks.

Results

Two classes of null models

Null models are a standard statistical approach for reliably identifying data patterns that can-

not be attributed to simple sources of random variation. Data distributions that differ from a

null model are thus potentially derived from complex processes. In our case, large deviations

may be interpreted as potentially caused by ecological processes. One example of a null model

is the common test of statistical significance, wherein we measure the likelihood of observing,

under the null model, a particular statistical value or one more extreme. This probability is

quantified by a standard p-value which has a uniform distribution when the true data generat-

ing process is the null model. Common choices for null models focus on a set of independent

Nulls models for microbial co-occurrence networks
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draws from a simple parametric distribution, e.g., flipping coins or rolling dice. Null models

can be substantially more complicated, and in this case, numerical methods are typically

required to calculate the null distribution of the test statistic. If a null model is chosen well,

meaning that it incorporates plausible sources of random variation in the data, and the com-

puted p-value still low (typically below the conventional but nevertheless arbitrary threshold of

0.05), then a deviation between the model and the data can indicate the presence of scientifi-

cally meaningful processes.

Here, we describe and study two classes of null models for inferring ecological interactions

from a matrix of OTU abundances. The first class facilitates the extraction of significant pair-

wise interactions from the matrix in order to obtain a network. The second class facilitates the

detection of significant patterns in the distribution of edges within the derived network.

In the rest of this section, we will introduce the first class of null models, in which we will

incorporate existing variability in the observed data to identify pairwise interactions among

OTUs. First, we correct the behavior of the Spearman rank correlation coefficient when the

OTU matrix is sparse by breaking ties randomly. Second, in order to choose a threshold for

significant interactions, we use matrix permutations to generate artificial matrices with the

same naturally high variance as the data but which lack the correlations that are generated

by ecological processes. Applying the tie-breaking step to these artificial matrices yields a null

distribution of correlation scores, which provides a simple means for selecting a threshold for

statistically significant interactions. If any pair of OTUs in the tie-breaking model has a corre-

lation score above this threshold, we call this interaction statistically significant and include it

in the interaction network; any correlation below the threshold is discarded.

In the second class of null models, we ask whether particular statistical patterns in the distri-

bution of these interactions across the network are likely the result of random connectivity,

and thus unlikely to be caused by ecological processes. Our approach here builds on standard

random graph models from network science, which control for the average degree or the dis-

tribution of these degrees in order to construct an appropriate null distribution for other net-

work properties. Characteristics that are independent of size and connectivity indicate co-

existence of taxa, which may plausibly be attributed to ecological interactions or functions.

The fact that some properties can be explained by the size, degree, or connectivity of the

network does not make them ecologically unimportant. In fact, the ecological impact of overall

biodiversity as well as co-occurrence patterns (i.e., functional redundancy) is well established

[17, 18]. In practice, these null models can be used to identify more complicated statistically

interesting patterns, such as heterogeneous interactions among groups of microbes, that may

relate to other ecological processes, either known or unknown.

Section 1

The abundance matrix of microbial soil communities. To illustrate the importance of

examining microbial abundance data with respect to the two null model classes, we apply

these methods to previously collected data on soil microbes sampled from 151 sites in North

and South America [19]. From soil samples, authors of [5] extracted 16S rRNA sequences and

binned them into OTUs at a 90% rRNA sequence similarity threshold. They assigned taxon-

omy to OTUs using RDP Classifier [20] against the Greengenes database [21]. To obtain the

abundance matrix, they computed the number of sequences that mapped to each OTU at

every sample site. To control for sample contamination and potential sequencing errors, they

discarded OTUs with fewer than 5 sequences across all locations, which reduced the number

of OTUs from 4,087 to 1,577. Other scientists may use different protocols; however, we used

the data that was published in [20], following their data analysis procedure.

Nulls models for microbial co-occurrence networks
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Like many environmental DNA surveys, the resulting soil microbiome abundance matrix is

very sparse. Abundance values of zero comprise fully 85% of the matrix. Most sites contained

150–300 OTUs, but only 1% of matrix entries have more than 10 sequences for a given OTU at

a given site. In other words, although there were on the order of 1000 sequences from each

location, most OTUs at a site were phylogenetically distinct.

In order to calculate the correlation of abundance patterns between a pair of OTUs, we

must choose a similarity score function. The most common choices in past studies are Pearson

and Spearman correlations, which exhibit good statistical sensitivity and specificity under

standard conditions [10]. However, the Pearson correlation assumes that variables are nor-

mally distributed and linearly correlated, and it behaves poorly when relationships are nonlin-

ear, as may be the case in complex microbial systems. Spearman’s rank correlation, which

measures the degree to which two variables monotonically co-vary, does not suffer from this

problem and is the more common choice in microbiome studies [22] (see also [23] for a review

of correlation methods). We proceed with correcting Spearman’s statistical behavior, given its

wide usage in the field, despite the existence of other correlation methods, which are less com-

monly used.

A correction for matrix sparsity in Spearman ranks. In this setting, Spearman will over-

estimate correlations when nearly all abundances are either zero or some integer close to zero

[24, 25]. As an intermediate step, Spearman assigns a rank value to each location, and locations

with equal abundance receive the same rank. Thus, both matrix sparsity and a heavy-tailed

distribution of abundances will induce a very large number of multi-way ties, which will then

have identical ranks. The result is an inflated pairwise correlation score under Spearman.

