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Abstract

Mediation analysis is a statistical method for evaluating the direct and indirect effects of an

exposure on an outcome in the presence of a mediator. Mediation models have been widely

used to determine direct and indirect contributions of genetic variants in clinical phenotypes.

In genetic studies, the additive genetic model is the most commonly used model because it

can detect effects from either recessive or dominant models (or any model in between).

However, the existing approaches for mediation model cannot be directly applied when the

genetic model is additive (e.g. the most commonly used model for SNPs) or categorical

(e.g. polymorphic loci), and thus modification to measures of indirect and direct effects is

warranted. In this study, we proposed overall measures of indirect, direct, and total effects

for a mediation model with a categorical exposure and a censored mediator, which accounts

for the frequency of different values of the categorical exposure. The proposed approach

provides the overall contribution of the categorical exposure to the outcome variable. We

assessed the empirical performance of the proposed overall measures via simulation stud-

ies and applied the measures to evaluate the mediating effect of a women’s age at meno-

pause on the association between genetic variants and type 2 diabetes.

Introduction

Mediation analysis is a statistical method used to evaluate the direct and indirect effects of an

exposure on an outcome in the presence of a mediator. Mediation models have been widely

used to determine direct and indirect contributions of genetic variants in clinical phenotypes,

such as contribution of CHRNA3-A5 genes in lung cancer [1–7]. In many studies, one encoun-

ters right- or left-censored data instead of complete data. Approaches to assess mediation

when the outcome variable is censored have been widely studied [8–15]. However, the media-

tor itself can also be a censored variable. For instance, genes may affect the age at which a per-

son stops smoking, a variable that is censored for current smokers and has been associated

with lung cancer–associated mortality [16]. Few studies have considered mediation models

with a censored mediator. Wang and Shete [17] used a multiple imputation approach along
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with the accelerated failure time (AFT) model to address a censored nature of a mediator

when outcome was a continuous variable, and this approach yielded accurate estimations for

the coefficients of different paths, the indirect effect (IE), and proportion of the total effect

mediated (PM) by the mediator. Wang et al. [18] further extended the mediation approach

with a censored mediator for studies with binary outcomes (e.g., case-control studies), based

on the semiparametric AFT model with an unspecified error distribution combined with a

pseudo-likelihood function, which was shown to be efficient yet robust.

In genetic association studies of complex diseases—including our motivating study of the

association between single nucleotide polymorphisms (SNPs), woman’s age at menopause,

and type 2 diabetes—because often there is no concrete evidence of the genetic mode of inheri-

tance, one usually uses three classic genotypic models: the additive, dominant, and recessive

genetic models [19]. For example, consider a SNP with two alleles R and r, and let R be the risk

allele and r be the normal allele. The additive genetic model is defined using a categorical ran-

dom variable, X = (0, 1, 2), to denote the three genotypes (rr, Rr, RR), assuming that the disease

risk depends on the dose of the risk allele R. When the dominant or recessive genetic model is

assumed, we use a binary variable, X = (0, 1, 1) or X = (0, 0, 1), respectively, to denote the three

genotypes (rr, Rr, RR). The additive genetic model is the most commonly used model because

typically the mode of action of susceptibility SNPs is unknown and the additive model can

detect effects from either recessive or dominant models, or any model in between [20–22]. In

addition to SNPs, the highly polymorphic loci, such as human leukocyte antigen (HLA) genes,

can also be involved in the mediation model as an exposure. Such genes have many different

alleles, resulting in many different genotypes (i.e., more than three genotypes found in di-alle-

lic SNPs). The previous approaches by Wang and Shete [17] and Wang et al. [18] assumed that

the exposure is either continuous (e.g., gene expression) or binary (e.g., dominant or recessive

mode of inheritance for a genetic variant). These methods therefore cannot be directly applied

when the genetic model is additive (e.g. the most commonly used model for SNPs) or categori-

cal (e.g. polymorphic loci), and thus, modification to measures of indirect and direct effects is

warranted for these general scenarios. Therefore, we extended our approach to the scenario in

which the exposure is a categorical variable which can be applied to the model where the medi-

ator is subject to censoring.

In particular, we proposed the measures for calculating the overall IE, direct effect (DE),

and total effect (TE) in such a mediation model, where we first assessed the IE, DE, and TE for

each category of the exposure and then calculated the IE, DE, and TE, weighted by the fre-

quency of each category (e.g., frequency of each genotype), to estimate overall effect (IE, DE,

and TE) of the exposure on the outcome variable in the presence of a censored mediator. The

proposed measures provide the overall contribution (indirect, direct and total) of the categori-

cal exposure to the outcome variable, instead of the relative contribution comparing one cate-

gory to another in previous studies [23,24]. The proposed measures are general and valid

regardless of whether the outcome variable and mediator are continuous, binary, or censored.

We applied the proposed overall measures of IE, DE, and TE to the motivating study of the

mediating effect of a woman’s age at menopause on the effect of SNPs on risk of type 2 diabe-

tes. Type 2 diabetes is a complex disease characterized by interplay between genetic and envi-

ronmental factors [25–30]. Previous studies using epidemiologic data or genetic epidemiologic

data have suggested an association between a woman’s age at menopause and type 2 diabetes

[31–33] as well as an association between several SNPs and a woman’s age at menopause

[34,35]. Therefore, we hypothesized that there are potential dual pathways between SNPs and

type 2 diabetes, one via a direct effect and the other indirectly through a women’s age at meno-

pause, which is hypothesized as a mediator for this association and is a censored variable

because not all women have had gone through menopause (Fig 1).
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In Methods section, we introduce the notations; mediation models; definitions of the over-

all IE, DE, and TE; and the associated estimation approaches [18]. We assess the empirical per-

formance of the proposed overall IE, DE and TE via simulation studies in the Simulation

section, conduct a data analysis in the section of Application to the motivation study, and pro-

vide a discussion in the Discussion section.

Methods

We first review the approach by Hayes and Preacher [23], which is a widely used mediation

model in which the exposure has multiple categories, and point out its limitations in the con-

text of our motivating study. In their approach, Hayes and Preacher proposed to code the

multi-categorical exposure using different coding strategies, including dummy coding, con-

trast coding etc., depending on the research interest. For example, when using the dummy

coding, if the multi-categorical exposure X has k groups, one can create k-1 dummy variables

Xi, i = 1, . . . k-1, with Xi = 1 if the subject is in group i and Xi = 0 otherwise, where one group is

considered the reference group in the analysis. In this way, the approach creates multiple

binary exposure variables in one mediation model.

As assumed in the Hayes and Preacher model, when outcome Y and mediator T are contin-

uous, the direct and indirect effects of X on Y are estimated using the dummy-coded multiple

exposure variables, mediator, and outcome using following linear regressions:

T ¼ a0 þ a1X1 þ � � � þ ak� 1Xk� 1 þ ε1

Y ¼ b0 þ bT þ ~c1X1 þ � � � þ ~ck� 1Xk� 1 þ ε2

Y ¼ c0 þ c1X1 þ � � � þ ck� 1Xk� 1 þ ε3;

where ai represents the path from the dummy-coded exposure Xi to the mediator T, ~ci repre-

sents the path from Xi to the outcome Y conditional on the mediator T; ci represents the

Fig 1. Conceptual model for the study of the mediating effect of a women’s age at menopause on the association

between genetic variants and type 2 diabetes risk. Nodes represent the variables being analyzed in the mediation

model, including genetic variant (i.e., exposure), a women’s age at menopause (i.e., mediator) and type 2 diabetes (i.e.,

outcome). A direct edge implies a potential direct causal effect. A pathway from one variable (genetic variant) to

another (type 2 diabetes) implies a potential causal relationship through the mediator on the path (age at menopause).

https://doi.org/10.1371/journal.pone.0257628.g001
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relative total effect of Xi on the outcome Y; i = 1, . . . k-1; and b represents the effect of the

mediator T on the outcome Y. To assess the mediating effects, Hayes and Preacher adopted

the terms relative IE, relative DE, and relative TE, respectively, to refer to aib, ~ci, and

ci ¼ aibþ ~ci; and the effects were calculated for each of the binary exposure variables recoded

from the original exposure. (see details in [23]).

