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A B S T R A C T

Ureases, enzymes that catalyze urea hydrolysis, have received considerable attention for their

impact on living organisms’ health and life quality. On the one hand, the persistence of urease

activity in human and animal cells can be the cause of some diseases and pathogen infections.

On the other hand, food production can be negatively affected by ureases of soil microbiota

that, in turn, lead to losses of nitrogenous nutrients in fields supplemented with urea as fertilizer.

In this context, nature has proven to be a rich resource of natural products bearing a variety of

scaffolds that decrease the ureolytic activity of ureases from different organisms. Therefore, this

work compiles the state-of-the-art researches focused on the potential of plant natural products

(present in extracts or as pure compounds) as urease inhibitors of clinical and/or agricultural

interests. Emphasis is given to ureases of Helicobacter pylori, Canavalia ensiformis and soil mic-

robiota although the active site of this class of hydrolases is conserved among living organisms.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.
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Introduction

Urease (EC 3.5.1.5) is a key enzyme for the global nitrogen
cycle, occurring in plants, fungi and bacteria. This type of

hydrolase speeds up by one-hundred-trillion-fold the urea
hydrolysis rate to ammonia (NH3) and carbon dioxide [1–3].

Since its discovery in plants [4], Canavalia ensiformis

(Fabaceae) urease has been exhaustively investigated and
became the milestone in Biochemistry science as the first
enzyme to be crystallized [5] and also proven to be strictly
dependent on nickel ions (Ni2+) [6]. The dependence on nickel

ions for catalytic activity is a unique feature of urease among
hydrolytic enzymes [1,2]. The first three-dimensional structure
of a urease was fully reported by Jabri and coworkers in 1995
from Crystallography studies performed with urease from

Klebsiella aerogenes [7]. Later on, other structures were dis-
closed for ureases from Bacillus pasteurii [8], Helicobacter
pylori [9] and most recently C. ensiformis [10]. Indeed, the elu-

cidation of the urease structure from a legume was crucial to
better understand the requirements for ureolytic activity of this
class of enzymes in different organisms [10]. The great similar-

ity of amino acid sequence among ureases from multiple ori-
gins [11] suggests a common ancestral for this enzyme.
Ureases share a basic trimeric array with 1, 2 or 3 subunits that
can fuse forming hexameric or dodecameric architecture. Each

active site contains two Ni2+ ions apart from each other in
3.5–3.7 Å, bridged by oxygen atoms of a lysine carbamate res-
idue and a hydroxide ion [3,12]. Plants and fungi ureases exhi-

bit a single polypeptide chain while bacteria have two or three
different subunits (a, b and c) [1,13]. The incorporation of
Ni2+ in protein structure is assisted by accessory proteins,

believed to be urease-specific chaperones [11].
Ureases in the context of Helicobacter pylori

The increase of medium pH by the accumulation of NH3 is a
urease trait of tremendous medical importance [3]. Urine and/
or gastrointestinal infections by ureolytic bacteria can cause
health complications in humans and animals, which include

kidney stone formation, pyelonephritis, hepatic encephalopa-
thy and ultimately hepatic coma [3,12]. Therefore, major
public health issues are related with H. pylori, gram-negative

bacteria that are able to survive in an environment as acidic
as that of the stomach (pH 2). As a consequence, H. pylori
infection can induce gastric inflammation and increase the

risk for the development of duodenal and gastric ulcers, gas-
tric adenocarcinoma and gastric lymphoma [3,14]. About
50% of global population is committed by H. pylori. This

bacteria species can persist in the stomach for the whole life
of infected individuals without causing disease symptoms.
The high prevalence of H. pylori in human population
indicates that such microorganism has developed mechanisms

for resistance against host defenses [14]. Urease enzyme in
cytoplasm and/or bound to H. pylori surface is the main
virulence factor of such human pathogen [15]. It is postulated

that the lyses of some pathogen cells leads to the release of
cytosolic ureases that bind to the surface of intact bacterial
cells and cause the hydrolysis of urea present in human guts

at a concentration of 3 mM. The NH3 formed increases
the medium pH, which creates a friendly environment for
H. pylori survival [15,16].

