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Food is essential for human survival. Nowadays, traditional agriculture faces challenges in
balancing the need of sustainable environmental development and the rising food demand
caused by an increasing population. In addition, in the emerging of consumers’ awareness
of health related issues bring a growing trend towards novel nature-based food additives.
Synthetic biology, using engineered microbial cell factories for production of various
molecules, shows great advantages for generating food alternatives and additives,
which not only relieve the pressure laid on tradition agriculture, but also create a new
stage in healthy and sustainable food supplement. The biosynthesis of food components
(protein, fats, carbohydrates or vitamins) in engineeredmicrobial cells often involves cellular
central metabolic pathways, where common precursors are processed into different
proteins and products. Quantitation of the precursors provides information of the
metabolic flux and intracellular metabolic state, giving guidance for precise pathway
engineering. In this review, we summarized the quantitation methods for most cellular
biosynthetic precursors, including energy molecules and co-factors involved in redox-
reactions. It will also be useful for studies worked on pathway engineering of other
microbial-derived metabolites. Finally, advantages and limitations of each method are
discussed.
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INTRODUCTION

Food is a basic element for human beings as the main energy resource for body growth and
maintenance in daily life. Nowadays, foodmainly comes from traditional agriculture such as planting
and raising livestock. However, severer environmental problems are caused such as high greenhouse
gas emission in cattle field, high water usage problems, biodiversity loss by transforming forests into
farms (Fabrica 2021). Moreover, there is growing need for healthier and novel nature-based food
products, such as foods without synthetic petroleum-based food dyes, or with sugar substitutes
(Fabrica 2021), which cannot be satisfied by traditional agriculture.

The rise up of synthetic biology shows promise to complement the limitation of traditional
agriculture, as it engineers microbial cells to be factories for production of various products (Katz
et al., 2018). Since the basic food components are proteins, carbohydrates, fatty acids and vitamins
(Colen et al., 2018), microbial cells can be engineered to produce each food components. These years,
many progresses have beenmade in this area. For example, fatty acids, as a main component for meat
flavor and taste used in meat analogues, was overproduced in engineered microbial cells by methods
of synthetic biology (Fernandez-Moya and Da Silva 2017; Ledesma-Amaro et al., 2018; Marella et al.,
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2018). Linalool and geraniol, as the primary flavor components in
beer previously contributed by hops, was produced in engineered
yeast, to be an alternative supplementation in beer fermentation
without hops addition (Denby et al., 2018). A good review has
already summarized the progress of this area, which would not be
discussed here in detail (Lv et al., 2021).

Although the biosynthetic pathways are different, the basic
building block of food components (proteins, carbohydrates, fatty
acids and vitamins) all come from molecules in primary
metabolism: such as embden–meyerhof pathway (EMP),
tricarboxylic acid cycle (TCA), pentose phosphate (PP)
pathway and amino acid biosynthesis (Hong et al., 2017).
Energy and reducing power are also usually required for most
of the biosynthetic process (Zhang et al., 2017). Figure 1; Table 1
showed current microbial produced food components and their
biosynthetic precursors.

During the process of pathway engineering, precise
quantitation of the precursors provides a clear indication to

the next round of design-build-test-learn cycle, resulting in
further engineering to achieve the final product. For example,
during the process of engineering Bacillus subtilis for
2’–fucosylactose [Human milk oligosaccharides (HMOs)]
production, GDP-L-fructose is a key precursor to the final
product. The determination of GDP-L-fructose
concentration was used to evaluate the possible effect of
introducing the salvage pathway from B. fragilis and change
of medium compositions on 2’–fucosylactose production,
leading to next round of engineering for high yield
2’–fucosylactose production (Jieying et al., 2019). Another
example is engineering Escherichia coli for carotenoids
production by modular enzyme assembly methods,
concentration of precursors such as acyl-CoA, isopentenyl
diphosphate (IPP) and dimethylallyl diphosphate (IMAPP)
was used as indicators to confirm that the metabolic network
was changed by enzyme modulation towards carotenoids
(Kang et al., 2019).