(Standard implementations of Spearman’s in Matlab, R, and Python all rely on the user to cor-

rect for ties in the data.)

This behavior can be corrected through breaking ties at random by adding a small amount

of real-valued noise to each entry in the abundance matrix. After adding these minor perturba-

tions, the set of all pairwise Spearman rank correlation coefficients (ρ) form a smooth distribu-

tion (Fig 1A), as desired, rather than a perverse disjoint distribution when ties are not broken

(Fig 1B).

Crucially, the noise added to each observed value must not disturb the partial ordering

obtained without the noise. In practice, this is easily accomplished by using Monte Carlo to

sample from the many total orderings that are consistent with the original partial ordering.

Under a particular choice of significance threshold, this procedure will generate a set of equally

plausible networks, which are free from the statistical artifacts of tied ranks.

Fig 1. Null distributions of Spearman rank correlation coefficients across sites for the soil

microbiome data. (A) Coefficients under Monte Carlo sampling, using noise to break ties randomly. (B)

Coefficients without correcting for tied ranks between locations.

https://doi.org/10.1371/journal.pone.0176751.g001
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This correction prevents the spurious conclusion that two taxa are ecologically related

because they are both absent from many of the same locations. There are many reasons why a

taxon could have zero abundance at a given location, including habitat filtering, local extinc-

tion due to ecological drift, dispersal limitation, or competitive exclusion. Or, it may indicate

that the taxon’s DNA failed to bind to the 16S primer during amplification, was undetected

due to sequencing depth, or was absent by chance from the soil sample. In short, an abundance

of zero is highly ambiguous, and a conservative approach is to avoid inferring the presence of

an interaction based primarily on shared absences.

Converting the sparsity-corrected data into a network. To convert the abundance

matrix into a network, we must apply a threshold to the similarity scores. In this way, only

OTU pairs for which the absolute value of their score is above the threshold are connected in

the network. It follows that a node with no scores above the threshold will have a degree of

zero in the network, and by convention we omit such singletons from subsequent analysis [5].

As a result, the number of nodes n in the inferred network will typically be less than the num-

ber of OTUs N in the abundance matrix.

Picking a threshold for significance. Choosing an appropriate threshold of significance

for similarity scores is an open question, particularly for sparse data sets like OTU abundance

matrices [26]. The goal of this choice is to eliminate pairwise interactions that are likely due to

statistical fluctuations or sampling noise, without excluding interactions due to biological pro-

cesses. Furthermore, we would like the scientific conclusions that we draw from the resulting

data to be robust to reasonable variations in threshold choice [26]. Currently, however, there is

no generally reliable method for balancing these two conflicting goals in OTU abundance

matrices. Some studies have used random permutations of the abundance matrix to compute a

null distribution of similarity scores, and then selected as a threshold the similarity value corre-

sponding to a conventional p-value choice of 0.01 or 0.05 [6]. However, this procedure tends

to select very low thresholds, and this may potentially result in a high false positive rate for

interactions. Other studies have used arbitrarily chosen thresholds [27, 28].

Here, we use a repeated element-wise random permutation of the noise-added abundance

matrix to first compute a null distribution of similarity scores. We then compute the size of

the largest component—the largest set of nodes for which any pair is connected by some

sequence of edges—in the induced network for a wide range of threshold values. Because the

permutations break any ecologically-driven correlations in the abundance matrix, this curve

has a characteristic sigmoidal shape (Fig 2). The location of the curve’s transition to less than

1% of OTUs in the largest component serves as a reasonable choice for the lower bound on

the threshold. Networks derived from this permuted data treatment are composed of all spu-

rious links, so a threshold below that transition, which would include these links, is overly

inclusive. In practice, a conservative choice of threshold will be a value slightly above this

transition point. (See the Discussion section for discussion on using a range of reasonable

thresholds).

Including the sparsity correction from above within this procedure serves to correct the

substantial distributional bias in similarity scores that would otherwise occur (see Fig 1) as a

result of multiple tied ranks and the heavy-tailed distribution of abundance values.

We subject the OTU abundance data to three different treatments and systematically vary

the threshold to illustrate its impact on each. The three treatments are (i) the original data, (ii)

the original data with the Spearman correction, and (iii) the original data with both Spearman

correction and permutation null distribution. To illustrate the effect of threshold choice on

each treatment, we measure the fraction of OTUs N contained in the largest component of the

network across similarity thresholds (Fig 2). The size of this component provides a simple

quantitative measure of overall graph connectivity, and is a monotonically decreasing function

Nulls models for microbial co-occurrence networks
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of the threshold. That is, higher thresholds will tend to produce smaller, less connected graphs,

and lower thresholds will tend to produce larger, more densely connected graphs.