During the past 20 years, the recommended first-line

therapy for H. pylori eradication consisted of the combination
of the antibiotics amoxicillin and clarithromycin with
omeprazole, a proton pump cell inhibitor. However, the

increase of H. pylori resistance to these antibiotics (particu-
larly to clarithromycin) made this therapy a non-attractive
option in recent years [2,17,18]. Indeed, other treatment strat-

egies have emerged to fight H. pylori infection, which include
the use of bismuth salts combined with a proton pump cell
inhibitor or the combination of other classes of antibiotics

(e.g. fluoroquinolones, aminopenicillins, tetracyclines, etc.)
[2,18,19].
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Fig. 1 Structure of flavonoids notable by the ability to inhibit ureases activity.
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Additionally, urease inhibitors may be effective therapies
for the treatment of diseases caused by urease-dependent path-
ogenic microorganisms. However, the commercially available

urease inhibitors, such as phosphorodiamidates, hydroxamic
acid derivatives and imidazoles are toxic and of low stability,
features that prevent their clinical use [20,21]. Then, the search
for novel urease inhibitors with improved stability and low

toxicity is mandatory to improve life quality of human beings
and animals.

Ureases in the context of agriculture

Urea is used as a nitrogen fertilizer in agriculture worldwide.
This organic compound exhibits some advantages over other

nitrogen fertilizer, namely, high N content (46%), low price,
water solubility and easy management [22]. However, under
field conditions, urea efficiency is markedly reduced due to

nitrogen losses (over 50%) caused, among other factors, by
NH3 volatilization from the action of microorganisms ureases
present in soil matrices [1,22,23].

The excessive emission of NH3 to atmosphere gradually will

cause an unbalance in nitrogen cycle, which can imply in disas-
trous long-term environmental consequences [24–27]. Most of
the NH3 generated from urea-based fertilizers may impact neg-
atively natural ecosystems by inducing eutrophication pro-

cesses and formation of nitrous oxide, a greenhouse gas [23].
On the other hand, once produced in the soil solution, NH3

is converted to ammonium ion (NH4
+) that, in turn, can

undergo nitrification by the action of Nitrosomona and/or

Nitrobacter species, yielding nitrate (NO3
�). The NO3

� uptaken
by plant root cells will contribute to the production of amino
acids, nucleic acids and some secondary metabolites, while the

remainder still in soil can easily be leached to aquifers, rivers
and lakes. Aquatic environments enriched with NO3

� may go
to eutrophication, resulting in algae blooms, reduction of fish

and animal populations and threat to human health [23,28].
There are current some alternatives to minimize nitrogen

losses from urea fertilizers and improve its uptake by crops.

Slow-release nitrogen fertilizers comprise agricultural inputs
that consist on the fertilizer surface covered by hydrophobic
chemicals to provide a physical barrier against water. This pro-
motes the gradual release of urea to soil solution [29]. Another

strategy is the use of nitrification inhibitors that are able to
delay NH4

+ oxidation by nitrifying bacteria, preventing NO3
�



Table 1 Concentration (lM) of C-glycosylflavonoids neces-

sary to inhibit the activity of Canavalia ensiformis urease by

50%.
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formation and nitrogen leaching from the soil [29]. Urease
inhibitors are some of the most used approaches to overcome
nitrogen losses in field, as they delay urea hydrolysis, increas-

ing the chances of urea incorporation in soil by rain, irrigation
or mechanical operations [22].

Among the known soil urease inhibitors, N-(butyl) thio-

phosphoric triamide (NBPT) is currently the most efficient
compound. In the presence of soil microbiota, NBPT is con-
verted to the respective oxo-analogue called N-(butyl) phos-

phoric triamide (oxo-NBPT) that exhibit high capacity of
inhibiting urease [30]. Many other substances have been inves-
tigated with respect to the potential to inhibit urease activity in
soil, but very few were found to be promising for further stud-

ies. In this sense, the great challenge is to find good candidates
that are eco-friendly, nontoxic and of low toxicity to plants,
chemically stable, efficient at low concentrations, compatible

with urea and of competitive costs.

Where to start digging up for new urease inhibitors?