The approach proposed by Hayes and Preacher has advantages over other approaches such

as aggregating groups or discarding to construct a dichotomous exposure, but it still has cer-

tain limitations. Since the relative IE is calculated for each created binary exposure separately,

it cannot provide the overall mediating effect of the mediator on the relation between the expo-

sure and outcome variable. Also, if the exposure has many categories, the number of possible

tests to be conducted can be large. In this case, multiple correction tests reduce the power of

the test for the mediating effect. Importantly, the approach proposed by Hayes and Preacher

[23] assumes that both outcome and mediator are continuous and normally distributed, which

allows one to estimate the relative TE as the summation of relative IE and relative DE. There-

fore, the approach cannot be directly applied in many practical situations, such as when the

mediator is a non-normal distributed variable subject to censoring and the outcome is binary.

More recent work has been conducted to develop approaches for the analysis of treatment/

exposure with multiple categories [24,36–38]. However, these approaches compare one cate-

gory to another of the treatment/exposure without providing overall direct and indirect effects

of the categorical exposure variable on the outcome variable. Furthermore, the direct applica-

tion of these methods to a mediation model with a censored mediator and a binary outcome is

not straightforward. For instance, the approaches proposed by Samoilenko et al. focused on

continuous mediator and outcome [24].

To address these limitations, we proposed an approach to assess the overall mediating effect

of a mediation model in which the exposure is categorical, and the mediator is subject to cen-

soring. In the next sections, we propose definitions for the overall measures for IE, DE, and TE
by extending the approach proposed in Wang et al. [18]. We focused on this approach because,

compared to other existing approaches, it employed the semiparametric AFT model, which

does not require a parametric distribution assumption on the mediators, and the pseudo-likeli-

hood function, which is more flexible to be extended to different outcome variables (e.g., con-

tinuous outcome). However, as mentioned above, the proposed overall measures of IE, DE
and TE are general and valid regardless of whether the outcome variable and mediator are con-

tinuous, binary, or censored or the approaches used.

IE for a mediation model with a categorical exposure and a continuous

outcome

We first present methodology for the scenario when outcome variable is continuous. Let X be

the categorical exposure, T be the mediator subject to right censoring, Y be the continuous

outcome variable and Z be the other covariates involved in a mediation model. For the media-

tor, given an individual i, i = 1, . . ., n, we observe mi = min(ti, ci) and δi = I(ti� ci), where ci is

the right-censored time and δi is the indicator for censored (δi = 0) or observed (δi = 1). For

the categorical exposure, we utilize the dummy coding as suggested in Hayes and Preacher. If

the categorical exposure X has k categories, we create k-1 dummy variables, Xj, j = 1, . . . k-1,

with one of the categories as the reference (Fig 2), where Xj = 1 if X = dj, and Xj = 0 if X 6¼ dj.
That is, X = dj means (X1 = 0, . . . Xj = 1, . . . Xk−1 = 0). For the reference category, X = d0 is

equivalent to (X1 = 0, . . . Xj = 0, . . . Xk−1 = 0). For example, in our motivation study, the expo-

sure is coded as an additive genetic model with three categories (0, 1, 2) denoting the three

genotypes (rr, Rr, RR). Here k = 3 and we create two dummy variables, X1 and X2, using the
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genotype rr (i.e., 0) as the reference group. Specifically, X1 = 1 when X = 1 (genotype Rr) and

X2 = 1 when X = 2 (genotype RR).

The relationships among the variables can be specified using the linear regression model

(i.e., association of exposure and mediator with outcome) and AFT model (i.e., association of

exposure with mediator) as follows:

yi ¼ b0 þ bti þ
Xk� 1

j¼1
~cjxji þ g

Tzi þ εyi;

and

log tið Þ ¼ a0 þ
Xk� 1

j¼1
ajxji þ ~gTzi þ εti ¼ AT

i yþ εti;

where b0, b, ~cj, j = 1, . . ., k − 1, γ, and y ¼ ða0; a1; . . . ; ak� 1; ~g
TÞ

T
are the regression coefficients;

Ai ¼ ð1; x1i; . . . ; xðk� 1Þi; zTi Þ
T
; εyi ~ Normal(0, σ2); and εti represents the independently and

identically distributed random errors with mean zero and an unspecified distribution. Particu-

larly, the coefficients aj, j = 1, . . ., k − 1, correspond to the paths from k-1 dummy variables cre-

ated for the original exposure, X1, X2, . . ., Xk−1, to the mediator T; the coefficients ~cj, j = 1, . . .,

Fig 2. Mediation model with k-1 dummy variables created for the categorical exposure with k groups. Nodes

represent the variables being analyzed in the mediation model, including the k-1 dummy-coded exposure variables, X1,

X2, . . ., Xk−1, the mediator T and the outcome Y. A direct edge implies a potential direct causal effect. A pathway from

one variable (e.g., X1) to another (Y) implies a potential causal relationship through the mediator on the path (T).

https://doi.org/10.1371/journal.pone.0257628.g002
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k − 1, correspond to the paths from k-1 dummy-coded exposure variables to the outcome Y;

and b corresponds to the path from the mediator T to the outcome Y. In the presence of right-

censoring, given a continuous outcome, the likelihood function for the observed data (yi, mi,

δi, x1i, . . ., x(k-1)i, zTi ) for an individual i is given as

L yi;mi; di; x1i; . . . ; x k� 1ð Þi; zi
� �

¼ Pr yijmi; x1i; . . . ; x k� 1ð Þi; zi
� �

f mijx1i; . . . ; x k� 1ð Þi; zi
� �n odi

Z 1

mi

Pr yijt; x1i; . . . ; x k� 1ð Þi; zi
� �

dF tjx1i; . . . ; x k� 1ð Þi; zi
� �� �1� di

¼

exp � yi � b0 þ bmi þ
P

j~cjxji þ g
Tzi

� �� �2

=2s2

� �

ffiffiffiffiffiffiffiffiffiffi
2ps2
p f mijx1i; . . . ; x k� 1ð Þi; zi

� �

8
>><

>>:

9
>>=

>>;

di

Z 1

mi

exp � yi � b0 þ bt þ
P

j~cjxji þ g
Tzi

� �� �2

=2s2

� �

ffiffiffiffiffiffiffiffiffiffi
2ps2
p dF tjx1i; . . . ; x k� 1ð Þi; zi

� �

8
>><

>>:

9
>>=

>>;

1� di

:

