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ABSTRACT—Objective: The aim of this study was to characterize early urinary gene expression differences between patients
with sepsis and patients with sterile inflammation and summarize in terms of a reproducible sepsis probability score. Design:
This was a prospective observational cohort study. Setting: The study was conducted in a quaternary care academic hos-
pital. Patients: One hundred eighty-six sepsis patients and 78 systemic inflammatory response syndrome (SIRS) patients en-
rolled between January 2015 and February 2018. Interventions:Whole-genome transcriptomic analysis of RNAwas extracted
from urine obtained from sepsis patients within 12 hours of sepsis onset and from patients with surgery-acquired SIRS within
4 hours after major inpatient surgery. Measurements and Main Results: We identified 422 of 23,956 genes (1.7%) that were
differentially expressed between sepsis and SIRS patients. Differentially expressed probes were provided to a collection of ma-
chine learning feature selection models to identify focused probe sets that differentiate between sepsis and SIRS. These probe
sets were combined to find an optimal probe set (UrSepsisModel) and calculate a urinary sepsis score (UrSepsisScore), which is
the geometricmean of downregulated genes subtracted from the geometric mean of upregulated genes. This approach summa-
rizes the expression values of all decisive genes as a single sepsis score. The UrSepsisModel and UrSepsisScore achieved
area under the receiver operating characteristic curves 0.91 (95% confidence interval, 0.86–0.96) and 0.80 (95% confidence in-
terval, 0.70–0.88) on the validation cohort, respectively. Functional analyses of probes associated with sepsis demonstrated
metabolic dysregulation manifest as reduced oxidative phosphorylation, decreased amino acid metabolism, and decreased ox-
idation of lipids and fatty acids. Conclusions: Whole-genome transcriptomic profiling of urinary cells revealed focused probe
panels that can function as an early diagnostic tool for differentiating sepsis from sterile SIRS. Functional analysis of differentially
expressed genes demonstrated a distinct metabolic dysregulation signature in sepsis.
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INTRODUCTION

Sepsis is a time-sensitive condition associated with significant
mortality, morbidity, and health care costs, especially when the di-
agnosis is delayed. Clinicians often fail to accurately differentiate
between sepsis and a sterile systemic inflammatory response syn-
drome (SIRS) among patients who incur sterile tissue damage from
major surgery (1). Sepsis is driven by a dysregulated host response
to pathogens; sterile SIRS is driven primarily by tissue damage (2).
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Sepsis and SIRS converge on similar systemic inflammation path-
ways, leading to similar clinical manifestations and diagnostic uncer-
tainty (3,4). Early accurate differentiation between sepsis andSIRS
has important implications for patient outcomes. For sepsis, failure to
initiate early antibiotic therapy and intravenous fluid resuscitation is as-
sociated with increased mortality; for SIRS, administering unnecessary
antibiotics and large intravenous fluid volumes are associated with
multidrug-resistant infections and increased mortality (5–7).
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Given the importance of early recognition of sepsis and inher-
ent difficulties in differentiating between sepsis and postoperative
SIRS using clinical criteria alone, it may be helpful to incorporate
gene signatures in diagnostic tests. Transcriptomic profiling of
whole blood has been used to understand pathophysiologicmech-
anisms of sepsis and sterile SIRS (8,9). Blood-based gene micro-
arrays have demonstrated efficacy in differentiating sepsis from
SIRS (10,11).

Besides blood samples, urine is often collected from critically
ill patients as standard clinical care and may offer unique insights
regarding inflammatory disease etiologies. We have previously
demonstrated that whole-genome transcriptomic profiling of uri-
nary cellular mRNA is different between sepsis and noninfected
controls (12). However, the same has not been done between sep-
sis and SIRS where the true clinical utility lies. Therefore, the di-
agnostic utility of urine sepsis biomarkers in distinguishing sepsis
from SIRS has not been established.