There is no doubt that nature is a vast source of natural prod-
ucts of that exhibit a plethora of biological activities. The
diversity of chemical structure makes natural products very

valuable to pharmaceutical industries and agricultural seg-
ments as well. Natural products from plants, in particular,
have been a great source of inspiration for improving human
and animal life quality as disease therapeutics and also for

increasing food resources [31–36].
In this context, the investigation of the potential of plant-

derived natural products as urease inhibitors can be valuable

for the development of therapeutics for diseases associated
with intense urease activity and improved nitrogen fertilizer
formulations to increase food production. This work brings

an overview on the state-of-the-art research performed with
plant crude extracts and/or pure plant-derived natural prod-
ucts were used as ureases inhibitors of pharmacological and

agricultural interest.

Potential of plant extracts as urease inhibitors

Studies with focus on urease of clinical interest

The ethnomedicinal use of plants to treat chronic gastritis,

ulcers and related gastroduodenal disorders, diseases that
can be caused by H. pylori, is widely reported [37–39]. Studies
carried out with several plant extracts allowed for the identifi-

cation of urease inhibitors that may be useful for the control of
H. pylori strains growth [40–43].

Alk(en)yl thiosulfinates (TS) are the main constituents of

many foodstuffs, for example diallyl thiosulfinate (allicin) cor-
responds to around 70% of TS content in fresh aqueous garlic
extract [44,45]. Commonly used as a flavoring, garlic (Allium

sativum; Liliaceae) is recognized as an antimicrobial and
anti-urease food due to allicin levels [44,46,47]. The urease
inhibition by garlic extract is an irreversible time- and TS-con-
centration dependent; 18-min incubation of urease with garlic

extract is sufficient to cause total loss of enzyme activity [44].
The inhibitory effect of TS-enriched garlic extract was attrib-
uted to the ability of TS to oxidize the –SH group of a cysteine

residue present in the enzyme active site [44].
Plant juices obtained from A. sativum (garlic), Allium cepa
(yellow and white onions), Allium porrum (leek), Brassica

oleraceae var. capitata (cabbage; Brassicaceae) and Brassica
oleraceae var. gemmifera (Brussels sprouts) were also effective
urease inhibitors [45]. It was found that the higher the TS

content, the better the juice was concerning the inhibition of
ureolytic activity of urease. Thus, the best inhibitory effects
were achieved when garlic juice was used, followed by the

employment of Brussels sprouts one. With exception of
cabbage juice, all foodstuffs juice tested lost the effect after
heating at 95 �C [45]. Therefore, authors recommend the inges-
tion of raw garlic, onion, cabbage and Brussels sprout so that

the urease inhibitory properties can be preserved and still work
in the treatment of H. pylori infection [45]. The in vitro anti-H.
pylori activity of methanolic leaf extracts (50 mg/mL) of Allium

ascalonicum (Liliaceae) was found to be due to the ability of
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Fig. 2 Structures of polyphenols with remarkable inhibitory effect on ureases.
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such extract to decrease urease activity [48]. The methanolic
extracts were determined to contain alkaloids, cardiac glyco-
sides, saponins and traces of flavonoids.

The antibacterial effect of alcoholic extract or essential oil
of Cuminum cyminum (cumin; Apiaceae) on Klebsiella pneumo-
nia (Gram-negative bacteria) was shown to be as result of the
inhibition of urease activity [49]. Based on active site similari-

ties shared by ureases, chemical constituents of cumin could
also be effective against H. pylori, a hypothesis that should
be further investigated.

To investigate the scientific basis for the traditional use of
plants for the treatment of ulcers, an in vitro study was con-
ducted with shoot extracts of Artemisia scoparia (Asteraceae)

[50]. The concentration of methanolic crude extract necessary
to inhibit C. ensiformis urease activity by 50% (IC50) was
4.1 mg/mL. Notably, the flavonoid fraction was shown to be

even more effective as attested by the IC50 value of 2.1 mg/mL.
A screening performed with over one hundred traditional

Iranian herbal medicines revealed that 37 extracts inhibited
urease activity by at least 70% when employed at 10 mg/mL.