Section 2: Nonlinear effects of the threshold choice

Fig 2 shows the percentage of nodes in the largest component as a function of the choice of

threshold, for each of the three treatments. To facilitate comparison with past work on this

data set [5], we include a dashed vertical line at a threshold of 0.36. This yields a network from

the noise-added data of comparable size to this past work (n = 300). The location of the noise

transition in the green line (Δ), near a threshold of 0.30 represents a lower bound on reason-

able choices of a threshold. Across thresholds, the original data shows a relatively slow decline

in the size of this largest component. Compared to the other treatments, which better eliminate

spurious connections, this slow decline is clearly an artifact of the presence of many false posi-

tives in the network. By applying the Spearman correction or that correction and the null

distribution from permutations, the largest component shrinks much more quickly. The dif-

ference between the treated lines and the original data illustrates the dramatic extent to which

not controlling for these statistical artifacts can alter the extracted structure of the species inter-

action network. A further observation is that the smooth variation of the noise-added data

treatment indicates that there is no obviously best choice for a threshold, except somewhere

close to but slightly above the noise transition.

Fig 2. Fraction of all OTUs in the largest component, as a function of correlation threshold. When the pairwise correlation

threshold is 0, all edges are included and thus all nodes are in the largest component. When the threshold is 1, all edges are excluded

and all singletons are discarded, so all of the OTUs are excluded from the analysis. The inset networks result from applying a threshold

of 0.36, shown by the bold dashed line, to each of the treatments. The 0.36 threshold corresponds to 86% of OTUs in the largest

component for the unaltered data, but just 18% of the OTUs in the noise-added treatment. For the permuted treatment, with noise

added, the threshold intersects after the phase transition, yielding <1% of OTUs in the largest component.

https://doi.org/10.1371/journal.pone.0176751.g002
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This finding illustrates the complexities that arise when using a threshold to extract a net-

work from a correlation matrix, and suggests that a particular choice requires some justifica-

tion or at least a robustness analysis to demonstrate that scientific conclusions do not depend

sensitively on that choice. From a data analysis perspective, we would preserve the most eco-

logical signal by not applying a threshold and instead using the correlation scores as weights

for edges in a fully connected or complete graph [26]. However, many common network anal-

ysis techniques do not generalize to weighted complete networks, or such methods have not

yet been developed. As a result, thresholding may be necessary to address certain classes of

ecological questions.

To further illustrate the impact of threshold choice on the structure of the induced network,

we measured five standard network summary statistics as a function of threshold choice.

These summary statistics are (i) the average degree, (ii) the average path length, (iii) the diame-

ter, which is the maximal-length shortest path among any pair of nodes, (iv) the modularity,

which quantifies the extent to which nodes cluster into groups, with more edges occurring

inside groups than expected at random, and (v) the clustering coefficient.

If the functional relationship between threshold and network statistic were constant or lin-

ear, the particular choice of threshold is less likely to impact scientific conclusions that depend

on its particular value. For all five of these measures, however, we find a nonlinear relationship

between the measure and the choice of threshold. That is, the structure of the network does

not change smoothly, and different threshold choices can lead to very different patterns of con-

nectivity within the network (Fig 3).

For instance, even the average degree of this network exhibits a surprisingly nonlinear

pattern across thresholds (Fig 3A). The non-monotonicity, illustrated by the bump around a

threshold of 0.35, results from the convention of discarding nodes with no connections.

Thus, as the threshold increases, more of these nodes are created and then excluded, which

allows the average degree to increase again as the giant component shrinks but the connec-

tivity of its nodes stays relatively steady. (The average degree touches the x-axis at a threshold

of 0.75; when singletons are included, this transition occurs around a threshold of 0.40 (see

S1 Fig).)

Similar patterns appear for the average and maximal path length (Fig 3B and 3C). At lower

thresholds, the network is relatively dense, making short paths among nodes plentiful. As the

threshold increases, edges are removed, which makes the largest component sparser and

increases path lengths. Finally, both measures decline above a threshold of 0.25 as the size of

the largest component itself begins to shrink, which shortens path lengths again.

As the threshold increases, the largest component becomes sparser and the estimated maxi-

mum modularity score also increases (Fig 3D), implying the existence groups of nodes with

relatively high internal connectivity [29]. This property deviates from a simple linear increase

between threshold values of 0.25 and 0.38. At higher values of the threshold, the largest compo-

nent breaks up into small but fully connected subgraphs, which have the highest possible mar-

ginal contributions to modularity. However, for very high threshold values, the average degree

falls below 1 and the network is composed primarily of disconnected edges, which yields a

modularity score of 0.

Because very low thresholds produce very dense networks, the clustering coefficient (Fig

3E) is initially very high, but decreases quickly. Interestingly, and unlike the other network sta-

tistics on this data set, the clustering coefficient stabilizes across intermediate choices of thresh-

olds, even as other network statistics are still changing. As with the behavior of modularity, the

clustering coefficient rises quickly and then falls to 0 as the network crosses from being com-

posed primarily of disconnected triangles and edges to being composed entirely of discon-

nected edges.

Nulls models for microbial co-occurrence networks
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The nonlinear dependence of the structure of the extracted network on the threshold

applied to the correlation matrix demonstrates the importance of performing robustness anal-

yses in this setting. Higher thresholds tend to naturally produce networks with many small

components, high modularity and shorter path lengths. Lower thresholds tend to produce a

large component, often with lower modularity scores. The threshold at which the transition

between these two regimes occurs is likely to be data dependent, and thus should be quantified

in order to clarify the confounding role that network size and density have on other network

measures.