In this prospective observational study of SIRS and sepsis pa-
tients, we tested the hypothesis that machine learning feature selec-
tion from whole-genome transcriptomic urinary RNA signatures
can identify gene expression patterns that differentiate between
sepsis and sterile SIRS within 12 hours of sepsis onset.
MATERIALS AND METHODS

Participants
Sepsis patients were prospectively recruited between January 2015 and August

2017 from a prospective longitudinal cohort of surgical sepsis patients at UF Health
ShandsHospital (NCT02276066); sterile SIRS patients were prospectively recruited
between July 2015 and February 2018 from a prospective observational study of pa-
tients undergoing cardiac or vascular surgery at the same hospital (NCT02114138)
(see Figure, Supplemental Digital Content 1, http://links.lww.com/SHK/B473,
which shows the cohort study diagram). The study protocols were finalized,
and institutional review board approvals were obtained (IRB201400611 and
IRB201400127) before recruiting patients (13). All study participants provided
written informed consent. There was no overlap of patients between the two
cohorts. This study complied with the STROBE (Strengthening the Reporting
of Observational Studies in Epidemiology) reporting guidelines for observational
studies (14).

Inclusion criteria for sepsis patients were intensive care unit (ICU) admission,
age ≥18 years, and clinical adjudication of sepsis by an attending physician ac-
cording to the American College of Chest Physicians consensus criteria (15), with
subsequent initiation of a computerized sepsis protocol, as previously described
(16). Sepsis was initially diagnosed using a modified version of theModified Early
Warning Score–Sepsis Recognition Score (17), which factors in the temperature,
heart rate, respiratory rate, blood pressure, and level of consciousness of the patient.
Patients who had been identified by the Modified Early Warning Score screening
protocol were subsequently assessed directly by a physician or advanced practice
provider for bedside clinical adjudication of the presence of sepsis. Patients who
were diagnosed with sepsis were started on a computerized sepsis protocol that
maps clinical workflows and recommendations to patient physiology and clinical inter-
ventions. The sepsis protocol was developed by a multidisciplinary team of surgeons,
intensivists, advanced practitioners, nurses, respiratory therapists, pharmacists,
pathologists, and computer engineers, based on Surviving Sepsis Campaign
guidelines (13). The sepsis assessment protocol is described in more detail in Sup-
plementary Methods (see Text, Supplemental Digital Content 2, http://links.lww.
com/SHK/B474, which has the detailed methodology). Patients were excluded
if they had urinary tract infection (UTI) as the primary source of sepsis, end-stage re-
nal disease, advanced liver disease, pancreatic disease, or heart disease (see Figure,
Supplemental Digital Content 1, http://links.lww.com/SHK/B473, which shows
the cohort study diagram). All patients in the SIRS cohort underwent inpatient car-
diac or vascular surgery and had no infection before surgery. All patients in the SIRS
cohort satisfied the SIRS criteria; that is, they met at least two of the four criteria de-
scribed by Bone (18).

All clinical data were collected prospectively. Disease severity was measured
by Sequential Organ Failure Assessment (SOFA) scores. Clinical patient out-
comes, including in-hospital and 12-month mortality, were prospectively collected
for both cohorts. For sepsis patients, urine was collected within 12 hours of sepsis
Copyright © 2022 by the Shock Society. Unauthor
onset; for SIRS patients, urinewas collectedwithin 4 hours after the end of surgery. A
subset of subjects in these cohorts has been used in a previous research study (12).

Discovery and validation cohorts
The discovery cohort includes 145 sepsis patients and 39SIRSpatients prospectively

recruited between January 2015 and February 2017. The validation cohort includes 41
sepsis patients and 39 SIRS patients recruited between February 2016 and
February 2018. Cohort sample sizes ensure that at least 85% of the probes have
power greater than 80% to detect a twofold change between themean RNAexpres-
sions of sepsis and SIRS patients, using a two-sided, independent t test with
Bonferroni corrections. A subset of the sepsis cohort has been used in a prior research
study (12).

Processing and purification of urine samples
Previously described protocols were used to separate cell pellets from urine su-

pernatant and to isolate total cellular RNA from the cellular urine pellet (12). These
methods are elaborated in the Supplementary Methods (see Text, Supplemental
Digital Content 2, http://links.lww.com/SHK/B474, which has the detailed meth-
odology). The quantity (absorbance at 260 nm) and purity (ratio of the absorbance
at 260 and 280 nm) of RNA isolated from the urine cell pellet were measured using
the Take3 Multi-Volume Plate and Synergy HT Multi-Detection Microplate Reader
(BioTek, Winooski, Vermont, USA). An RNA sample passed quality control if the
optical density 260-to-280 ratio was between 1.5 and 2.2, and the final concentra-
tion was at least 8.7 μg/mL (see Table, Supplemental Digital Content 3, http://links.
lww.com/SHK/B475, which shows quality, quantity, and concentration of RNA
samples) (19). Figure 1A shows how the urine containing immune cells and
pathogen/damage-associated molecular patterns was centrifuged and sepa-
rated into cellular mRNA, exosomal mRNA, and metabolites. In this study, the
cellular mRNAwas used to find an early sepsis signature.