We use the two-stage approach proposed in Wang et al. [18] to assess the coefficients for

different paths aj, ~cj, j = 1, . . ., k − 1, and b. In particular, in the first stage, based on the semi-

parametric AFT model [11,39,40], we use a weighted least square estimator to estimate coeffi-

cients aj, with the closed form as

ŷ ¼
Xn

i¼1

diAiAT
i

ĜðmiÞ

( )� 1
Xn

i¼1

diAilogðmiÞ

ĜðmiÞ
;

where Ĝð�Þ is the Kaplan-Meier estimator for the censoring survival function which accounts

for the right-censoring. Based on ŷ ¼ ðâ0; â1; . . . ; âk� 1; ~̂g
TÞ

T
and the AFT model error distri-

bution Ẑŷð�Þ, which is estimated from the censored residues by Kaplan-Meier estimator, in the

second stage, we assess the coefficients for paths b, and ~cj, j = 1, . . ., k − 1, with the use of a log-

pseudo-likelihood function as below, given a sample of n individuals:

PL φð Þ ¼
1

n

Xn

i¼1

di log Prφ yijmi;Aið Þ
n o

þ 1 � dið Þlog
Z t

mi � AT
i ŷ

Prφ yijt þ AT
i ŷ;Ai

� �
dẐŷ tð Þ

" #

;

where φ ¼ ðb0; b;~c1; . . . ;~ck� 1; g
TÞ

T
is the set of parameters to be estimated and τ is the largest

observed event time on a residual scale. The conditional probabilities Prφ(yi|mi, Ai) and

Prφðyijt þ AT
i ŷ;AiÞ can be formulated using the AFT model and the linear regression model.

The estimators φ̂ ¼ ðb̂0; b̂; ~̂c 1; . . . ; ~̂c k� 1; ĝ
TÞ

T
are assessed by maximizing the above log-

pseudo-likelihood with the use of the minimization algorithms such as Nelder and Mead

approach [41]. See Wang et al. [18] for details on parameter estimation.

We propose to assess the overall IE, DE and TE using an approach in which the IEs, DEs

and TEs are calculated based on different categories of the exposure and combined using the

corresponding frequencies of different categories of the exposure. The measures for IE, DE,

and TE of each category of the exposure are derived following the counterfactual framework,

which has been widely applied in mediation analysis, especially for scenarios involving nonlin-

earities and interactions [10,42–49]. Briefly, we denote Ydj
and Tdj

respectively to be the values

of the outcome Y and mediator T that would have been observed if the exposure X had been
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set to dj; and denote Ydjt
to be the value of Y that would have been observed if T and X had

been set to t and dj respectively [18,44,45]. Based on the counterfactual framework, conditional

on the covariates Z, the natural IE is defined as E YdjTdj
jZ

� �
� E YdjTd0

jZ
� �

, which compares

the effects of the mediator T at values of Tdj
and Td0

on the outcome Y when the exposure X is

set to value of dj; while the natural DE is defined as E YdjTd0
jZ

� �
� E Yd0Td0

jZ
� �

, which com-

pares the effects of the exposure X on Y by setting the mediator T to the value it would have

been observed if X had been set to be d0 (reference category). Here, the assumptions on the

absence of unmeasured confounders and consistency are required, which have been exten-

sively discussed in the literature [8,12,13,18,43–48]. The detailed derivations for calculating IE
and DE and associated assumptions are shown in the online S1 Appendix.

For each of the binary dummy-coded exposure variables Xj, j = 1, . . ., k − 1, we evaluate the

IE in the mediation model and denote it as IEj_versus_0 (indirect effect of category X = dj versus

the reference category X = d0), given xj = 0 as the reference group:

IEj versus 0 ¼

P
mE Y j mþ a0 þ aj þ ~gz; xj ¼ 1; z
� �

Zy m j xj ¼ 1; z
� �

�

P
mE Y j mþ a0 þ ~gz; xj ¼ 1; z
� �

Zy m j xj ¼ 0; z
� � :

The overall indirect effect of the exposure X on the outcome Y mediated through the media-

tor T needs to account for the frequency of each possible categories dj of X. Therefore, we

define overall IE as:

IE ¼ f1IE1 versus 0 þ f2IE2 versus 0 þ � � � þ fk� 1IEðk� 1Þ versus 0 ¼
Xk� 1

j¼1
fjIEj versus 0; ð1Þ

where fj, j = 1, . . ., k − 1, is the frequency of category dj of the exposure. For genetic studies, fj is

the genotypic frequencies of possible genotypes of SNP X and can be obtained from external

sources that represent general population such as the 1000 genome project data [42]; or one

could estimate the genotypic frequencies from the current data.

If the models in the above equations are correctly specified, we can estimate the overall

measures of IE based on the estimated AFT model error distribution for the mediator Ẑŷð�Þ

and the estimated coefficients ŷ ¼ ðâ0; â1; . . . ; âk� 1; ~̂g
TÞ

T
and φ̂ ¼ ðb̂0; b̂; ~̂c 1; . . . ; ~̂c k� 1; ĝ

TÞ
T
.

On the basis of the counterfactual framework, the natural IEj_versus_0 for the dummy-coded

exposure Xj, as defined above, measures the expected change in outcome Y due to the effects of

the mediator T at values of Txj¼1 versus Txj¼0 when Xj is set to 1, conditional on the covariates

[18,50]. In turn, the overall IE, calculated accounting for the frequency of different categories

of the exposure, measures the average expected change in Y from the effects of the mediator T
responding to change/transition in the categorical exposure X from any group to the reference

group [50].

We can similarly define direct effects, DEj_versus_0:

DEj� versus� 0 ¼

P
mE Y j mþ a0 þ ~gz; xj ¼ 1; z
� �

Zy m j xj ¼ 0; z
� �

�

P
mE Y j mþ a0 þ ~gz; xj ¼ 0; z
� �

Zy m j xj ¼ 0; z
� � :
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Similarly, the overall DE is then defined:

DE ¼
Xk� 1

j¼1
fjDEj versus 0: ð2Þ

The overall TE is the summation of the IE and DE, calculated as

TE ¼ IEþ DE ¼
Pk� 1

j¼1
fjIEj versus 0 þ

Pk� 1

j¼1
fjDEj versus 0. The proportion of total effect of X on Y

mediated by the mediator T (PM) can be estimated as PM = IE/TE, which is commonly

reported when there is a significant IE [51].

IE for a mediation model with a categorical exposure and a binary outcome

in a case-control study

We further extended the framework in the above section to accommodate a categorical expo-

sure, a censored mediator and a binary outcome (e.g. presence or absence of a phenotype in

case-control studies). The relationships among the variables can be specified using the logistic

regression model and AFT model as follows:

LogitfPrðyi ¼ 1jti; x1i; . . . ; x k� 1ð ÞiÞg ¼ b0 þ bti þ
Xk� 1

j¼1
~cjxji þ g

Tzi;

and

log tið Þ ¼ a0 þ
Xk� 1

j¼1
ajxji þ ~gTzi þ εti ¼ AT

i yþ εti:

All coefficients are defined similarly as for the scenario with a continuous outcome. To

account for the binary nature of the outcome variable in a case-control study where cases may

be oversampled, in stage one, in addition to the weight to account for the right-censoring, we

consider one additional sampling weight, i.e. wi, in the weighted least square estimator to esti-

mate coefficients aj, j = 1, . . ., k − 1, as below:

ŷ ¼
Xn

i¼1

diwiAiAT
i

ĜðmiÞ

( )� 1
Xn

i¼1

diwiAilogðmiÞ

ĜðmiÞ
:

The log-pseudo-likelihood function can be similarly defined by including the sampling

weight:

PL φð Þ ¼
1

n

Xn

i¼1

wi di log Prφ yijmi;Aið Þ
n o

þ 1 � dið Þlog
Z t

mi � AT
i ŷ

Prφ yijt þ AT
i ŷ;Ai

� �
dẐŷ tð Þ

" #

;

where the coefficients φ ¼ ðb0; b;~c1; . . . ;~ck� 1; g
TÞ

T
can be evaluated to provide the coefficients

for paths b and ~cj, j = 1, . . ., k − 1. Specifically, the coefficients ~cj, j = 1, . . ., k − 1, correspond to

the paths from k-1 dummy variables created for the exposure, X1, X2, . . ., Xk−1, to the outcome

Y, and b corresponds to the path from the mediator T to the outcome Y. The sampling weight

wi is included to account for the sampling mechanism of case-control study design. Such

weighting strategy of using inverse disease prevalence is well-established [18,52–58].