Choosing a threshold for significant interactions. If there existed a labeled data set,

such as fully-defined microbial communities where every individual microbial cell had fully

sequenced 16S ribosomal RNA, we could train a machine learning model to choose the thresh-

old that best balances false positive (spurious) links against false negative (missing) links, when

those communities are sampled. However, it is typically impractical to fully characterize the

taxa that make up an in vivo microbial community. Thus, in practice, choosing an intermedi-

ate value for the threshold is a reasonable strategy. The threshold should be large enough to be

above the noise transition (Fig 2, green line), but small enough that the network is not mostly

disconnected. However, because of the nonlinear relationships between network structure

and threshold choice, a robustness analysis should always be performed in order to determine

whether a particular conclusion depends sensitively on which intermediate threshold is

Fig 3. Network properties vary as a function of threshold. This figure shows the change of network

properties as the similarity score threshold varies between 0 and 1. The red lines represent the unaltered

abundance data; the blue lines represent the noise-added data to correct rank ties. The vertical line at 0.36 is

the same threshold used in Fig 2. Panels correspond to the following properties: (A) average degree, (B)

diameter, (C) average path length, (D) maximum modularity, and (E) clustering coefficient.

https://doi.org/10.1371/journal.pone.0176751.g003
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chosen. Only by doing a robustness analysis across many possible threshold values can ecolog-

ically meaningful conclusions be drawn from a microbial network. This is essential, as differ-

ent networks may display different patterns. Researchers must show that any network

property that is being invoked in an ecological argument is not sensitive to a small variation in

threshold choice [26].

Section 3: Measuring non-random network structure

Given a choice of threshold and the corresponding network derived from corrected Spearman

correlation scores, we can now ask whether the distribution of the network’s links represents

non-random patterns. We use a second class of null models to find statistically significant

properties of the derived network by controlling for connectivity. The two models in this class

will allow us to distinguish whether a particular pattern in the distribution of edges across the

network is likely due to chance.

The first null model is the Erdős–Rényi random graph, which preserves the average degree

of the derived network while removing any taxonomic information from the nodes [30, 9].

This model is sometimes denoted G(n,p), where n is the number of nodes and p =<k>/(n-1),
where the mean degree<k> = 2m/n is the probability that any pair of vertices is connected

and where m is the number of edges in the derived network. Drawing a large number random

graphs from this model (e.g., 2000 graphs) allows us to numerically estimate a null distribution

for any network property, while controlling only for the average degree of a node.

The second null model in this class is a Chung-Lu random graph model [31], where we pro-

hibit self-loops (an edge (i,i) for some node i). Like the Erdős–Rényi model, a Chung-Lu

model starts with the same number of nodes as the derived network. Rather than giving each

edge equal probability, this model preserves the expected degree sequence by making the prob-

ability of an edge between two nodes proportional to the product of their expected degrees.

Specifically, the probability of an edge between nodes i and j is Pi,j = (ki � kj) / 2m, where ki is

the degree of node i in the derived network. This model is similar to the popular configuration

model [32], but it is a probabilistic model; rather than exactly replicating the degree sequence

of a given graph, each pair of nodes is connected based on a given probability function. We

constrain this model so that, like the Erdős–Rényi model, it only produces simple networks,

i.e., we manually remove self-loops or multiple connections between the same pair of nodes.

As before, drawing a large number of random graphs from this model allows us to numerically

estimate a null distribution for the same network properties of interest, but now controlling

for the average degree of a node and the degree distribution across nodes.

To illustrate how these models can be used to distinguish plausible structural patterns from

those generated by chance, we apply them to the soil microbe network extracted in the previ-

ous section from the corrected Spearman scores. The derived network has about n = 268

nodes and m = 1730 edges; the precise numbers vary depending on the noise addition step.

We then compare the null vs. the derived network’s distributions for (i) mean path length, (ii)

modularity, (iii) diameter, and (iv) clustering coefficient. Both null models are parameterized

to match the mean degree and thus the random graphs match the derived network on that

measure by design.

Both path length and diameter are slightly elevated in the networks derived from the cor-

rected Spearman data compared to the null models (Fig 4A and 4B). The average path length

is 2.935 ± 0.052 for the corrected data, compared with 2.611 ± 0.019 for Erdős–Rényi and

2.604 ± 0.040 for Chung-Lu. Similarly, the average diameter for the corrected data is

7.411 ± 0.874, compared with 4.114 ± 0.318 in the Erdős–Rényi and 5.582 ± 0.544 for the

Chung-Lu models. These differences are statistically significant, although the effect size is
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small. That is, the extracted microbial interaction networks are only less compact than we

would expect if edges were distributed at random.

Similarly, the modularity scores (Fig 4C) are higher in the derived network compared to

those of the null models. The modularity is 0.415 ± 0.014 for the derived network, while it is

0.217 ± 0.005 for the Erdős–Rényi model, and 0.280 ± 0.012 for the Chung-Lu model. For

these null models, the observed modularity scores are highly statistically significant, and thus

may represent a true ecological signal. However, as we observed in the previous section, the

modularity score is highly dependent on the choice of threshold. For instance, under a thresh-

old of 0.25 instead of 0.36, the difference in modularity scores between the Chung-Lu null

model and the derived network vanishes (both are approximately 0.299). As such, the signifi-

cance of the modularity score should be interpreted cautiously.