FIGURE 1 | Pathway map for several biosynthetic food components, products are shown in the same color with their corresponding precursors.
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Various quantification methods and instruments have been
developed for quantitation of intracellular central metabolites.
The procedure usually includes four steps: quenching of the
samples for maintaining the metabolites concentration at
specific time, extraction of intracellular metabolites,
metabolites quantitation and data analysis (Figure 2) (Zhou
et al., 2012). Several good reviews have mentioned about
different quenching and metabolites extraction methods (van
Gulik 2010; Vuckovic 2012; Causon and Hann 2016; Pinu et al.,

2017). The specific analytical methods for determination of
each kind of precursors have not been summarized
individually. This review will emphasize on listing and
discussing the quantitation methods for several important
precursors in food biosynthesis. Among the various
quantitation techniques have been developed, we will
mainly discuss the analytical methods that can be easily
carried out in every lab, namely the methods based on
enzymatic reactions, HPLC, LC-MS and GC-MS. For a

TABLE 1 | Examples of biosynthetic food and their corresponding precursors.

Food type Molecule synthesized by
microbial cell factories

Precursors

Meat Hemoglobin protein (α2β2) Amino acids
Heme Acyl-CoA
Fatty acids, Lipids Acyl-CoA

Milk α-lactalbumin Amino acids
β-lactoglubulin Amino acids
lactoferrin Amino acids
α-casein Amino acids
β-casein Amino acids

Beer Linalool IPP and DMAPP
Geraniol IPP and DMAPP

Sweeteners Rehaudioside Nucleotide sugars, IPP and DMAPP
Mogroside Nucleotide sugars, IPP and DMAPP
Glycyrrhizin Nucleotide sugars, IPP and DMAPP
Erythritol Phosphate sugars

Nutritious supplements Lycopene IPP and DMAPP
Astaxanthin IPP and DMAPP
Menaquinone-7 (vitamin B7) Phosphate sugars, Glycerol derived metabolites
2′-fucosylactose Nucleotide sugars
Lacto-N-neotetraose Nucleotide sugars
Riboflavin (vitamin B2) Phosphate sugars
Resveratrol Amino acids, Acyl-CoA
Isoflavonoids Acyl-CoA

FIGURE 2 | Flow chart of precursor determination process for biosynthetic foods.
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better understanding, the procedure of quenching and
metabolites extraction is summarized briefly.

A BRIEF INTRODUCTION ON QUENCHING
AND EXTRACTION METHODS FOR
METABOLITES QUANTITATION
In cell, many metabolites are in a state of fast conversion into
other chemicals catalyzed by various enzymes. In order to
estimate the concentration of metabolites under specific
condition precisely, the interference of enzymes must be
removed as much as possible, which is called quenching. The
enzymes must be inactivated in a short time, to avoid any changes
of the metabolites. The most widely used method for quenching is
cold methanol methods (Xu et al., 2016). For example, 60%
methanol aqueous solution at −48°C is often used for fast
quenching of the samples (Winder et al., 2008). The addition
of cold methanol provides extreme cold environment and
preventing cells from contacting oxygen and other nutrients,
shutting down the metabolism and keeping the level of
intracellular metabolites unchanged. Except for cold methanol
method, other quenching methods such as fast vacuum filtration,
direct heating (Hiller et al., 2007), glycerol–saline (Villas-Boas
and Bruheim 2007) and flow cytometry (Wang et al., 2014) are
also widely used in researches.

After quenching, intracellular metabolites need to be released
from cells for quantitation. The purpose of chemical extraction is
to disrupt cell membranes and harvest intracellular
metabolites. Several metabolites extraction methods are
used in researches, such as cold methanol extraction,
boiling ethanol extraction, methanol and chloroform
extraction, hot water extraction, potassium hydroxide
extraction and perchloric acid extraction, each designed for
extraction of specific kinds of metabolites (Park et al., 2012).
The methods are usually in combination of solvent extraction
and physical strike, such as sonication, liquid nitrogen
grounding, freeze-thaw cycle and bead beating (Sasidharan
et al., 2012). Cold methanol extraction seems to be more
favored in many organisms, such as E. coli and S. cerevisiae,
as most metabolites are extracted with high analytical stability
(Maharjan and Ferenci 2003; Villas-Bôas et al., 2005; Winder
et al., 2008). For the Gram-positive bacteria such as
actinomycetes, liquid nitrogen grounding combined with
cold methanol extraction seems to have a better effect
because of the thick cell membrane (Zhao et al., 2013).