To assess the overall IE and DE, we first estimate the IE and DE for each of the dummy-

coded exposure variables Xj, j = 1, . . ., k − 1, as described above, IEj_versus_0 and DEj_versus_0:

IEj� versus� 0 ¼

P
mPr Y ¼ 1 j mþ a0 þ aj þ ~gz; xj ¼ 1; z
� �

Zy m j xj ¼ 1; z
� �

�

P
mPr Y ¼ 1 j mþ a0 þ ~gz; xj ¼ 1; z
� �

Zy m j xj ¼ 0; z
� � ;
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and

DEj� versus� 0 ¼

P
mPr Y ¼ 1 j mþ a0 þ ~gz; xj ¼ 1; z
� �

Zy m j xj ¼ 0; z
� �

�

P
mPr Y ¼ 1 j mþ a0 þ ~gz; xj ¼ 0; z
� �

Zy m j xj ¼ 0; z
� � ;

Based on the estimated AFT model error distribution for the mediator Ẑŷð�Þ and the esti-

mated coefficients ŷ ¼ ðâ0; â1; . . . ; âk� 1; ~̂g
TÞ

T
and φ̂ ¼ ðb̂0; b̂; ~̂c 1; . . . ; ~̂c k� 1; ĝ

TÞ
T
, the overall IE

and DE of the exposure X for the mediation model are calculated using Eqs (1) and (2).

The study and data use were approved by US National Institute of Health and The Univer-

sity of Texas MD Anderson Cancer Center through Material Transfer Agreement (MTA ID:

00016197). The data of the motivating study was downloaded from dbGaP (phs000209.v13.p3)

[59] for the Multi-Ethnic Study of Atherosclerosis (MESA) cohort study. The MESA study was

approved by the Institutional Review Board at each site of the study and informed consent was

obtained from each participant [60].

Simulation

Simulation approach

To examine the performance of the proposed overall measures of IE, DE, and TE, we con-

ducted simulations for a mediation model with a categorical exposure, where the mediator is

subject to right censoring.

Binary outcome. To mimic the motivation study, we first considered a case-control study

in the simulations, with a binary outcome and an additive genetic variant (SNP) as the expo-

sure. We used the robust estimating approach by Wang et al. [18] to estimate the parameters

under the mediation model. For each individual i, the genotype of the genetic variant xi (expo-

sure) was generated with the use of the genotypes’ frequencies assuming the genetic variant is

in Hardy-Weinberg proportion. We assumed a genetic variant with a minor allele frequency

(MAF) of 0.1, 0.3 and 0.5. The genotypic frequencies could be calculated accordingly. For

example, when the MAF was 0.3, the genotypic frequencies were 0.49, 0.42, and 0.09 for the

three genotypes rr, rR, and RR, respectively. Given the exposure xi, the censored mediator ti
was generated using an AFT model log(ti) = a0 + axi + εt, where εt ~ Normal(0, 1) and the

coefficients were set as a0 = 6 and a0 = 0 or 0.4. The right-censoring time ci was generated inde-

pendently from the uniform distributions using different intervals to create different censoring

percentages, ~20% and ~40%. The observed censored variable mi and indicator δi for each

individual were then obtained as mi = min(ti, ci) and δi = I(ti� ci). Conditioned on the values

of xi and ti, the outcome yi was generated using the logistic regression model, where the coeffi-

cients were set to be b = 0 or 0.4, and ~c ¼ 0:5. The intercept coefficient b0 was set to various

values to reflect different disease prevalence of ~10% and ~30%. In this way, we simulated a

large amount of data on the population, from which we randomly sampled same numbers of

cases and controls based on the outcome status. In particular, we randomly sampled 500 cases

and controls for the scenarios where MAF = 0.3 and 0.5; while sampled 2000 cases and con-

trols for the scenarios where MAF = 0.1 to ensure the sufficient sample size in RR genotype cat-

egory, thereby, producing stable estimations of the regression coefficients.

Note that in the simulations, we employed X = (0, 1, 2) corresponding to the genotypes (rr,
rR, RR). In this situation, the regression coefficients, a and ~c, are interpreted as the per-allele

effect, which corresponds to the effect of each copy of the deleterious allele R. When analyzing

the mediation model, as described in the Methods section, we created two dummy variables,

X1 = (0, 1, 0) and X2 = (0, 0, 1) using the genotype rr as the reference group. Given such a
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coding, it is straightforward to derive that a1 = a, a2 = 2a, ~c1 ¼ c, and ~c2 ¼ 2c. That is, a1 = 0 or

0.4; a2 = 0 or 0.8; ~c1 ¼ 0:5; and ~c2 ¼ 1. We report the estimates for a1, a2, ~c1, and ~c2 for the sim-

ulation studies.

For each of the MAF values (i.e., 0.1, 0.3, 0.5), when either coefficient a = 0 or b = 0, we con-

sidered twelve scenarios for which there is no IE through the mediator, with respect to differ-

ent censoring percentages (~20 or 40%) and different disease prevalence (~10 or 30%). When

both a and b are non-zero (i.e., a = b = 0.4), we considered four scenarios for which there is an

IE through the mediator with respect to different censoring percentages and disease preva-

lence. For different scenarios, the theoretical true values of IEs and PMs were calculated using

the prespecified parameters and prespecified normal distribution for the conditional probabil-

ity of the mediator. In our estimating procedure to calculate the empirical IEs and PMs, the

nonparametric Kaplan-Meier estimator of the censored residuals was used to assess the condi-

tional probability of the mediator. To test the significance of the IEs and PMs, the bias-cor-

rected and accelerated (BCa) bootstrap approach [61] was employed to determine the

confidence intervals (CIs) for the IEs and PMs [17,18].

Continuous outcome. When investigating the performance of the proposed overall mea-

sures for a mediation model with a continuous outcome, a categorical exposure (genetic vari-

ant) and a censored mediator, we generated the exposure X and the mediator T similarly as

described above. We still assumed different MAFs for the genetic variant (i.e., 0.1, 0.3, 0.5) and

different censoring percentages for the mediator (i.e., ~20%, ~40%). For each individual i,
given the values of the exposure xi and the mediator ti, the outcome yi was generated using the

linear regression model. The coefficients were set to be b0 = 1, b = 0 or 0.4, and ~c ¼ 0:5. We

randomly generated 1000 samples for the scenarios where MAF = 0.3 and 0.5; and 4000 sam-

ples for the scenarios where MAF = 0.1. For each of the MAF values (i.e., 0.1, 0.3, 0.5), there

were six scenarios for which there is no IE through the mediator (i.e., a = 0 or b = 0); and two

scenarios for which there is an IE through the mediator (i.e., a = b = 0.4), with respect to differ-

ent censoring percentages of the mediator.