Compared to both null models, the derived network has a substantially higher clustering

coefficient (Fig 4D), which is similar to the scores observed in social networks [33]. The clus-

tering coefficient for the derived network is 0.380 ± 0.009, while it is 0.038 ± 0.002 for Erdős–

Rényi random graphs and 0.230 ± 0.010 for Chung-Lu random graphs. The difference in null

distributions indicates that about half of the value of the observed clustering coefficient can be

explained as an artifact of heterogeneous degree structure, which the Chung-Lu model cap-

tures but the Erdős–Rényi model does not. This suggests that microbial communities are

enriched in three-way interactions (triangles) and these represent potentially ecologically

meaningful functional relationships among triplets of OTUs.

The consensus network. Because the network properties of the derived network appear

statistically significant relative to our random graph null models, we can now construct and

interpret a “consensus network,” which contains every pairwise interaction that is present in at

least 90% of the Monte Carlo samples. This consensus network is composed of 158 nodes and

787 edges. A simple but scientifically interesting question we may address with this network is

Fig 4. Network properties compared with null network models with fixed connectivity. Distributions of

network properties across observed data and null models from the second class of models: Erdős–Rényi and

Chung-Lu. The observed data is graphed as blue in each plot. Panels show the following properties: (A)

average path length, (B) diameter, (C) modularity, and (D) clustering coefficient.

https://doi.org/10.1371/journal.pone.0176751.g004
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whether microbes tend to co-occur with others in the same phylum. A positive signal of this

assortative mixing pattern [34] would suggest a phylogenetic structuring for niche preferences

or potential synergistic relationships within phyla [5].

However, we see little evidence for this hypothesis, finding instead that soil microbes are

not more likely to co-occur with taxa within phyla rather than across phyla (Fig 5). Specifically,

the number of edges between two phyla appears roughly proportional to the number of taxa in

both phyla, exactly as we would expect if such co-occurrences were largely due to chance. As

an additional check, we calculate the fraction of edges that connect each phylum (Table 1).

This enables us to investigate the potential heterogeneous mixing of phyla. We observe that

Acidobacteria and Proteobacteria have the highest proportions of within-phylum edges, so

these phyla are most likely to co-occur with species within their respective phyla, when we

Fig 5. Consensus network of edges, organized by phylum. Edges in this figure are present in 90% of Monte Carlo simulations of noise

addition.

https://doi.org/10.1371/journal.pone.0176751.g005
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enforce that clusters must correspond to phyla. But the modularity of this network, which pro-

vides a quantitative measure of assortativity among categorical labels on nodes (in this case,

phyla), we find a score of 0.0745 –much lower than the estimated maximal modularity when

nodes are allowed to mix independently of their phyla label (Fig 4C). That is, phylum-level

interactions are not the dominant factor driving the structure of OTUs interactions in this

data set.

Discussion

A key step in better understanding the complex structure and function of microbial ecosys-

tems is identifying the ecologically meaningful interactions among microbes. Distinguishing

spurious interactions from real interactions is a key step in this process. However, common

approaches in this setting can contaminate the extracted network with statistical artifacts that

may confound ecological interpretation. Here, we have adapted and demonstrated simple and

appropriate null models for addressing this question at both the network extraction and the

analysis steps, and we used them to reanalyze a previously studied large soil microbiome data

set.

After adding noise to the sparse OTU abundance data, we examined in detail the difficulty

of choosing a similarity threshold. Since network analysis depends on this initial network deri-

vation step, a conservative approach would test whether conclusions about the network hold

(or the same pattern appears) across a range of reasonable threshold choices. In practice, we

suggest choosing a threshold slightly above the noise transition produced by the permutation

test, and well below the point where the network breaks up into small, disconnected compo-

nents. An interesting line of future work would examine the efficacy of supervised learning

techniques from machine learning to automatically choose a threshold that optimizes some

downstream performance measure [35], e.g., likelihood of the extracted network under a prob-

abilistic generative model like the stochastic block model [36].

Next, we used null models that preserve network connectivity to investigate the variation in

network measures. We did find slight but statistically significant elevation of average path

lengths and diameters in the derived network. One interpretation is that microbial communi-

ties in soil are robust to environmental perturbations and have evolved to recover or maintain

structural stability amidst disturbances. Combining future research on different microbial

Table 1. Fraction of edges connecting clusters based on phylum identity.