Urease inhibition near to 100% was achieved using methanolic
(50%) extracts of Areca catechu (Arecaceae; fruit extract),
Capsicum annuum (Solanaceae; fruit extract), Citrus aurantifo-

lia (Rutaceae; fruit extract), Hibiscus gossypifolius (Malvaceae;
herb extract), Hypericum perforatum (Hypericaceae; herb
extract), Nymphea alba (Nymphaeaceae; flower extract), Papa-

ver rhoeas (Papaveraceae; flower extract), Perlagonium graveo-
lens (Geraniaceae; flower extract), Pistacia vera
(Anacardiaceae; rind extract), Punica granatum (Lythraceae;

flower and rind extracts), Quercus infectoria (Fagaceae; rind
extract), Rheum ribes (Polygonaceae; root extract), Rosa centi-
folia (Rosaceae; flower extract), Sambucus ebulus (Adoxaceae;
fruit extract) and Veratrum album (Melanthiaceae; leaf

extract). Among these plant species, S. ebulus and R. ribes were
the most potent exhibiting IC50 values of 57 and 92 lg/mL,
respectively [51]. Inhibition of urease activity was observed
for methanolic (50%) extracts of Camelia sinensis (Theaceae;

IC50 for leaf extract = 35 lg/mL), C. aurantifolia (Rutaceae;
IC50 for fruit extract = 28 lg/mL), Nasturtium officinale
(Brassicaceae; IC50 for leaf extract = 18 lg/mL), P. granatum

(IC50 for flower extract = 30 lg/mL) and Matricaria recutita
(Asteraceae; IC50 for flower extract = 37 lg/mL) [42]. More-
over, the methanolic (50%) extract of a commercial green

tea containing 70.6% epigallocatechin derivatives, 9.9% gallo-
catechin derivatives, 4.1% (�)-epicatechin and 1.1% catechin
exhibited an IC50 of 13 lM against H. pylori urease [40]. The

ingestion of drinking water containing green tea extract in
the range of 500–2000 ppm by H. pylori-challenged Mongolian
gerbil animals for 6 weeks suppressed both gastritis and bacte-
rial infection prevalence [40].

Glycyrrhiza glabra (Leguminosae; licorice) is a common
Mediterranean herb known by the antioxidant properties
and ability to inhibit urease activity. The ethyl acetate root

extract (2.5 mg/mL) of such plant species inhibited C. ensifor-
mis urease by 72% while methanolic root extract negatively
affected urease activity by 64% [52].

Whole-plant acetone extracts of the traditional Pakistan
herb Fagonia arabica (Zygophyllaceae), were reported to be
more potent than the metronidazole (reference drug) against

H. pylori [43].



Table 2 Concentration (lM) of some coumarins necessary to

inhibit the activity of Helicobacter pylori urease by 50%.
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Aqueous extract of commercial powder of Origanum
vulgare (oregano; Lamiaceae) and Vaccinium macrocarpon
(cranberry; Ericaceae) were very efficient in controlling the

growth and urease activity of H. pylori [41]. Such effect was
attributed to the phenolic contents in both plant extracts.
Methanolic (50%) extracts of Eucalyptus grandis (Myrtaceae)

stem bark inhibited the activity of clinical isolated strains of
H. pylori (UCH97001, UCH97009 and UCH98026) in a con-
centration-dependent manner (6.5–50.0 mg/mL) [53]. The

authors attributed the anti-H. pylori effect of E. grandis
extracts to the presence of tannins and triterpene saponins,
based on other works published elsewhere [53 and cited
Refs.]. The use of Paeonia emodi (Paeoniaceae) roots in Asia

for medicinal purposes is ancient due to the inhibition of ure-
ase and a-chymotrypsin activities [54]. Ethanolic crude extracts
of P. emodi shoots (12.5 lg/mL) inhibited C. ensiformis and B.

pasteurii ureases by over 70% [54].
Two commercial samples of red wine with different resvera-

trol contents (1.3 or 10.5 lg/mL) were shown to inhibit ureases

of H. pylori 26695, 1692/05 and 553A/02 strains [38]. Samples
containing higher amounts of resveratrol were more potent
although the effect of other constituents in the red wine studied

cannot be ruled out.
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Studies with focus on urease of agricultural interest

Polyphenolics-containing extracts obtained from the bark of
Acacia decurrens (green wattle; Fabaceae) or seed coat of
Terminalia chebula (inknut; Combretaceae) inhibited both

pure urease (urease tablets-BDH) and soil ureases to the same
extent that did mercuric chloride and catechol, known urease
inhibitors [55]. Indeed, NH3 volatilization from soil surface

was decreased upon soil fertilization with urea–polyphenol
mixtures. These results highlight the potential of tannin-like
polyphenols from green wattle and inknut as potent urease
inhibitors [55]. Interestingly, addition of C. sinensis (black

tea) waste to soil surface (50 g/kg soil) right before urease
activity tests substantially affected enzyme activity [55].