Microarrays
Biotin-labeled sense strand complementary DNA was prepared and was hy-

bridized to GeneChip Human Transcriptome Array (HTA 2.0) array (catalog no.
902162; Affymetrix, Santa Clara, California, USA) using previously described
protocols further described in Supplementary Methods (see Text, Supplemental
Digital Content 2, http://links.lww.com/SHK/B474, which has the detailed meth-
odology) (12). Furthermore, array scanning, image analysis, and probe quantifi-
cation were performed using previous protocols as described in Supplemen-
tary Methods (see Text, Supplemental Digital Content 2, http://links.lww.com/
SHK/B474, which has the detailed methodology). Transcriptome Analysis Con-
sole (TAC) version 4.0.1 (Thermo Fisher Scientific, Santa Clara, California,
USA) was used for microarray signal summarization and normalization using ro-
bust multiarray averages (Fig. 1B) (20). The final microarray data set consisted of
log2-transformed expression values for 67,528 probes, of which 33,494 were
mapped to at least one gene. Raw and normalized expression data are available un-
der GSE168443, GSE168442, and GSE168440, GEO series accessions.

Identification of cell-specific transcripts
The 33,494 probes mapped to genes were used to estimate the samples' im-

mune and kidney cell composition (Fig. 1B). The immune response in silico
(IRIS) repository of 1622 genes, classified by their specific expression in multiple
immune cell lineages and previously described transcript sets of 637 genes for
kidney-specific cell lineages, were used to estimate the immune and renal cell com-
position in urine (21,22), respectively.

Identifying genes that discriminate between sepsis and SIRS
We applied an empirical Bayes method in LIMMA (Linear Models for Mi-

croarray Analysis) to identify probes that differentiate between sepsis and
SIRS (23). The significance threshold was adjusted for multiple testing using the
Benjamini-Hochberg false discovery rate (FDR). Probes were considered differen-
tially expressed if they had an FDR-adjusted probability ofQ≤ 0.01 and an absolute
fold change ≥2. Gene expression patterns were illustrated using Euclidean distance
heatmaps with ComplexHeatmap. Sepsis endotypes were explored by projecting the
differentially expressed probes onto a two-dimensional t-stochastic neighbor embed-
ded (t-SNE) manifold and labeling by sepsis severity, primary diagnosis, endotype,
mortality, sepsis onset time, and demographics (age, sex, race). Ingenuity Pathway
Analysis (IPA) software (http://www.ingenuity.com) was used to identify signifi-
cantly enriched biological functions, pathways, molecular networks, and regula-
tory molecules associated with the differentially expressed genes (Fig. 1B).

Feature selection
The differentially expressed probes were subjected to feature selection using

random forest, recursive feature elimination using support vector machine (SVM)
ized reproduction of this article is prohibited.
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FIG. 1. Workflow.A,Process flow for isolationof urinarymarkers. B,Conceptual
workflow from data acquisition to analysis. Panel A is adapted fromBandyopadhyay
et al. (12), 2020; Copyright © 2020 The Authors. Published by Wolters Kluwer
Health, Inc., on behalf of the Society of Critical Care Medicine.
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classifier, logistic regression with Lasso, and Boruta (24) (Fig. 1B) machine learning
techniques to generate four different lists of selected features. Here, random forest
selected 100 features, Boruta selected 30 features, recursive feature elimination
SVM selected 300 features, and Lasso selected 157 features. Details on feature
selection methodology are provided in Supplementary Methods (see Text,
Supplemental Digital Content 2, http://links.lww.com/SHK/B474, which has
the detailed methodology). All machine learning methods except for Boruta were
parametrized inside a fivefold cross-validation design. Finally, a simple voting
strategy was used to identify features appearing in two, three, or all four of the four
feature lists.