Acido Actino Other Bacteroid Crenarch Firmicutes Gemma Plancto Proteo Verruco All

Acido 0.172 0.010 0.014 0.029 0.010 0.004 0.004 0.019 0.098 0.027 0.388

Actino 0.010 0.017 0.000 0.000 0.002 0.000 0.000 0.000 0.010 0.003 0.041

Other 0.014 0.000 0.004 0.002 0.002 0.001 0.001 0.001 0.011 0.008 0.043

Bacteroid 0.029 0.000 0.002 0.014 0.005 0.000 0.002 0.000 0.021 0.006 0.078

Crenarch 0.010 0.002 0.002 0.005 0.000 0.000 0.001 0.001 0.005 0.001 0.027

Firmicutes 0.004 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.006

Gemma 0.004 0.000 0.001 0.002 0.001 0.000 0.001 0.000 0.002 0.001 0.013

Plancto 0.019 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.014 0.001 0.036

Proteo 0.098 0.010 0.011 0.021 0.005 0.001 0.002 0.014 0.110 0.010 0.281

Verruco 0.027 0.003 0.008 0.006 0.001 0.000 0.001 0.001 0.010 0.031 0.087

All 0.388 0.041 0.043 0.078 0.027 0.006 0.013 0.036 0.281 0.087 1.000

“Other” label indicates OTUs that don’t map to a known phylum. Fraction of edges connecting OTUs from the same phylum are highlighted. Note that this

table is symmetric because edges are undirected.

https://doi.org/10.1371/journal.pone.0176751.t001
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communities, such as the human gut microbiome, with this type of network analysis would

help clarify the role of average path length and diameter (if any) in community robustness, e.g.

after the administration of antibiotics.

We discovered that the clustering coefficient was higher in the derived network compared

to the network null models and that the score remained consistent across a range of intermedi-

ate threshold values. The elevated clustering coefficient may imply that habitat filtering is play-

ing an important role in the distribution and abundance of OTUs in the soil. However, more

research is needed to incorporate metabolic data or other functional predictors into the model.

Levy and Borenstein [14] have shown that in the human microbiome, co-occurrence is more

often found in metabolically competitive species than in metabolically complementary spe-

cies–evidence that community assembly is best explained by habitat filtering in the human gut.

Similarly, [37] also found that phylogenetic clustering was stronger in habitats where competi-

tive traits prevailed (i.e., in areas with high resource availability). Future analysis of soil

microbes should focus on metabolic competition and complementarity, especially within

OTU triads, to determine whether the elevated triad occurrence corresponds to a specific com-

munity assembly mechanism [15, 38]. Future inquiry should focus on whether elevated clus-

tering coefficients are also present in networks derived from freshwater, marine, and human

microbiome samples.

We also discovered elevated maximum modularity scores in the derived network com-

pared to the null models. Higher modularity has been interpreted as corresponding to

greater niche partitioning [6, 39]. Further analysis of metabolic functions of OTUs should

investigate whether the highest-scoring modularity partitions indicate true functional niches,

wherein OTUs are more likely to co-occur with OTUs in their own group than with OTUs in

outside groups. For example, gene expression data can be compared within and across the

proposed functional niches to identify shared or related metabolic functions [14]. Future

work may glean more from co-occurrence networks that focus on the level of genes, rather

than OTUs, which will become increasingly informative as more microbial genomes are fully

sequenced.

The consensus network was composed of 50% generalist OTUs and 50% OTUs that were

neither generalists nor specialists. The 79 generalist OTUs were identified based on appearing

in more than 80 locations. The other half of the OTUs were neither generalists, nor specialists

which appear in fewer than 10 sites with more than 18 sequences on average [5]. While no spe-

cialists appeared in the consensus network, only 17 OTUs out of the 1577 total OTUS were

identified as specialists; given that about 10% of OTUs appeared in the consensus network, the

expected number of specialists in the consensus network would be 1.7. It is not possible from

this study to distinguish whether consensus networks are inherently biased against specialists

or whether there was simply not enough data in this sample to distinguish specialists from

noise. We do observe, however, that 76% of generalists (79 out of 104) are included in the con-

sensus network.

The consensus network’s elevated modularity score may be due to the relative concentra-

tion of ecological generalists in the sampled soils, which would give rise to high interconnectiv-

ity of OTUs [40]. This might also explain why the optimal partitioning of the consensus

network did not correspond with phylogeny, which was a surprising result. The partitioning of

the consensus network’s communities, based on the optimal modularity score, violate the

basic assumption that ecological functions and niches are phylogenetically conserved [41].

However, other recent work [42, 43] shows that while complex traits and housekeeping genes

are deeply conserved, other functional traits like assimilation of carbon sources can be

unevenly dispersed across different phylogenetic clades. More work is required to identify the

degree and manner in which functional diversity drives co-occurrence in the soil microbiome.
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The consensus network incorporates taxonomic information into the microbial interaction

networks, allowing us to use 16S rRNA sequence similarity to evaluate the network structure.

How best to incorporate that phylogenetic information is another area of active research [12].

Previous research has shown that using lower binning thresholds for OTU identification does

not reveal more about microbial interactions, suggesting that even relatively broad binning

strategies can be useful for gaining ecological insight [6, 44]. However, other authors recom-

mend using the highest possible similarity threshold [10]. Future research should continue to

address the phylogenetic information we have about OTUs and how that data can be incorpo-

rated into identifying real ecological interactions [13].

Many recent microbial association studies have focused on problems with analyzing com-

positional data. For instance, several studies point out that compositional effects are a concern

when there are big differences in component sizes [45] or when there are relatively few compo-

nents [46]. These problems are more prevalent in marine metagenomics samples or host-asso-

ciated microbes, but less for the soil microbiome. We argue that using a relatively simple and

nonparametric similarity measure such as Spearman correlation coefficient can prevent the

imposition of preexisting notions about how taxa are distributed and how they interact. Com-

pared to other techniques, Spearman correlation coefficients are also efficient to calculate, a

problem acknowledged in the mLDM algorithm by its authors [45]. For data not derived from

the soil microbiome, the suggested approaches for compositional data could be used in con-

junction with the network derivation methods described here.