Seed kernel powder of Azadirachta indica (neem;

Meliaceae) was demonstrated to decrease the rate of urea
hydrolysis in acidic soils, contributing to urea incorporation
into soil to be hydrolyzed in the rhizosphere and then provide

nitrogen for uptake by plant roots [56].
Another study has used several extracts from four plant

species native to Mediterranean zone of Chile [57]. Ethanolic

extracts from the bark of Acacia caven (Fabaceae) and Pinus
radiate (Pinaceae) inhibited urease activity in soil as a result
of phenolic contents in a concentration dependent manner.
No direct correlation could be made with respect to the con-

densed tannins present in both plant species extracts [57].
Overall, the bodies of evidence about the inhibitory action

of various plant extracts on urease of clinical and agricultural

interest provide subsidies to further investigate which constit-
uents mostly contribute for their biological profiles.

Isolated plant natural products as urease inhibitors

Polyphenols, specially flavonoids, have been pointed out as
notable H. pylori urease inhibitors [58–60]. Therefore, geni-

stein, an isoflavone widely produced by plants of Fabaceae
family, was found to inhibit H. pylori urease by 50% when
used at 430 lg/mL while its 7-O-glucoside derivative exhibited

no effect on the enzyme activity (Fig. 1) [58].
The therapeutic potential of Lonicera japonica (Caprifolia-

ceae) against H. pylori is well known [61]. A pool of flavonoids
extracted from flowers of this plant exhibited an IC50 value of
946 lM on H. pylori urease [62]. By testing pure compounds,
the flavonols quercetin, rutin, myricetin and myricitrin and

the flavones luteolin and luteolin 7-O-glucoside were found
the most potent against H. pylori urease, presenting IC50 val-
ues of 11.2 lM, 67.6 lM, 77.2 lM, 98.7 lM, 35.5 lM, and

55.8 lM, respectively [62]. Quercetin-40-O-D-glucoside
(Fig. 1) isolated from A. cepa (Liliaceae) showed an IC50 of
190 lM against C. ensiformis urease [63]. Other, quercetin

glucoderivatives (Fig. 1) isolated from Psidium guajava
fruits (guava; Myrtaceae) negatively affected the activity of
C. ensiformis urease, such as isoquercitrin (IC50 = 160 lM),
quercitrin (IC50 = 200 lM), avicularin (IC50 = 140 lM) and

guaijaverin (IC50 = 120 lM). The IC50 for quercetin aglycone
toward C. ensiformis urease was determined to be 80 lM [63].

A study carried out with seven natural products isolated

from a butanolic subfraction of the ethanolic extract of Celtis
africana (Celtidaceae) revealed the remarkable antiureolitic
property of four flavone C-glucosides with IC50 lower than

50 lM (Table 1) [64].
Baicalin (Fig. 2), a flavone glucuronide and main constitu-

ent of dried roots of Scutellariae baicalensis (Lamiaceae), was

able to inhibit C. ensiformis urease (IC50 = 2.7 mM), exhibit-
ing an inhibition constant (Ki) of 3.89 · 10�3 mM [65].
Another flavone C-glucuronide (scutellarin; Fig. 2) isolated
from Erigeron breviscapus (Asteraceae) was shown to be twice

as potent (IC50 = 1.4 mM) as baicalin with respect to the
inhibition of C. ensiformis urease [66]. The inhibitory effect
o scutellarin was attributed to its ability to bind the sulfhydryl

group of
L-cysteine residue present in the enzyme active site [66].

Methyl gallate and 1,2,3,4,6-penta-O-galloyl-D-glucoside

(PGG) (Fig. 2), widely produced by Paeonia lactiflora (Paeon-
iaceae) roots, were tested as pure compounds against H. pylori
urease [67]. It was observed that PGG (IC50 = 72 lM) is

roughly as potent as the reference inhibitor acetohydroxamic
acid. Methyl gallate presented an IC50 of 1.3 mM [67].