DETERMINATION OF NATURAL
PRODUCTS PRECURSORS

In this section, we will discuss the quantitation methods for
several important precursors that are involved in food
biosynthesis. Namely, Acyl-CoAs, amino acids, nucleotide
sugars, phosphate sugars, glycerol derived metabolites, IPP and
DMAPP. The quantitation methods for NTPs and NAD(P)H
levels are discussed in detail.

Acyl-CoAs
Acyl coenzyme are main precursors for natural products such as
fatty acids (Zhu et al., 2017) and heme (C4 pathway) (Xin et al.,
2018), components in meat analog. In addition, they also serve as
building blocks for biosynthesis of nutritious supplements such as
resveratrol (Pannu and Bhatnagar 2019) and isoflavonoids (Liu
et al., 2021). Among them, acetyl-CoA, malonyl-CoA and
methymalonyl-CoA are most widely used substrates, while
other acyl derived CoAs such as ethylmalonyl-CoA,
methyoxymalonyl-CoA, chloroethylmalonyl-CoA, allylmalonyl-
CoA and hexylmalonyl-CoA also took part in the biosynthesis of
some compounds (Ray and Moore 2016).

The best enzymatic reaction for acetyl-CoA determination
uses aromatic amines as substrate. Arylamine transacetylase
catalyzes the reaction of p-nitroaniline (λmax = 388 nm) and
acetyl-CoA into nitroacetanilide (λmax = 318 nm, absorption at
405 nm is close to zero) and CoASH. The amount of acetyl-CoA
can be easily determined by following the reaction through
absorbance measurement at 405 nm (Decker 1965). This
method can determine less than 10 μmol/L of acetyl-CoA
(Decker 1965). John. R. Williamson et al. described two other
methods for acetyl-CoA determination (Williamson and Corkey
1969). One method uses reactions catalyzed by α-ketoglutarate
oxidase and phosphotransacetylase. In the reactions, Acetyl-CoA
and α-ketoglutarateis are converted into succinyl-CoA and CO2,
generating one molecule of NADH. The amount of Acetyl-CoA
will be determined by following the increase of absorbance of
NADH. The other method uses citrate synthase and malate
dehydrogenase. Citrate synthase catalyzes acetyl-CoA and
oxaloacetate into citrate, and malate dehydrogenase converts
malate into oxaloacetate coupling with the generation of 1
molecule NADH. The amount of acetyl-CoA can also be
determined by followed the changes of NADH absorbance.
However, the formation of NADH is not in stoichiometric
with the consumption of acetyl-CoA, which needs a further
correction for valid data (Williamson and Corkey 1969). In
addition to the traditional enzymatic quantitation,
commercialized kits for fast and precise determination of
intracellular acetyl-CoA are also available nowadays.

Detection of acyl-CoA using high performance liquid
chromatography (HPLC) are elucidated in researches
(Boynton et al., 1994; Shibata et al., 2012; Tsuchiya et al.,
2014; Shurubor et al., 2017). A C18 column and saline buffer
as mobile phase is often used for clear separation of CoAs with
other metabolites (Boynton et al., 1994; Shurubor et al., 2017).
Shurubor et. al., has developed a simple and sensitive method
based on HPLC-UV to determine CoA and acetyl-CoA. A RP-
C18 ((150 × 3 mm, 3 µm) analytical column and mobile phase
consisted of monosodium phosphate, sodium acetate and
acetonitrile was applied. The detection wavelength of the UV
detector was set at 259 nm. Both CoA and acetyl-CoA elute
within 10 min, and can be separated well. The limit of
detection (LOD) for CoA and acetyl-CoA are 0.114 and
0.36 pmol per inject (Shurubor et al., 2017).