UrSepsis model validation
The final list of probes was validated using the microarrays of 41 sepsis pa-

tients and 39 SIRS patients, normalized separately from the discovery cohort.
We used each of the three feature selection techniques that were trained and
tuned with discovery cohort cross-validation (i.e., support vector machine, ran-
dom forest, and logistic regression) to calculate the following performance met-
rics: area under the receiver operating characteristics curve (AUC), accuracy,
Copyright © 2022 by the Shock Society. Unauth
F1 score, sensitivity, specificity, and positive predictive value. Ninety-five per-
cent confidence intervals (CIs) for each performance metric in each model were
estimated by bootstrapping the validation cohort without replacement 100
times. These methods compose the UrSepsis model.

UrSepsisScore calculation
The UrSepsisScore was calculated by the geometric mean of downregu-

lated genes subtracted from the geometric mean of upregulated genes, similar
to the sepsis score developed by Sweeney and Khatri (25). The UrSepsisScore
summarizes expression values of decisive genes in a single value. We determined
the threshold for partitioning between sepsis and SIRS patients by maximizing
AUC on the discovery cohort. We then evaluated UrSepsisScore performance
in the independent validation cohort. Bioconductor (version 3.7, Buffalo, New
York, USA) in R (version 3.4.2, Vienna, Austria) and scikit-learn (version 0.19.2,
Paris, France) in Python (version 3.8, Fredericksburg, Virginia, USA) were
used in this project.
RESULTS

Patient characteristics

Compared with sepsis patients, SIRS patients in the validation
cohort had advanced age (65 vs. 55 years) and a greater propor-
tion of current or former smokers (67% vs. 41%). Comorbidities
were similar between sepsis and SIRS patients (Table 1). Among
SIRS patients, all urine samples were obtained within 4 hours af-
ter the end of surgery. Among sepsis patients, all samples were
collected within 12 hours of sepsis onset. The median interval be-
tween sepsis onset and urine collection was 7 hours. Patients who
had UTI as the primary cause of sepsis were excluded from the
study as they had a significantly larger RNA load, which is indica-
tive of a higher cell count in their urine. A single-tailed t test carried
out between RNA quantities of sepsis patients with and without
UTI as their primary cause of infection showed a P = 0.008, as-
suming equal variance. Their variances were found to be identical
by an F value of 2.41E−6, where the F critical was 1.714. A sen-
sitivity analysis showed that including patients with UTI in the
sepsis cohort resulted in 10% more differentially expressed
probes. No samples were excluded from the study based on their
RNA quantity as they all passed the quality-control step in Tran-
scriptome Analysis Console analysis. At the time of urine sam-
pling, sepsis and SIRS cohorts had similar SOFA scores. As ex-
pected, white blood cell counts were higher in sepsis patients.
None of the SIRS patients developed sepsis within 7 days of sur-
gery. Sepsis patients had longer median lengths of stay in the ICU
(4–5 days longer) and hospital (8 days longer). The different surgi-
cal procedures that SIRS patients underwent are presented in the
Supplementary (see Table, Supplemental Digital Content 4, http://
links.lww.com/SHK/B476, which lists surgical procedures under-
gone by SIRS subjects).

The acute urinary molecular response to sepsis

We identified a distinct urinary transcriptomic profile includ-
ing 422 candidates out of 23,956 genes (1.7%) that were differen-
tially expressed between sepsis and SIRS patients, defined here as
FDR ≤1% and absolute fold change≥2 (Fig. 2, A and B). Princi-
pal component analysis showed that the sepsis profile was distinct
from the SIRS profile, as illustrated in Figure 2C, despite there be-
ing some overlap between the two groups. Patients with SIRSwere
in the bottom right of a two-dimensional plot between principal
component (PC) 1 and PC 2, and the top-right part in a PC 1 versus
PC 3 plot (see Figure, Supplemental Digital Content 5, http://links.
orized reproduction of this article is prohibited.
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TABLE 1. Clinical characteristics of patients in discovery and validation cohorts

Variables

Discovery cohort Validation cohort

Sepsis patients
(n = 145)

SIRS patients
(n = 39) P

Sepsis patients
(n = 41)