Simulation results

Binary outcome. Tables 1 and 2 report the simulation results for all the scenarios assum-

ing a binary outcome in a case-control study and an additive SNP with MAF = 0.3, including

the scenarios for which there is no IE through the mediator (top panel) and those for which

there is an IE through the mediator (bottom panel). In Table 1, we report the means and stan-

dard errors of the estimated coefficients for the different paths, a0, a1, a2, b0, b, ~c1, and ~c2. As

expected, the robust approach provided accurate estimations for all coefficients through differ-

ent scenarios. As an example of no IE, scenario 3, in which the prespecified values were a0 = 6,

a = 0 (i.e., a1 = 0, a2 = 0), b0 = -5 (i.e., disease prevalence = ~10%), b = 0.4, and ~c ¼ 0:5 (i.e.,

~c1 ¼ 0:5, ~c2 ¼ 1), the estimated values were a0 = 5.9995, a1 = 0.0019, a2 = 0.0080, b0 = -5.0064,

b = 0.3984, ~c1 ¼ 0:5057 and ~c2 ¼ 1:0055, respectively, which were close to the prespecified

parameter values in the simulation model. Similarly, under the scenarios where there is an IE
through the mediator, all parameters were accurately estimated. For example, for scenario 15,

in which the prespecified values were a0 = 6, a = 0.4 (i.e., a1 = 0.4, a2 = 0.8), b0 = -3.7 (i.e., dis-

ease prevalence = ~30%), b = 0.4, and ~c ¼ 0:5 (i.e., ~c1 ¼ 0:5, ~c2 ¼ 1), the estimated values were

a0 = 6.0043, a1 = 0.3985, a2 = 0.7809, b0 = -3.6902, b = 0.3975, ~c1 ¼ 0:5004 and ~c2 ¼ 1:0074,

respectively, which were close to the prespecified parameter values in the simulation model.

Table 2 report the means and standard errors of the estimated IEs and PMs (for the scenar-

ios with significant IEs) for MAF = 0.3, obtained using the overall measures proposed in the

study, and the coverage probabilities of the 95% CIs of the IEs and PMs. When estimating the
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IEs and PMs, our overall measures provided accurate estimations for all scenarios. For exam-

ple, for scenario 16, when the theoretical IE and PM were respectively 0.043 and 0.268, the esti-

mated values obtained using our approach were 0.0430 and 0.2767, which were close to the

theoretical values. The 95% coverage probabilities for the IE and PM, based on the proposed

approach, were close to the nominal value of 0.95. The proposed measures were practically not

impacted by different disease prevalence values (~10 or 30%) and censoring percentages (~20

or 40%).

For the other scenarios where the MAFs of the genetic variant (exposure) were 0.1 and 0.5,

the simulation results are reported in the online S1 and S2 Tables, respectively. Similar results

were observed. The proposed approach provided accurate estimations for all coefficients of

Table 1. Binary outcome: Means and standard errors (se) of estimated coefficients for different paths, a0, a1, a2, b0, b, ~c1 and ~c2, given the minor allele frequency

(MAF) = 0.3.

Scenario a b0 b Theoretical

IE
Theoretical

PM
CP prev Estimated Parameters

a0 (se) a1 (se) a2 (se) b0 (se) b (se) ~c1 (se) ~c2 (se)

Without IE
1 0 -2.5 0 0.000 0.000 21% 10% 6.0008

(0.066)

-0.0028

(0.099)

-0.0048

(0.162)

-2.5292

(0.441)

0.0042

(0.072)

0.5023

(0.135)

1.0173

(0.230)

2 0 -2.5 0 0.000 0.000 40% 10% 5.9933

(0.080)

0.0042

(0.113)

-0.0059

(0.197)

-2.4970

(0.499)

-0.0001

(0.081)

0.4879

(0.137)

1.0057

(0.215)

3 0 -5 0.4 0.000 0.000 21% 10% 5.9995

(0.064)

0.0019

(0.094)

0.0080

(0.159)

-5.0064

(0.479)

0.3984

(0.075)

0.5057

(0.144)

1.0055

(0.221)

4 0 -5 0.4 0.000 0.000 36% 10% 6.0047

(0.072)

-0.0057

(0.115)

-0.0077

(0.180)

-5.0142

(0.502)

0.3982

(0.079)

0.5049

(0.149)

1.0229

(0.211)

5 0.4 -2.5 0 0.000 0.000 20% 10% 6.0008

(0.065)

0.3972

(0.098)

0.7943

(0.163)

-2.5287

(0.440)

0.0041

(0.072)

0.5007

(0.137)

1.0144

(0.237)

6 0.4 -2.5 0 0.000 0.000 42% 10% 5.9933

(0.080)

0.4039

(0.116)

0.7873

(0.205)

-2.4913

(0.511)

-0.0010

(0.083)

0.4885

(0.138)

1.0063

(0.223)

7 0 -1.2 0 0.000 0.000 21% 29% 6.0009

(0.059)

0.0002

(0.086)

-0.0053

(0.140)

-1.2027

(0.404)

0.0000

(0.068)

0.5068

(0.131)

1.0163

(0.226)

8 0 -1.2 0 0.000 0.000 40% 29% 5.9959

(0.062)

-0.0005

(0.091)

0.0004

(0.164)

-1.2323

(0.493)

0.0047

(0.081)

0.5069

(0.133)

1.0081

(0.230)

9 0 -3.7 0.4 0.000 0.000 21% 28% 5.9981

(0.057)

-0.0014

(0.085)

-0.0008

(0.136)

-3.7022

(0.444)

0.3988

(0.071)

0.5071

(0.134)

1.0216

(0.240)

10 0 -3.7 0.4 0.000 0.000 40% 28% 6.0060

(0.064)

-0.0074

(0.092)

-0.0155

(0.155)

-3.7249

(0.509)

0.4017

(0.082)

0.5001

(0.138)

1.0281

(0.247)

11 0.4 -1.2 0 0.000 0.000 20% 29% 6.0007

(0.058)

0.4011

(0.084)

0.7954

(0.143)

-1.1998

(0.403)

-0.0005

(0.067)

0.5069

(0.136)

1.0165

(0.236)

12 0.4 -1.2 0 0.000 0.000 39% 29% 5.9973

(0.061)

0.3978

(0.088)

0.8002

(0.167)

-1.2282

(0.491)

0.0040

(0.081)

0.5052

(0.136)

1.0047

(0.239)

With IE
13 0.4 -5.2 0.4 0.021 0.311 20% 9% 5.9987

(0.065)

0.3988

(0.096)

0.7987

(0.155)

-5.1956

(0.488)

0.3978

(0.076)

0.4897

(0.148)

1.0042

(0.228)

14 0.4 -5.2 0.4 0.021 0.311 39% 9% 5.9924

(0.071)

0.4073

(0.110)

0.8013

(0.187)

-5.2247

(0.616)

0.4009

(0.095)

0.4914

(0.148)

1.0196

(0.243)

15 0.4 -3.7 0.4 0.043 0.268 20% 30% 6.0043

(0.052)

0.3985

(0.076)

0.7809

(0.131)

-3.6902

(0.455)

0.3975

(0.074)

0.5004

(0.150)

1.0074

(0.255)

16 0.4 -3.7 0.4 0.043 0.268 39% 30% 6.0006

(0.062)

0.4028

(0.096)

0.7983

(0.155)

-3.7448

(0.521)

0.4059

(0.084)

0.4892

(0.145)

1.0160

(0.256)

The simulation was based on 500 replicates, each with 500 cases and 500 controls. Different scenarios were considered based on different values of a, b0, b, censoring

percentage (CP) and disease prevalence (prev), with a0 = 6 and ~c ¼ 0:5.