High performance liquid chromatography tandem mass
spectrometry (LC-MS/MS) has become a widely used
instrument for accurate qualitative and quantitative analysis.
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Determination of intracellular acyl-CoAs using LC-MS/MS has
been described in many studies (Armando et al., 2012; Gilibili
et al., 2011; Gotoh et al., 2015; Hasegawa et al., 2017; Kato et al.,
2012; Kawaguchi et al., 2015; Seifar et al., 2013; Xia et al., 2013).
The parameters of LC part are similar with HPLC detection,
except for the mobile phase of saline buffer is replaced by volatile
acetate amnion buffer, and flow rate is decreased below 0.5 mL/
min, as a protection for mass spectrometry (Armando et al.,
2012). For MS settings, multiple reaction monitoring (MRM),
also known as selected reaction monitoring (SRM), is usually
applied in LC-MS/MS based intracellular metabolites
quantitation. In MRM mode, the mass of a precursor ion and
a product ion for a specific metabolite was selected (Table 2),
resulting in accurate quantitation without interference of other
metabolites (Luo et al., 2015). Gilibili et al. adopted a method
based on LC-MS/MS for quantitation of acetyl-CoA andmalonyl-
CoA. Amonolithic RP-18 column was applied, 5 mm ammonium
formate—acetonitrile (30:70, v/v) soulution was used as mobile
phase. For MS settings, positive multiple reaction monitoring
(MRM) mode was applied for detection of acetyl-CoA and
malonyl-CoA. The total run time per sample is 3 min. The
lower limit of quantification for acetyl-CoA and malonyl-CoA
is 1.09 ng/mL (Gilibili et al., 2011). The presence of isomers (such
as methymalonyl-CoA and succinyl-CoA) may bring difficulties
for MS separation. This problem can be solved with the presence
of HPLC. For example, with 400 mmol/L aqueous HCOONH4

and acetonitrile as mobile phase, Gotoh et al. successfully
separated methymalonyl-CoA from succinyl-CoA using LC-
MS/MS, peaks of the two compounds appeared on different

retention time without interrupting each other. The lower
limits of quantitation of methymalonyl-CoA and succinyl-CoA
are 0.003 μmol/L and 0.01 μmol/L, respectively (Gotoh et al.,
2015).

Amino Acids
Amino acids are not only the building blocks of proteins
(hemoglobin protein, α, β—casein, etc.), but also precursors of
many natural products. For example, tyrosine is the precursor for
resveratrol biosynthesis (Pannu and Bhatnagar 2019). Except for
the 26 commonly seen amino acids, S-Adenosyl-L-Methionine
(SAM), also acts as a methyl group donor for many natural
products biosynthesis (Chen et al., 2016). As the precursor for
protein synthesis, the concentration of most amino acids is
comparably higher than other intracellular metabolites,
therefore they are comparably easier to be quantified.

The amount of amino acids can be quantified with
corresponding decarboxylation or transamination reactions
(Bergmeyer et al., 1974). For L-alanine and L-aspartate, the
amino group can be transferred to α-oxoglutarate by
transaminases, generation L-glutamate and the corresponding
carboxylic acids, which can further be reduced with the
consumption of NADH. The level of amino acids can then be
determined after measuring NADH consumption at 340 or
366 nm. L-arginine, L-tyrosine, L-ornithine, L-glutamate,
L-histidine and L-lysine can be determined by corresponding
decarboxylation reactions, CO2 was generated by removing the
carboxyl group of the amino acids. The levels of amino acids can
be quantified by measuring the generated CO2 content. For

TABLE 2 | Ion-pairing for MRM-based LC-MS/MS detection of some metabolites.