In general, analyses of OTU-location matrices have uncertain scientific value as long as we

lack large sets of empirically validated OTU-OTU interactions by which to evaluate network

extraction methods. One possible remedy for this would be to remove some fraction of observed

edges from the inferred network and use predictive modeling to identify the most probable

missing edges. This type of link prediction has been used in other contexts where the observa-

tion of the network is incomplete or error-prone [47], or where the network is changing, as in

evolving social networks [48]. A generative link-prediction model allows us to test the degree to

which our assumptions about the underlying structure of the system are correct [49, 50].

Future research should apply different models to recover community structure. The bipar-

tite stochastic block model [51] offers a compelling alternative to clustering OTUs based on

their similarities across locations. That is, instead of converting the abundance matrix into a

similarity matrix and applying an arbitrary threshold, this model operates directly on the

OTU-location matrix, obtaining both a clustering of OTUs, a clustering of locations, and a

mixing matrix that describes how OTU groups interact with location groups. By operating on

the original OTU-location data, this approach would reduce the number and strength of

assumptions used in the analysis of such data. This model would be useful for finding OTUs

that co-occur and thus may be ecologically interacting, though it is defined only for occurrence

data rather than abundance data. To include sequence abundances, the weighted stochastic

block model [52] could be used to directly analyze the OTU abundance values, without having

to choose a threshold. For the task of clustering OTUs, these community detection methods

are a promising set of tools.

While the approach we have outlined for testing different network derivation thresholds

and evaluating null model connectivity has been applied to microbial abundance data, it can

also be applied across other biological network analyses. Sparse data sets appear in a wide vari-

ety of biological settings, from eukaryotic environmental DNA surveys [53] and gene co-

expression networks. The issues of threshold choice and appropriate null model selection are

relevant across all disciplines which use network science. Utilizing the appropriate statistical

approaches will allow researchers to draw stronger conclusions about correlation data, while

leveraging the quantitative tools from network science accurately.
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Materials and methods

Fig 6 illustrates the data analysis procedure used in this research.

Soil data

The data set used in this experiment was acquired from previous work. Lauber et al. [19]

acquired the bacteria and archaea data by pyrosequencing soil samples from locations across

North and South America. Their data set covers 151 sampling sites and 4088 unique OTUs,

binned at 90% similarity (for explanation of the choice of 90% similarity for binning, see [5]).

The data excludes OTUs with fewer than 5 sequences across all sampling sites, decreasing the

number of OTUs to 1577.

We use Spearman rank correlation coefficients to evaluate similarities between pairs of

OTUs based on their abundance patterns. For each OTU, Spearman converts a vector of abun-

dances into a vector of ranks, from largest to smallest. When there are identical abundance val-

ues in several locations for a given OTU, the corresponding locations in the rank vector are

assigned the average rank for all tied entries. Given a pair of such rank vectors x and y, the

Spearman rank correlation coefficient is given by:

r ¼
6 S r2

i

LðL2 � 1Þ

where ri = xi—yi is the difference between ranks between OTU x and OTU y in location i, and

where L is the number of locations.

Random noise addition

Rather than allowing for ties among Spearman ranks, we correct for sparsity in the OTU abun-

dance matrix A by adding noise to every OTU × location entry. We draw N × L entries from a

Fig 6. Data analysis procedure for OTU abundance matrices. We start with the OTU abundance matrix of N OTUs at L different locations. In the

first class of null models, noise is added to every entry of the matrix. Additionally, the noise-added matrix is permuted; the distribution of similarity

scores in the permuted matrix is used to set the lower bound for the threshold. Next, the threshold is applied to derive the observed network. This

network is used to construct the second class of null models, Erdős–Rényi, based on the average degree, and the Chung-Lu model, based on the

average degree distribution. Finally, the null network properties are compared to the observed network properties in the analysis step.

https://doi.org/10.1371/journal.pone.0176751.g006
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uniform distribution, U(0,1), creating an N × L matrix rand(N,L). To ensure that we are break-

ing ties without reversing any true orderings, we adjust the random values to be several orders

of magnitude smaller than the minimum difference between entries in A:

D ¼ arg minðAi;j � Ak;lÞ

b ¼
D

1000

E ¼ � bþ ½ 2b � randðN; LÞ�

A0 ¼ AþE

To ensure that the configurations of equally likely location ranks were well sampled, we

repeated the noise addition steps 2000 times to generate a distribution of plausible interaction

networks.

Random matrix permutations

The most basic null model is the element-wise permutation of the OTU abundance matrix.

We chose a uniformly random permutation of the entries in the OTU abundance matrix while

maintaining the background distribution of abundances from which the values were sampled.

The permuted data quickly transitions to having <1% of the OTUs in the largest component;

this is where we set the lower bound for the similarity score threshold.

Thresholding

The threshold that we use, 0.36, produces a network of approximately 300 nodes from the

sparsity-corrected Spearman score data. This threshold was chosen to improve comparability

between our results and those of past studies on the same data [5]. It is also similar to the

threshold used by [27] of 0.30. We did not identify any additional quantitative guidelines for

threshold choice in other studies. Unlike typical methods such as hypothesis tests, the goal

here is choose a threshold that produces an OTU network that corresponds with ecology.