Abbreviations: IE, indirect effect; PM: Proportions of the total effect mediated.

https://doi.org/10.1371/journal.pone.0257628.t001
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different paths, as well as IEs and PMs, through various scenarios. It is worth to note that a rel-

atively small MAF for the genetic variant (e.g., 10%) would affect the parameter estimations

for the paths a2, and ~c2, which were particularly pronounced when sample size was smaller

(e.g., 500 cases and controls; data not shown). This is not surprising to observe because in this

situation, the expected frequency of the genotype RR is only 1%, resulting in a very small num-

ber of samples in this category. Larger sample sizes can help to ensure the accurate estimations

of these parameters. Therefore, when MAF = 0.1, we increased the sample size to 2000 cases

and 2000 controls (or 4000 samples for the continuous outcome) in the simulation studies.

Continuous outcome. Tables 3 and 4 report the simulation results for all the scenarios

assuming a continuous outcome and an additive SNP with MAF = 0.3. Similar to the scenarios

with a binary outcome, the proposed approach provided accurate estimations for all coeffi-

cients, IEs and PMs, for mediation models with a continuous outcome, regardless of different

values of a, b, and censoring percentage. For example, for scenario 8, where the prespecified

values for simulation were a0 = 6, a = 0.4 (i.e., a1 = 0.4, a2 = 0.8), b0 = 1, b = 0.4, and ~c ¼ 0:5

(i.e., ~c1 ¼ 0:5, ~c2 ¼ 1), the estimated values were a0 = 5.9954, a1 = 0.4004, a2 = 0.7979, b0 =

1.0084, b = 0.3990, ~c1 ¼ 0:4987, and ~c2 ¼ 0:9944, respectively, which were close to the pre-

specified parameter values (Table 3). Meanwhile, the estimated overall IE and PM were 0.1877

and 0.2433, respectively, which were close to the theoretical values of 0.188 and 0.242

(Table 4). The 95% coverage probabilities for the IE and PM were 0.948 and 0.944 and both

were close to the nominal value of 0.95. The simulation results for scenarios where MAF = 0.1

and 0.5 are reported in the online S3 and S4 Tables, respectively. As in the binary outcome sce-

narios, we increased the sample size to 4000 when MAF = 0.1 for the genetic variant.

Table 2. Binary outcome: Means and standard errors (se) of indirect effects (IEs) and proportions of the total effect mediated (PMs); and coverage probabilities

(cov) of the 95% confidence intervals for the estimations of IE and PM, given the minor allele frequency (MAF) = 0.3.

Scenario a b0 b Theoretical IE Theoretical PM CP prev Estimated Mediating Effects

IE (se) 95% cov PM (se) 95% cov

Without IE
1 0 -2.5 0 0.000 0.000 21% 10% -0.0001 (0.001) 0.990 - -

2 0 -2.5 0 0.000 0.000 40% 10% -0.0002 (0.001) 0.998 - -

3 0 -5 0.4 0.000 0.000 21% 10% 0.0000 (0.004) 0.938 - -

4 0 -5 0.4 0.000 0.000 36% 10% -0.0005 (0.005) 0.930 - -

5 0.4 -2.5 0 0.000 0.000 20% 10% 0.0000 (0.004) 0.944 - -

6 0.4 -2.5 0 0.000 0.000 42% 10% -0.0003 (0.005) 0.927 - -

7 0 -1.2 0 0.000 0.000 21% 29% -0.0001 (0.001) 0.998 - -

8 0 -1.2 0 0.000 0.000 40% 29% -0.0001 (0.002) 0.998 - -

9 0 -3.7 0.4 0.000 0.000 21% 28% -0.0002 (0.007) 0.940 - -

10 0 -3.7 0.4 0.000 0.000 40% 28% -0.0010 (0.008) 0.952 - -

11 0.4 -1.2 0 0.000 0.000 20% 29% -0.0002 (0.007) 0.938 - -

12 0.4 -1.2 0 0.000 0.000 39% 29% 0.0003 (0.009) 0.928 - -

With IE
13 0.4 -5.2 0.4 0.021 0.311 20% 9% 0.0217 (0.005) 0.954 0.3122 (0.080) 0.954

14 0.4 -5.2 0.4 0.021 0.311 39% 9% 0.0219 (0.006) 0.948 0.3134 (0.087) 0.958

15 0.4 -3.7 0.4 0.043 0.268 20% 30% 0.0418 (0.009) 0.962 0.2689 (0.079) 0.938

16 0.4 -3.7 0.4 0.043 0.268 39% 30% 0.0430 (0.011) 0.948 0.2767 (0.083) 0.946

The simulation was based on 500 replicates, each with 500 cases and 500 controls. Different scenarios were considered based on different values of a, b0, b, censoring

percentage (CP) and disease prevalence (prev), with a0 = 6 and ~c ¼ 0:5.

https://doi.org/10.1371/journal.pone.0257628.t002
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Application to the motivation study

We applied the proposed overall measures for IE, DE, and TE for the mediation analysis to the

data from a genetic case-control study of type 2 diabetes downloaded from dbGaP [59], relat-

ing to the Multi-Ethnic Study of Atherosclerosis (MESA) cohort study. The conceptual

Table 3. Continuous outcome: Means and standard errors (se) of estimated coefficients for different paths, a0, a1, a2, b0, b, ~c1 and ~c2, given the minor allele fre-

quency (MAF) = 0.3.

Scenario a b Theoretical IE Theoretical PM CP Estimated Parameters

a0 (se) a1 (se) a2 (se) b0 (se) b (se) ~c1 (se) ~c2 (se)

Without IE
1 0 0 0.000 0.000 21% 5.9990

(0.052)

0.0022

(0.075)

-0.0080

(0.125)

0.9899

(0.210)

0.0011

(0.034)

0.5046

(0.066)

1.0030

(0.114)

2 0 0 0.000 0.000 40% 5.9980

(0.058)

0.0081

(0.087)

-0.0039

(0.159)

1.0108

(0.232)

-0.0019

(0.038)

0.4999

(0.065)

0.9990

(0.115)

3 0 0.4 0.000 0.000 21% 5.9989

(0.051)

0.0007

(0.080)

-0.0012

(0.128)

1.0058

(0.207)

0.3995

(0.034)

0.4938

(0.070)

0.9938

(0.115)

4 0 0.4 0.000 0.000 36% 5.9955

(0.058)

0.0050

(0.087)

0.0075

(0.144)

0.9978

(0.222)

0.4004

(0.036)

0.5016

(0.069)

1.0041

(0.116)

5 0.4 0 0.000 0.000 20% 6.0032

(0.050)

0.3973

(0.073)

0.7999

(0.133)

0.9916

(0.213)

0.0010

(0.035)

0.5053

(0.071)

0.9999

(0.117)

6 0.4 0 0.000 0.000 42% 5.9984

(0.058)

0.3996

(0.094)

0.7856

(0.166)

0.9976

(0.238)

0.0007

(0.039)

0.4989

(0.068)

0.9847

(0.118)

With IE
7 0.4 0.4 0.188 0.242 20% 6.0025

(0.052)

0.3964

(0.078)

0.7907

(0.133)

1.0150

(0.214)

0.3974

(0.035)

0.5033

(0.070)

1.0047

(0.120)

8 0.4 0.4 0.188 0.242 39% 5.9954

(0.053)

0.4004

(0.083)

0.7979

(0.154)

1.0084

(0.237)

0.3990

(0.039)

0.4987

(0.072)

0.9944

(0.124)

The simulation was based on 500 replicates, each with 1000 samples. Different scenarios were considered based on different values of a, b, and censoring percentage

(CP), with a0 = 6, b0 = 1 and ~c ¼ 0:5.