SIRS patients
(n = 39) P

Baseline characteristics
Female sex, n (%) 67 (46) 14 (36) 0.279 17 (41) 17 (44) 1
Age, mean (SD), y 59 (15) 70 (10) <0.001 55 (18) 65 (11) 0.004
Age ≥65 y, n (%) 55 (38) 30 (77) <0.001 16 (39) 23 (59) 0.117
Race, n (%) 0.036 0.553
White 130 (90) 34 (87) 37 (90) 33 (85)
African American 12 (8) 1 (3) 4 (10) 4 (10)
Other 3 (2) 4 (10) 0 (0) 2 (5)
BMI, median (25th, 75th) 29 (25, 34) 25 (22, 34) 0.049 29 (25, 40) 29 (25, 33) 0.283
Comorbidities, n (%)
Chronic kidney disease 19 (13) 6 (15) 0.793 6 (15) 12 (31) 0.178
Hypertension* 102 (70) 30 (77) 0.548 29 (71) 33 (85) 0.183
Diabetes† 43 (30) 8 (21) 0.316 9 (22) 13 (33) 0.319
Chronic pulmonary disease 51 (35) 15 (38) 0.71 9 (22) 14 (36) 0.219
Congestive heart failure 23 (16) 8 (21) 0.478 6 (15) 11 (28) 0.176
Current or former smoker* 74 (51) 33 (85) <0.001 17 (41) 26 (67) 0.027

Acuity at the time of sampling
SOFA score, median (25th, 75th) 6 (3, 8) 4 (2, 8) 0.042 6 (3, 7) 6 (4, 8) 0.882
Primary sepsis source, n (%)
Intra-abdominal sepsis 61 (42) NA 18 (44) NA
Pneumonia 31 (21) NA 8 (20) NA
Necrotizing soft tissue infection 26 (18) NA 7 (17) NA
Surgical site infection 19 (13) NA 1 (2) NA
UTI 0 (0) NA 0 (0) NA
Other† 8 (6) NA 7 (17) NA

Sepsis stage on enrollment, n (%)
Sepsis/severe sepsis 112 (77) NA 33 (80) NA
Septic shock 33 (23) NA 8 (20) NA

Lactate, median (25th, 75th), mmol/L 1.8 (1.3, 2.9) 2.1 (1.3, 3.4) 0.612 1.7 (1.2, 2.5) 2.8 (1.8, 6) 0.002
Serum creatinine, median (25th, 75th), mg/dL 1.0 (0.7, 1.5) 1.1 (0.9, 1.4) 0.31 1.1 (0.9, 1.7) 1.0 (0.9, 1.3) 0.252
Urea nitrogen, median (25th, 75th), mg/dL 19 (12, 32) 16 (14, 21) 0.094 24 (17, 36) 19 (13, 24) 0.013
White blood cell count, median (25th, 75th), �103/μL 17 (12, 22) 13 (9, 15) <0.001 19 (14, 26) 15 (11, 18) 0.007
Hematocrit, median (25th, 75th), % 27 (23, 32) 27 (25, 32) 0.408 26 (24, 31) 26 (23, 29) 0.229

Outcomes
Hospital mortality, n (%) 11 (8) 1 (3) 0.466 6 (15) 0 (0) 0.026
Discharge to home, n (%) 72 (50) 27 (69) 0.032 17 (41) 25 (64) 0.048
ICU LOS, median (25th, 75th), d 8 (4, 18) 5 (4, 8) 0.056 10 (5, 15) 5 (3, 11) 0.064
ICU ≥14 d, n (%) 49 (34) 6 (15) 0.03 16 (39) 6 (15) 0.024
Hospital LOS, median (25th, 75th), d 18 (9, 28) 10 (6, 18) 0.009 17 (11, 30) 9 (6, 13) <0.001