Coumarins are phenylpropanoid compounds produced by
various plant families. Ten pure coumarins out of 24 tested

by Jadhav and coworkers [68] against H. pylori urease were
shown to be very promising enzyme inhibitors. The IC50 for
such natural products were lower than 75 lM (Table 2).

Vernonione (Fig. 3), a terpene isolated from methanolic
extracts of Vernonia cinerascens (Asteraceae) roots, is another
example of plant natural product capable of inhibiting

C. ensiformis urease (IC50 = 227.6 lM) [69]. Sulforaphane
[CH3S(O)(CH2)4NCS], an isothiocyanate derivative abundant
in cruciferous vegetables, were proven to inactivate H. pylori
urease by covalently binding to thiol group of one or more

L-cysteine residues to form dithiocarbamates [70]. Atranorin
(Fig. 3) was the most effective urease inhibitor out of the 21
natural products isolated from stem bark of Stereospermum

acuminatissimum (Bignoniaceae) [71]. Atranorin (IC50 of
18.2 lM) was as potent as thiourea (IC50 = 21.0 lM), a
known urease inhibitor [71]. A myrsinol-type diterpene

ester purified from Euphorbia decipiens (Euphorbiaceae; whole
plant) exhibited an IC50 of 81.4 lM toward C. ensiformis
urease [72]. The novel sphingolipids named ophiamide A and

ophiamide B (Fig. 3), isolated from methanolic extracts
of Heliotropium ophioglossum (Boraginaceae), inhibited
C. ensiformis urease activity with IC50 values of 23.1 lM and
12.6 lM, respectively [73].
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Pure juglone and lawsone (Fig. 3), constitutional plant
naphthoquinone isomers, were tested against C. ensiformis ure-
ase, in which it was found that only the former is active, exhib-

iting an IC50 value of 4.8 lM in 40-min reactions [74].
Six congeners of shoreaphenol purified from stem bark of

Hopea exalata (Dipterocapaceae) were tested against C. ensi-

formis urease revealing that shoreaphenol (Fig. 3) was the only
oligostilbenoid capable of inhibiting the enzyme activity
(IC50 = 126.8 lM) [75].

The anti-H. pylori properties of anacardic acid (C15:3) and
(E)-2-hexenal (Fig. 3), both isolated from Anacardium occiden-
tale (Anacardiaceae), was confirmed to be a result of urease
inhibition [76]. Anacardic acid (IC50 = 125 lg/mL) and (E)-

2-hexenal (IC50 = 50 lg/mL) were identified as competitive
and non-competitive urease inhibitors, respectively [76].

The inhibitory effect on C. ensiformis urease of ursane-type

sulfated saponin glycoderivatives was reported with zygofabo-
side A, zygophyloside E and zygophyloside G (Fig. 3) being
able to inhibit in the range of 40–87% when used at 500 lM
[77]. Such natural products were isolated from shoots of the
plant species Zygophyllum fabago (Zygophyllaceae).

Example of alkaloids with expressive inhibitory effect on the

ureolytic activity of C. ensiformis urease is also reported in the
literature. Govaniadine, caseadine, caseamine and protopine
(Fig. 4), all isolated from whole plant powder of Corydalis
govaniana (Fumariaceae), presented IC50 values of 20.2 lM,

38.9 lM, 66.7 lM and 54.1 lM, respectively, thus having the
potential to urease-associated physiological complications [78].

Concluding remarks

The body of evidence presented in this overview clearly dem-
onstrates the great potential of plant secondary metabolites

of different classes to negatively affect the activity of ureases.
The use of this knowledge can contribute for the design of
novel, safe and less costing urease inhibitors with the aim to

improve human and animals life quality either by fighting ure-
ase-related diseases or by increasing the quality and food pro-
duction. Although the environmental aspects were not the

primary scope of this review, the use of urease inhibitors in
agricultural practices can surely be valuable for the reduction
of greenhouse gas emissions. Scientists engaged in the search
for natural sources of urease inhibitors have some challenges

to overcome, namely (i) plant-family-guided expansion of the
number of explored extracts, (ii) identification and isolation
of the major constituents of promising plant extracts, (iii) stab-

lishment of structure–activity relationships accompanied by in
silico (docking) studies, (iv) evaluation of the mechanism of
action of the pure natural compounds and (v) production of

the promising compounds in large scale when the availability
is limited in nature.
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