Compound Parent ion Product ion Reference

Acetyl-CoA 810 303 Armando et al. (2012)
Malonyl-CoA 854 347 Armando et al. (2012)
Methylmalonyl-CoA 868 361 Armando et al. (2012)
Alanine 90 44 Le et al. (2014)
Arginine 175 70 Le et al. (2014)
Aspartate 134 88 Le et al. (2014)
Glutamate 148 102 Le et al. (2014)
Histidine 156 110 Le et al. (2014)
Leucine 132 86 Le et al. (2014)
Tryptophan 205 188 Le et al. (2014)
UDP-Glucose 565 323 Le et al. (2014)
UDP-GlcNAc 606 385 Le et al. (2014)
Glucose-6-phosphate 259 79 Luo et al. (2007)
Glyceraldehyde-3-phosphate 169 97 Luo et al. (2007)
Ribose-5-phosphate 229 97 Luo et al. (2007)
Sedoheptulose-7-phosphate 289 97 Luo et al. (2007)
Glucose-1-phosphate 259 241 Luo et al. (2007)
Erythrose-4-phosphate 199 97 Luo et al. (2007)
Phosphoenolpyruvate 167 79 Luo et al. (2007)
Pyruvate 87 43 Luo et al. (2007)
IPP 245 177 Henneman et al. (2011)
DMAPP 245 159 Henneman et al. (2011)
ATP 506 159 Luo et al. (2007)
GTP 522 424 Luo et al. (2007)
ADP 426 79 Luo et al. (2007)
NADH 664 79 Luo et al. (2007)
NADPH 744 408 Luo et al. (2007)
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example, L-lysine can be catalyzed by L-lysine decarboxylase into
cadaverine and CO2 at pH 6.0. The L-lysine content can be
determined by quantifying CO2 emission with a manometer
(Bergmeyer et al., 1974).

Since most amino acids have no UV absorption, it is
impossible to detect amino acids using HPLC with UV
spectrometry. The detection sensitivity will be largely
improved by sample derivatization (Tian et al., 2014). Many
reagents were available for derivatization of amino acids.
Reagents such as o-phthaldialdehyde (OPA) (Ro and Hahn
2005), naphthalene-2,3-dicarboxaldehyde (NDA) (Tseng et al.,
2009), fluorescein isothiocyanate (FITC) (Carlavilla et al., 2006),
dansyl chloride (Giuffrida et al., 2009), and 9-fluoroenylmethyl
chloroformate (FMOC) (Han and Chen 2007) and ninhydrin (de
Paiva et al., 2013) are widely used for HPLC analysis (Lin et al.,
2013), methyl chloroformate, heptafluorobutanol, trifluoroacetic
anhydride and N,O-bis (trimethylsilyl) trifluoroacetamide
(BSTFA) are usually used for GC-MS analysis (Kaspar et al.,
2008; Waldhier M. C. et al., 2010; Kvitvang et al., 2011). New
derivatization reagents are continually been reported (Otter
2012).

The most widely used HPLC techniques for amino acids
quantitation is based on an ion-exchange chromatography
followed by ninhydrin derivation and UV detection, which is
also commonly called Amino Acid Analyzer (Le Boucher et al.,
1997). Amino Acid Analyzer enables automatic separation,
derivation and detection of amino acids with high accuracy
and reproducibility. The lower limits of detection is less than
5 μmol/L (Le Boucher et al., 1997). Except for Amino Acid
Analyzer, other HPLC methods are also used in
chromatographic separation of amino acids (Callejón et al.,
2008; Zhang et al., 2012; Shi et al., 2013). For example, Zhang
et al. established a method based on HPLC to detect 23 amino
acids in rat serum. The samples were treated with pre-column
derivation using 2,4-dinitrofluorobenzene (DNFB), then went
through HPLC analysis using a C18 (4.6 × 50 mm, 1.8 μm)
column, the UV detection was set at 360 nm. Mobile phase
was consisted of 10 mm ammonium acetate solution (A),
acetonitrile (B) and methanol (C), a ternary gradient elution
was carried out for a better resolution. All 23 amino acids eluted
within 10 min and good separation was achieved. The lower
limits of quantification is 5 μmol/L (Zhang et al., 2012). In
addition to UV detector, photodiode array or fluorescence
detector is also used in studies according to the types of
derivation (Schwarz et al., 2005).

LC-MS/MS was widely used for fast, simple and reliable
quantitation for amino acids (Petritis et al., 2000). Wang et al.
determined leucine, isoleucine and valine by HPLC-MS/MS,
using an EZ:faastTM amino acid analysis-mass spectrometry
column (250 × 3.0 mm, 4 μm). The mobile phase consist of
10 mm ammonium formate containing water (A) and methanol
(B). Gradient flow was used for better resolution. MS was
operated in positive ion electrospray mode and the amino
acids were detected by MRM mode. The method was found to
be sensitive and reproducible, and the lower limits of quantitation
is 0.01 μg/mL (Wang et al., 2015). Quantitation of amino acids
without derivation is simple and time saving. However, because