Significance level is set to be 0.05.
Boldface values represent statistical significance.
*Percentages are calculated based on available values due to missing values.
†Other primary sepsis source includes catheter-related bloods, empyema, bacteremia, and esophageal perforation.
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lww.com/SHK/B477, which separately shows the comparison of
PC 1 with PC 2 and PC 3). The t-SNE projections did not result in
any clustering within the sepsis cohort, indicating the absence of any
definite sepsis endotypes (see Figure, Supplemental Digital Content
6, http://links.lww.com/SHK/B478, which shows two-dimensional
t-SNE projections of differentially expressed genes of sepsis patients
colored by different disparities). Ingenuity Pathway Analysis func-
tional analyses showed downregulation of functional pathways
related to amino acid metabolism, lipid metabolism, and energy
production in sepsis. Among the top 20 pathways, 19 were under-
expressed in sepsis, and 1 pathway was overexpressed. The five
most underexpressed pathways in sepsis were valine degradation,
fatty acid β-oxidation, phenylalanine degradation, oxidative phos-
phorylation, and the TCA (tricarboxylic acid) cycle. Conversely,
LPS/IL-1–mediated inhibition of RXR function was upregulated
in sepsis (Fig. 3A). Ingenuity Pathway Analysis multiorgan toxicol-
Copyright © 2022 by the Shock Society. Unauthor
ogy analysis revealed that sepsis patients had significantly higher cell
death in the liver, notably associated with steatosis (Fig. 3B), and
higher cell death in the kidney, especially in the renal tubule.
Hepatocyte nuclear factor 4α, peroxisome proliferator–activated
receptor α, hepatocyte nuclear factor 1α, and LIM homeobox 1
were key upstream regulator molecules (see Table, Supplemental
Digital Content 7, http://links.lww.com/SHK/B479, which lists
important upstream regulator molecules). Information about the
specific genes present in each of the IPA functional pathways is
available (see Table, Supplemental Digital Content 8, http://
links.lww.com/SHK/B480, which gives additional information
about genes in functional pathways). Information about specific
genes in the toxicology pathways is provided (see Table, Supple-
mental Digital Content 9, http://links.lww.com/SHK/B481, which
gives additional information about genes in toxicology pathways).
The top coexpression network is amino acid metabolism, which is
ized reproduction of this article is prohibited.
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FIG. 2. The early transcriptomic response to sepsis in the cells retrieved from the urine pellet. A, Volcano plot demonstrates the degree of differential
expression of 67,528 probes of Human Transcriptome 2.0 chip. A total of 555 (0.8%) of 67,528 probes were differentially expressed in the sepsis patients. Green
dots indicate probes below the 0.01 FDR cutoff and with fold change ≤−2; red dots indicate probes below the 0.01 FDR cutoff and with fold change ≥2 between
sepsis and control patients. B, Heatmap of expression values of 555 differentially expressed probes. The sepsis cohort is highlighted in red and the SIRS cohort is
highlighted in blue. C, Principal component analysis of differentially expressed genes in acute phase of sepsis (within 12 hours) compared with SIRS patients.
Sepsis patients are generally well separated from SIRS patients with a small proportion of SIRS patient overlapped with the sepsis cohort.

FIG. 3. Pathways and biofunctions in the acute response to sepsis
(within 12 hours of sepsis onset), compared with control patients. A, Ingenuity
Pathway Analysis of differentially expressed probes showed downregulation of
pathways mainly related to amino acid metabolism, lipid metabolism, and
cellular energy production in sepsis compared with SIRS. The only pathway
that was significantly upregulated in sepsis is associated with IL-1–mediated
inhibition of retinoid X receptors. P values are calculated by IPA using
right-tailed Fisher exact test to measure likelihood that pathways or functions
are overrepresented by molecules in data set. B, Ingenuity toxicology analysis
of differentially expressed probes shows that hepatic steatosis is the top
toxicological response of the dysregulated transcriptome followed by repeated
occurrence of cell death in liver and in kidney. The only downregulated
toxicology pathway in sepsis is conjugation of glutathione.

24 SHOCK VOL. 58, NO. 1 BANDYOPADHYAY ETAL.
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downregulated in sepsis (see Figure, Supplemental Digital Content
10, http://links.lww.com/SHK/B482, which demonstrates the
most significant gene coexpression network). The other signif-
icantly different gene coexpression networks were cellular as-
sembly and organization, energy production, both being down-
regulated in sepsis.

Immune and kidney cell–specific transcripts in the urine

Deconvolution analysis identified overall significant upregulation
ofmarker genes for neutrophils andmonocytes and an overall signif-
icant downregulation of T-cell marker genes (Fig. 4, A and B).
Analysis of average expression of these marker genes revealed
that whereas monocyte and neutrophil marker genes showed in-
creased average expression in sepsis patients, average expression
of T-cell markers was identical in the two groups (Fig. 4C). In the
IRIS article, the authors described that their results create a re-
liable representation of cellular populations (21). Applying the
same methodology to kidney lineage–specific cells, we found
no significant difference in concentration of such cells in sepsis
compared with SIRS patients (see Figure, Supplemental Digital
Content 11, http://links.lww.com/SHK/B483, http://links.lww.
com/SHK/B484, http://links.lww.com/SHK/B485, which shows
cellular deconvolution of kidney-specific genes).