Abbreviations: IE, indirect effect; PM: Proportions of the total effect mediated.

https://doi.org/10.1371/journal.pone.0257628.t003

Table 4. Continuous outcome: Means and standard errors (se) of indirect effects (IEs) and proportions of the total effect mediated (PMs); and coverage probabili-

ties (cov) of the 95% confidence intervals for the estimations of IE and PM, given the minor allele frequency (MAF) = 0.3.

Scenario a b Theoretical IE Theoretical PM CP Estimated Mediating Effects

IE (se) 95% cov PM (se) 95% cov

Without IE
1 0 0 0.000 0.000 21% -0.0001 (0.002) 0.998 - -

2 0 0 0.000 0.000 40% -0.0001 (0.003) 0.996 - -

3 0 0.4 0.000 0.000 21% 0.0000 (0.031) 0.922 - -

4 0 0.4 0.000 0.000 36% 0.0021 (0.032) 0.954 - -

5 0.4 0 0.000 0.000 20% 0.0003 (0.016) 0.938 - -

6 0.4 0 0.000 0.000 42% 0.0005 (0.019) 0.946 - -

With IE
7 0.4 0.4 0.188 0.242 20% 0.1850 (0.034) 0.922 0.2390 (0.044) 0.934

8 0.4 0.4 0.188 0.242 39% 0.1877 (0.035) 0.948 0.2433 (0.045) 0.944

The simulation was based on 500 replicates, each with 1000 samples. Different scenarios were considered based on different values of a, b, and censoring percentage

(CP), with a0 = 6, b0 = 1 and ~c ¼ 0:5.

https://doi.org/10.1371/journal.pone.0257628.t004
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mediation model is shown in Fig 1, where the genetic variant is the exposure (X), the age at

menopause is the mediator (T), and type 2 diabetes status is the outcome variable (Y).

There were 47,871 genetic variants from 2,956 women included in the mediation analysis.

A woman’s age at menopause was censored if she had not gone through menopause, and the

censoring percentage was ~14.5%. Assuming an additive genetic model for all the genetic vari-

ants, we conducted the association analyses of genetic variants with a woman’s age at meno-

pause (path a) as well as with type 2 diabetes status (paths b and ~c). In particular, when

assessing the association between a woman’s age at menopause and a genetic variant with type

2 diabetes (paths b and ~c), we used logistic regression model, where type 2 diabetes status was

the dependent variable and the genetic variant and age at menopause were the predictors. We

included age and ethnicity as covariates in the logistic regression model. When assessing the

association between a genetic variant with a woman’s age at menopause (path a), we used the

AFT model, where age at menopause was the dependent variable and the genetic variant was

the predictor. Ethnicity was adjusted as a covariate in the AFT model. There were four catego-

ries for the ethnicity in the MESA data, including White, Caucasian; Black, African-American;

Chinese American; and Hispanic. Ethnicity was considered as a categorical variable in the

analysis where White, Caucasian was used as the reference category, resulting in three related

coefficients in the AFT model (~g1, ~g2 and ~g3) and the logistic regression model (γ1, γ2 and γ3).

Age was considered as a continuous variable, resulting in one coefficient (γ4) in the logistic

regression model.

For the purpose of demonstration, we considered a threshold of 0.005 to identify top vari-

ants. Our approach identified three variants—rs12744291, rs2503182, and rs11771343—asso-

ciated with both type 2 diabetes and age at menopause to be included in the mediation

analysis. Specifically, the p-values were 1.27×10−3, 2.56×10−3, and 1.43×10−3 for rs12744291,

rs2503182, and rs11771343, respectively, for their association with type 2 diabetes and

5.53×10−4, 4.01×10−3, and 4.12×10−3, respectively, for their association with age at onset of

menopause. The top and middle panels of Table 5 list the estimations for all the coefficients for

the AFT model and logistic regression model, respectively, for the three top genetic variants.

Consider SNP rs12744291 as an example, in the AFT model where age at menopause was the

dependent variable, the estimated coefficients were a1 = 0.8768 and a2 = 1.4933 for the SNP

(path a); and ~g1 ¼ 0:6625, ~g2 ¼ � 0:7286 and ~g3 ¼ � 1:0543 for ethnicity. In the logistic

regression model where type 2 diabetes was the dependent variable, the estimated coefficients

were b = -0.0090, ~c1 ¼ � 0:1704, ~c2 ¼ � 0:8943 for the age at menopause and SNP (paths b
and ~c); and γ1 = 1.4437, γ2 = 1.4859, γ3 = 1.7071, and γ4 = 0.0305 for ethnicity and age.

The bottom panel of Table 5 reports the overall IEs, DEs, TEs, and 95% CIs obtained from

the mediation analysis of the three genetic variants, a woman’s age at menopause, and type 2

diabetes. BCa bootstrapping was used to assess the CIs for IEs as in the simulation studies. The

overall IEs for the three genetic variants, rs12744291, rs2503182, and rs11771343, were

reported as -0.0007, -0.0004, and 0.0005, respectively; and the 95% CIs of IEs for all three

genetic variants include zero. These results suggest no statistically significant mediating effect

of the age at menopause on the association between the three variants and type 2 diabetes risk.

Discussion

In this study, we proposed overall measures to calculate the IE, DE, and TE for a single cen-

sored mediator model involving a categorical exposure. Specifically, we defined the IE, DE,

and TE for each of the categories for the exposure first and then assessed the overall IE, DE,

and TE of the exposure accounting for the frequencies of different categories of the categorical

exposure variable.
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Compared with the traditional approach for a multi-categorical exposure, the proposed

measure has several advantages. First, it provides an overall IE, DE, and TE of the mediation

model from the exposure, instead of relative IE, DE, and TE as described in previous studies.

Second, it avoids the multiple testing issue caused by recoding the multi-categorical exposure

into multiple binary exposure variables. We did not compare the proposed approach of han-

dling categorical exposure variable with the one used in Wang et al. [18] because their

approach is limited to binary exposure only.

We demonstrated the performance of proposed overall measures with simulation studies

for the mediation model with a binary outcome or a continuous outcome and a right-censored

mediator. Note that such measures are general and robust and can be employed regardless of

whether the outcome variable is continuous or binary and the mediator is censored or not. We

also investigated the performance of the proposed overall measures for mediation models in

the presence of covariates using simulations (online S5 Table). In particular, we considered a

mediation model with a binary outcome. Without loss of generality, we fixed the MAF at 0.3,

the censoring percentage at ~20% and the disease prevalence at ~10%. We followed the same

procedure as described in the Simulation section to generate data. In addition to the exposure,

mediator and outcome, we generated a continuous covariate Z~Normal(0, 0.52), which was

associated with both the mediator T and outcome Y. Based on the simulation results, we

observed accurate estimations for all the coefficients, as well as IE and PM. For example, for

Table 5. Estimations of the coefficients, as well as the overall total effects (TEs), direct effects (DEs), and indirect effects (IEs), along with 95% confidence intervals

(CIs), for the single nucleotide polymorphisms (SNPs) associated with both type 2 diabetes and a woman’s age at menopause in the real data analysis�.