the molecule weight of most amino acids are below 200, the signal
acquired by MS spectrometry may be influenced by background
noise or ion suppression. Stable isotope labelled amino acid as an
internal standard (IS) can be used to solve this problem (Piraud
et al., 2005a; Piraud et al., 2005b). For example, Piraud
et al.(2005a) described a method using reversed-phase LC-MS/
MS for the analysis of amino acids. The ion-pairing reagent
tridecafluoroheptanoic acid was added into the mobile phase for a
better separation, and a gradient of acetonitrile was used for the
elution of the most compounds. Stable isotope labelled (SIL) AA
was used as internal standard. For several amino acids, a good
resolution was achieved, and the lower limits of quantitation were
found to be about 0.1 μmol/L.

GC-MS is also widely used for amino acids determination
(Stalikas and Pilidis 2000; Zampolli et al., 2007; Kaspar et al.,
2008; Kaspar et al., 2009; Waldhier MC. et al., 2010; Kvitvang
et al., 2011). Derivation to make stable and volatile compounds is
necessary for GC analysis. Alkylation reagents, especially
chloroformates, have been used frequently in studies (Kvitvang
et al., 2014). For example, Kvitvang et al. (2014) used methyl
chloroformate (MCF) for the derivation of samples for GC-MS
analysis. The method covers over 60 metabolites. Metabolite with
amino acid or carboxylic acid functional group yields a stable and
volatile MCF derivative can be detected in this method. The low
limits of quantitation is down to picomole range injected on
column.

S-Adenosyl-L-Methionine (SAM), one of the nonprotein
amino acid, is an important precursor in many natural
product biosynthesis. Along with folic acid and vitamin B12,
SAM serve as methyl donor in many cellular reactions (Zhou
et al., 2002). It is necessary to determine SAM concentration in
order to investigate whether the methyl group supply is sufficient
in natural product biosynthesis (Ning et al., 2017). Similar with
other amino acids, the quantitation methods for SAM is mainly
carried out using HPLC (Zhou et al., 2002; Okamoto et al., 2003;
Han et al., 2015; Hayakawa et al., 2016) and LC-MS/MS (Owens
et al., 2015; Arning and Bottiglieri 2016; Manzanares-Miralles
et al., 2016). The difference is SAM can be traced by UV detector
directly at 254 nm, no derivation steps are needed (Han et al.,
2015). For example, Han et al. determined the concentration of
SAM in Corynebacterium glutamicum using HPLC. A Thermos
BioBasic SCX column (4.6 × 250 mm) was used, mobile phase
consisted of 100 mm ammonium formate, and UV detector was
set at 254 nm. SAM was successfully detected and quantified. The
concentration of SAM was calculated according to the peak area
of different dilutions of SAM standards (Han et al., 2015). LC-
MS/MS is also been used for SAM quantitation. Manzanares-
Miralles et al. (2016) used LC-MS for the detection of SAM in
Aspergillus niger. The samples were analyzed by LC–MS/MS
using a porous graphitized carbon (PGC) chip on a 6,340 Ion-
trap LC Mass Spectrometer. SAM levels were determined as
Relative Quantification (RQ) by LC–MS analysis.

Nucleotide Sugars
Nucleotide activated sugars take part in all kinds of glycosylation
reactions in cell. They are not only the building blocks for the
bacterial cell wall, but also the supply of glycosyl moiety for many
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metabolites (Ramm et al., 2004). The most widely used nucleotide
sugars for natural products biosynthesis are NDP-Glucose and
NDP-N-Acetylglucosamine (NDP-GlcNAc). For example, UDP-
Glucose is responsible for biosynthesis of next-generation
sweetners rehaudioside (Olsson et al., 2016), and NDP-
GlcNAc is the precursor for human milk oligosaccharides
(HMOs) Lacto-N-neotetraose (Dong et al., 2019).