Sepsis diagnostic model using urinary molecular signature

Sepsis diagnostic model consisted of three probe sets (12, 43,
and 190 probes) comprising probes common to all four, at least
three, and at least two of the machine learning models described
previously. The performance of each of the three probes sets
was evaluated in an independent validation cohort comprising
41 sepsis and 39 SIRS patients. The best performance in the val-
idation cohort was achieved using the set of 43 probes with sup-
port vector machines. This approach yielded AUC of 0.91 (95%
CI, 0.86–0.96), accuracy of 0.82 (95% CI, 0.76–0.89), F1 score
of 0.83 (95% CI, 0.75–0.89), sensitivity of 0.83 (95% CI,
0.74–0.92), and specificity of 0.83 (95% CI, 0.72–0.92). The set
of 43 probes mapped to 30 genes (see Table, Supplemental Digital
Content 12, http://links.lww.com/SHK/B486, which shows gene
orized reproduction of this article is prohibited.
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FIG. 4. Immune cell–specific transcript changes in the acute response to sepsis.A, Immune cell deconvolution showing the overall % differential regulation of
immune cell–specific markers (selected from the 1622 genes from IRIS resource [see Materials and Methods]) between sepsis and control patients. There was
predominant upregulation of neutrophil and monocyte markers; a mixed response in B cells, dendritic cells, and natural killer (NK) cells; and downregulation of T
cells. B, Heatmap of immune cell–specific/enriched markers (selected from the 823 genes from IRIS resource) in the sepsis and control patients. Most of the
signature genes in T cells and NK cells are underexpressed, and most of the signature genes in neutrophils and monocytes are overexpressed in sepsis compared
with SIRS. C, Average expression of immune cell–specific transcripts confirmed the deconvolution results. There were increased numbers of neutrophils and
monocytes in the acute sepsis window. *P < 0.05, **P < 0.01, ***P < 0.001.
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annotation of 43 probes). Henceforth, this model is described as
the UrSepsisModel. For each patient, we calculated a simplified
urine sepsis score (UrSepsisScore) using the expression values of
43 probes that appeared in at least two of the gene sets. The score
value that maximized AUC in the discovery cohort was selected as
the threshold cutoff value. The UrSepsisScore above this threshold
(0.80) showed good performance in the validation cohort: AUC of
0.80 (95% CI, 0.70–0.88), F1 score of 0.72 (95% CI, 0.55–0.83),
sensitivity of 73% (95% CI, 0.42–0.99), and specificity of 68%
(95% CI, 0.28–0.95). Figure 5 illustrates the application of the
UrSepsisScore to a randomly selected bootstrap of the validation
cohort. The values of multiple performance metrics for the three
probe sets (12, 43, and 190 probe sets) using all candidate models
are presented (see Table, Supplemental Digital Content 13, http://
links.lww.com/SHK/B487, which summarizes performances of
selected probe sets over all machine learning models).
DISCUSSION

These findings suggest that urinary gene signatures of metabolic
dysregulation differentiate between sepsis and sterile SIRS within
hours of disease onset. Functional analyses demonstrated metabolic
dysregulation manifesting as reduced oxidative phosphorylation,
decreased amino acid metabolism, and decreased oxidation of
lipids and fatty acids. Machine learning modeling identified an
optimal subset of features that simultaneously discriminate between
sepsis and SIRS and preserve relevant nonlinear relationships
among input features that arise from underlying pathophysiology
and not from the chosenmodel or feature selection procedure.When
the selected genes were aggregated to make the UrSepsisScore,
good performance was retained. The UrSepsisScore can be gen-
erated without the use of any machine learning model, which is
intended to facilitate clinical application. Because urine samples
were obtained within 12 hours of sepsis onset or 4 hours of surgery,
these metabolic signatures and sepsis classifications can be applied
early after clinical manifestations of systemic inflammation, when
diagnostic uncertainty is greatest.