AFT model: association of SNPs with a woman’s age at menopause

Age at

menopause

SNP Ethnicity Age

CHR SNP a0 (CI) - a1 (CI) a2 (CI) ~γ 1 (CI) ~γ 2 (CI) ~γ 3 (CI) -

1 rs12744291 48.2383

[47.77,48.68]

- 0.8768

[0.21,1.54]

1.4933 [0.49,2.37] 0.6625

[-0.15,1.38]

-0.7286 [-1.60,-

0.02]

-1.0543 [-1.83,-

0.17]

-

1 rs2503182 48.4052

[47.96,48.86]

- 0.5798

[-0.03,1.16]

1.5801 [0.34,2.97] 0.8090

[-0.06,1.61]

-0.8548 [-1.78,-

0.04]

-0.9349 [-1.64,-

0.18]

-

7 rs11771343 49.0283

[48.58,49.47]

- -0.6597 [-1.36,-

0.02]

-1.0868

[-1.95,0.02]

1.0655

[0.20,1.73]

-0.3479

[-1.52,0.54]

-0.9968 [-1.90,-

0.30]

-

Logistic regression model: association of SNPs and a woman’s age at menopause with type 2 diabetes

Age at

menopause

SNP Ethnicity Age

CHR SNP b0 (CI) b (CI) ~c1 (CI) ~c2 (CI) γ1 (CI) γ2 (CI) γ3 (CI) γ4 (CI)

1 rs12744291 -4.5419 [-6.22,-

3.38]

-0.0090

[-0.03,0.01]

-0.1704

[-0.43,0.11]

-0.8943 [-1.54,-

0.38]

1.4437

[0.96,1.84]

1.4859 [1.11,1.81] 1.7071

[1.34,2.12]

0.0305[0.02,

0.04]

1 rs2503182 -4.6732 [-6.24,-

3.67]

-0.0078

[-0.03,0.01]

-0.2587 [-0.55,-

0.01]

-0.9561 [-2.10,-

0.39]

1.3750

[0.93,1.89]

1.4857 [1.11,1.85] 1.6363

[1.31,2.00]

0.0321

[0.02,0.05]

7 rs11771343 -5.1460 [-6.83,-

3.55]

-0.0063

[-0.03,0.01]

0.4255

[0.07,0.73]

0.5624 [0.21,0.93] 1.2643

[0.83,1.75]

1.2940 [0.83,1.73] 1.6725

[1.32,2.04]

0.0324

[0.02,0.04]

TE, DE, and IE
CHR SNP TE CI of TE DE CI of DE IE CI of IE

1 rs12744291 -0.0275 [-0.0511,-0.0024] -0.0267 [-0.0498,-0.0024] -0.0007 [-0.0037,0.0004]

1 rs2503182 -0.0309 [-0.0549,-0.0101] -0.0305 [-0.0545,-0.0096] -0.0004 [-0.0018,0.0008]

7 rs11771343 0.0432 [0.0119,0.0639] 0.0427 [0.0117,0.0647] 0.0005 [-0.0010,0.0029]

The 95% confidence intervals (CIs) were assessed using a bootstrap approach with 200 bootstraps.

� Proportions of total effects mediated by the mediator are not reported because the indirect effects are nonsignificant.

Abbreviation: CHR, chromosome.

https://doi.org/10.1371/journal.pone.0257628.t005
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the scenario 4 in S5 Table, the estimates of IE and PM were 0.0223 and 0.3000, respectively,

which were close to the theoretical values of 0.022 and 0.309. The corresponding coverage

probabilities were 0.939 and 0.944, respectively, which were close to the nominal value of 0.95.

These results show that the proposed measures are robust even in presence of covariates.

Furthermore, in practice, one may encounter censored data for both outcome variable (e.g.,

time to onset of disease) and mediator. The approach, using the semiparametric AFT model

combined with a pseudo-likelihood function, can be extended to such a mediation model

where the outcome variable is also censored. Particularly, one can revise the pseudo-likelihood

function to accommodate the survival component. Survival regression models, such as the

commonly used Weibull regression model [62], may be employed to address this issue. How-

ever, the development of such extension is not straightforward and will need further

investigation.

We applied the overall measures of IE, DE, and TE to the motivation study of genetic vari-

ants, a woman’s age at menopause, and type 2 diabetes risk. Assuming the additive genetic

model for the genetic variants, we identified three variants, rs12744291, rs2503182, and

rs11771343, to be included in the mediation analysis because they were associated with both

the mediator (i.e., a woman’s age at menopause) and the outcome (i.e., type 2 diabetes status).

The results from the mediation analysis showed that a woman’s age at menopause had no

mediating effect on the effect of the three genetic variants on type 2 diabetes risk.

Important assumptions required for the mediation analysis have been discussed previously

[17,18]. The sensitivity analysis for the assumptions about unmeasured confounders for the

derivations of IE and DE have been extensively conducted and discussed for the motivation

study in our previous study [18]. In addition to the “no-unmeasured-confounder” assump-

tions, we assumed that the mediation model was accurately specified and there were no mea-

surement errors for all the variables in the mediation model. Specifically, for our real data

application, we conceptualized the mediation model based on the literature, including the

causal orders and causal directions [25–35], and assumed that all the variables, including the

exposure, mediator, outcome, and covariates, had no measurement errors.

Besides the assumptions for the mediation analysis, for the parameter estimation approach

using the semiparametric AFT model, we assumed that the censoring process for the mediator

was independent of the mediator T, exposure X, outcome Y, and covariates Z. Sensitivity anal-

ysis was conducted previously and showed some degree of robustness for the approach to the

violation of the independence assumption [18]. We used the AFT model to relate the exposure

to the mediator because it provides the change in the length of survival time as a function of

the effect of the exposure, which has an easy way to interpret in the mediation context [17,18].

Other semiparametric survival models, such as the most popularly used Cox proportional

model, could be adapted in the mediation model with a censored mediator. However, such

adaptation is not straightforward. For example, the measure of effect for the Cox proportional

model is the hazard ratio. In such a case, the mediating effect could be difficult to be inter-

preted because it is the survival time but not the hazard ratio to be expected to have causal

effect on the outcome variable. Using other semiparametric survival model in the mediation

analysis is of interest to investigate; however, future work is necessary for the derivation of the

IE, DE and TE so that these effects can be appropriately interpreted in the mediation context.

Parametric (linear and logistic regressions) and semiparametric approaches (semipara-

metric AFT model) were employed in the estimation of coefficients for different paths in the

mediation model, which usually rely on certain modeling assumptions in one way or another

[63–65]. Alternatively, non-parametric approaches to mediation analysis, which has been

received a great deal of attention recently, could be considered [63,66–68]. Extension of the
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current proposed approach for mediation model, where the mediator is censored and the

exposure is categorical, to the non-parametric framework will be worthy of future research.
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disease prevalence (prev), with a0 = 6 and ~c ¼ 0:5.
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1, and ~c ¼ 0:5.
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0.5. Means and standard errors of estimated coefficients for different paths, indirect effects (IEs)
and proportions of the total effect mediated (PMs); and coverage probabilities of the 95% confi-
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S5 Table. Binary outcome: Simulation results for a mediation model in presence of a covar-

iate. Means and standard errors of estimated coefficients for different paths, indirect effects

(IEs) and proportions of the total effect mediated (PMs); and coverage probabilities of the 95%

confidence intervals for the estimations of IE and PM, obtained based on 500 replicates, each

with 1000 cases and 1000 controls, given the minor allele frequency (MAF) = 0.3. Different

scenarios were considered based on different values of a, b0, and b, with a0 = 6, ~c ¼ 0:5,
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