However, given that we have only observational data from this complex environment, the

threshold choice cannot be driven by p-values or false discovery rates. Instead, we use the addi-

tion of noise and permutations (Fig 2) to identify the threshold value (or values) that are most

likely to correspond to ecological function.

Network derivation

The network was derived by defining edges as connections between pairs of OTUs with a ρ
value greater than the absolute value of the chosen threshold. Nodes with no edges (also

known as singletons) were omitted from the network, which is conventional in defining the

network. Average degree, average path length, and diameter were calculated following the defi-

nitions in [33]. Average degree is given by:

hki ¼
2m
n

where m is the number of edges and n is the number of nodes. The average path length is
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given by:

l ¼
1

nðn � 1Þ

X

i 6¼ j

di;j

where di,j is the shortest path between nodes i and j (this is different from the di values used for

the Spearman rank calculation). Diameter is the maximum value of di,j across all pairs of nodes

in the network (i.e., the longest shortest path).

The clustering coefficient is defined as the global proportion of open triangles that are

closed by a third edge. We find all open triangles (i.e., paths of length 2) by taking the dot prod-

uct of the derived network’s adjacency matrix Q with itself. Since this is an undirected graph,

we analyze the upper triangle of the matrix only, not including the diagonal. Next, to find the

proportion of length-two paths traversing three nodes that are also closed triangles, we multi-

ply the upper triangle by the original matrix Q, element-wise. The clustering coefficient c is the

fraction of open triangles that contain a third edge to close the triad:

R ¼ Q � Q

U ¼
Ri;j; if i < j

0; otherwise

(

c ¼
S U

S ðU � QÞ

The maximum modularity was calculated using the popular greedy agglomerative algo-

rithm of [29]. This algorithm begins with all nodes in their own group and then repeatedly

merges the pair of groups that maximizes the marginal improvement in the modularity score

until only one group remains. It then reports the maximum modularity value Q and the corre-

sponding grouping of nodes D that it traversed in this sequence. We used the implementation

of the algorithm in the igraph package in R [54].

Null network models

Erdős–Rényi random graphs were created based on the average degree of the derived network.

Given an average degree of 11.64 and 300 nodes:

11:64 ¼
2m
n

n ¼ 300

m ¼
11:64 � 300

2
¼ 1746

Once we had calculated the number of edges that we wanted in order to produce similar

average degrees to the real data, we used the 300 × 300 adjacency matrix T to determine the
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correct threshold p:

jTj ¼ 300 � 300 ¼ 90; 000

90; 000 � p ¼ 1746 � 2

p ¼
1746 � 2

90; 000
¼ 0:0388

To derive the Erdős–Rényi random graphs, we generated a 300 × 300 uniform random

matrix. We thresholded the upper triangle of the matrix at 1–0.0388 = 0.9612 and reflected it

across the diagonal. All entries on the diagonal were set to 0. This approach is consistent with

the mathematical definition of Erdős–Rényi random graphs, where edges are randomly chosen

for all pairs. Thus, the Erdős–Rényi graph has no self-loops or multi-edges, as each pair is han-

dled once.

For the second null model on the derived network, we used a modified Chung-Lu model to

produce edges between nodes while preserving the expected degree distribution. The probabil-

ity that an edge exists between OTU i and OTU j is given by,

pi;j ¼
kikj
2m

where ki is the degree of node i in the derived network. To generate a single Chung-Lu network

we set n equal to the number of nodes in the observed network. Then, for each pair of nodes

(i, j), we picked a uniform random number between 0 and 1. If the random number was

between 0 and pi,j—which is proportional to the product of their degrees–we created an edge

connecting nodes i and j in the Chung-Lu network. We repeated this method 2000 times to

generate a distribution of Chung-Lu random graphs.

Consensus network

To derive the consensus network, we applied 2000 Monte Carlo runs to the corrected Spear-

man data at the 0.36 threshold. We included edges that appeared in 90% of the trials to pro-

duce the consensus network. We visualized networks using the software Gephi [55]. Nodes

were color-coded by phylum.

Code

All code for processing the data, applying null models, deriving networks, and measuring

network properties are publically available on GitHub. The repository is saved under nkin-

boulder/MicrobeCommunities. The code for this project was written in Matlab and it is exten-

sively commented for clarity.

Supporting information

S1 Fig. Comparison of average degree as a function of threshold. When singleton nodes

(nodes of degree zero) are maintained in the network, we see the pattern in the red line, as

nodes with degree zero contribute to lowering the average degree. When singleton nodes are

discarded, we see the blue line where the average degree is inflated. In the main text, the blue

line, with singleton nodes removed, is reported.

(PDF)
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S2 Fig. Average degree in null models vs. noise-added data. This figure shows the Chung-Lu

random graph has an artificially inflated average degree. This is due to the removal of single-

tons from the graph (red line includes singletons in the degree calculation; green line excludes

them)

(PDF)

S1 File. Abundance matrix: OTUs x locations. This file contains the soil data used for the

analysis.

(XLSX)
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