In a previous study, we demonstrated that urine contains suffi-
cient transcriptomic information to differentiate between septic pa-
tients and uninfected controls (12). However, the clinical challenge
lies in distinguishing sepsis from uninfected SIRS, especially in
surgical patients who incur tissue damage andmay ormay not have
Copyright © 2022 by the Shock Society. Unauthor
superimposed infection. Urine biomarkers have been previously
used for identifying sepsis patients and differentiating them from
SIRS patients. Su et al. (26) showed that urinary s-TREM1 can
differentiate sepsis from SIRS patients with AUC of 0.797 (95%
CI, 0.711–0.884). Later, Su et al. (27) demonstrated that urinary
sCD163 could differentiate between sepsis and SIRS with AUC
of 0.83 (95% CI, 0.72–0.94). Kustán et al. (28) reported that the
ratio between urine orosomucoid and urine creatinine differentiates
between severe sepsis and SIRS within 24 hours of sepsis diagnosis
with AUC of 0.954, but used relatively small sample sizes (severe
sepsis: n = 43, SIRS: n = 13, control: n = 30). In addition, these pre-
vious studies are subject to overfitting due to a lack of independent
validation cohorts. Predictive performance in the validation cohort
of the present study is greater than or equal to that of comparative
assays for distinguishing sepsis from SIRS made using blood
(10,11,29). A more elaborate comparison with existing diagnostic tests
using urine was made in the Supplementary (see Text, Supplemental
Digital Content 2, http://links.lww.com/SHK/B474, which compares
current study with previous urinary sepsis diagnostic tests).

Beyond the potential advantages of urine gene expression as
an early diagnostic tool, functional analysis elucidated underlying
pathophysiologic signatures. In the present study, 12 of the top 20
functional biomolecular pathways were amino acid metabolic
pathways. Urinary isoleucine, leucine, tryptophan, tyrosine, and
valine degradation were downregulated. Decreased amino acid
metabolism is well documented in severe sepsis, suggesting a
therapeutic role for amino acid supplementation (30,31). The sec-
ond most underexpressed metabolic pathway in our analysis was
fatty acid β-oxidation, which is known to be significantly im-
paired in sepsis nonsurvivors (30,32). Themost significant upreg-
ulated pathway was IL-1/LPS–mediated inhibition of RXR func-
tion, suggesting impaired metabolism, transport, and biosynthesis
of lipids and bile acids (33,34). Collectively, these findings are
consistent with observations by Langley et al. (32) that several
fatty acids were upregulated in the blood of sepsis nonsurvivors
and that steatosis of the liver, and damage of renal tubule with as-
sociated cell death occurs after the onset of sepsis as is outlined in
this review (35). Therefore, the mechanisms of metabolic failure
identified in this study are consistent with known pathophysiol-
ogy of severe sepsis or in sepsis nonsurvivors but appear in the
urine within 12 hours of sepsis diagnosis, which is much earlier
than the time frames presented in the above blood-based studies.
ized reproduction of this article is prohibited.

http://links.lww.com/SHK/B487
http://links.lww.com/SHK/B487
http://links.lww.com/SHK/B474


FIG. 5. Scatterplot of UrSepsisScore values determined using 43machine
learning selected probes in external validation cohort. UrSepsisScore values
for the external validation cohort were calculated using expression values of 43
probes selected by consensus voting of the feature lists generated by our
machine learning models. This score represents the geometric mean of
downregulated genes subtracted from the geometric mean of upregulated
genes. UrSepsisScore values for sepsis and SIRS patients are represented in
this scatterplot using red and blue dots, respectively. UrSepsisScore values
for sepsis patients show less variance than those of SIRS patients. The
dashed line at UrSepsisScore = 0.8 is the Youden index, which is used as
the threshold for classification. There are six false positives and seven
false negatives based on this classification.
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Further description of the functional and toxicology pathways is
provided in the Supplementary (see Text, Supplemental Digital
Content 2, http://links.lww.com/SHK/B474, which discusses
functional and toxicology pathways and their implications).

This study was limited by the small sample size and limited
generalizability due to its restrictive inclusion criteria, time con-
Copyright © 2022 by the Shock Society. Unauth
straints of obtaining urine samples, and single-institution design.
A drawback to using a single-point estimate of sepsis probability
(UrSepsisScore) is that the CIs are large. Further investigation is
required to elucidate the role of small RNAs present in the data set
and determine whether our methods could be augmented using
urinary exosomal RNA retrieved from the supernatant after centri-
fugation. Finally, to improve predictive performance, gene expres-
sion signatures could be integrated with other modalities, such as
metabolomics and clinical data.

CONCLUSIONS

Whole-genome transcriptomic analysis of urinary cells demon-
strated metabolic dysregulation in sepsis relative to sterile SIRS.
Machine learning models identified a stable, consistent, and fo-
cused probe set for differentiating sepsis from SIRS and validated
its performance in an independent validation cohort. These probes
are used to calculate UrSepsisScore, which uses geometric means
to summarize the expression values of all decisive genes as a single
sepsis probability score.
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