The intracellular UDP-glucose can be determined by two
enzymatic methods (Mills and Smith 1965). The first one uses
Uridyl transferase, phosphoglucomutase and glucose-6-
phosphate dehydrogenase. They catalyze the reaction from
UDP-glucose, pyrophosphate and triphosphopyridine
nucleotide (NADP) into 6-phosphogluconic acid, UTP and
NADPH. The reaction can be followed by the absorption of
NADPH at 340 nm. This reaction is specific for UDP-glucose
(Mills and Smith 1965). The other method is based on the
reaction catalyzed by UDPG dehydrogenase, UDP-glucose and
2 molecules of diphosphopyridine nucleotide (NAD) are
transformed into UDP-glucuronic acid and 2 molecules of
NADH. The reaction is irreversible. UDP-glucose will be
determined according to the amount of generated NADH.
This method can’t distinguish among UDP-glucose, UDP-
galactose and UDP-GlcNAc, intracellular glucose-6-phosphate
can also be an interference (Mills and Smith 1965; Lowry and
Passonneau 1972).

HPLC methods have been developed for separation and
quantitation of nucleotide sugars. Since most nucleotide sugars
have UV absorption at around 260 nm, UV detector is usually
applied for detection of these compounds. Two kinds of HPLC-
based methods have been used for nucleotide sugars
determination (Ramm et al., 2004): the high performance
anion exchange chromatography (HPAEC) and ion-pair
reverse phase high performance chromatography (RP-HPLC).
For HPAEC, an anion exchange chromatography column is used,
the mobile phase are NaOH/NaAc and NaAc water solutions (del
Val et al., 2013; Tomiya et al., 2001). For example, Tomiya et al
used HPAEC method for the quantification of nucleotide sugars
from mammalian cells. The analysis was carried out using a
CarboPac PA-1 column and mobile phase consisted of 1 mm
sodium hydroxide (E1) and 1 m sodium acetate in 1 mm sodium
hydroxide (E2). Sugar nucleotides were detected at 260 nm. A
good resolution was achieved using HPAEC method. The lower
limit of quantification was about 1 pmol/injection (Tomiya et al.,
2001). For RP-HPLC, a C18 column is usually used (Ying et al.,
2009), and mobile phase are usually phosphate aqueous solution
and acetonitrile or methanol, with the addition of ion-pair
reagents such as tetrabutylammonium hydrogensulphate
(Nakajima et al., 2010; Ishibashi and Hirabayashi 2015),
trietylamine, tripropylamine and tributylamine (Ramm et al.,
2004). Ishibashi et al. employed RP-HPLC for the
determination of nucleotide sugars in human cells. An ODS-3
column (4.6 × 150 mm, 3 μm) was used for separation of
compounds. Ion-pairing reagent tetrabutylammonium
hydrogen sulfate was added into potassium phosphate buffer,
resulting buffer C. 70% of buffer C and 30% of acetonitrile was
mixed to make buffer D. Gradient elution of buffer C and D was
applied at a flow rate of 1.0 mL/min. UV detector was set to a

wavelength of 254 nm. The amount of UDP-Gal, UDP-Glc,
UDP-GalNAc and UDP-GlcNAc have been successfully
quantified (Ishibashi and Hirabayashi 2015). In addition to
UV detector, pulsed amperometric detector (PAD),
photodiode array detector (PDA) have also been adopted for
nucleotide sugars detection (Marcellin and Abeydeera 2009;
Franke et al., 2015).

LC-MS/MS methods for determination of nucleotide sugars
are mainly developed based on the HPLC methods of HPAEC
and RP-HPLC (Rejzek et al., 2017). Negative modes with either
full scan orMRMmode are selected forMS settings (Turnock and
Ferguson 2007). For anion exchange chromatography, high salt
mobile phase has to be replaced by PH gradient elution, and the
NaOH solution be removed after column (Veltkamp et al., 2006;
Alonso et al., 2010). For example, Alonso et al quantified cell wall
precursors using this method. The metabolites were separated by
an IonPac AS11 (25 × 2 mm) column at a flow rate of 0.35 mL/
min. 0.5 mm NaOH (A) and 50 mM NaOH (B) were used as
mobile phase. After column, the eluent went through an anion
self-regenerating suppressor ASRS 300 (2 mm, Dionex) for the
dilution of NaOH.MS was tuned at negative ionmode andMRM.
16 hexose-phosphate and nucleotide sugars were separately
quantified (Alonso et al., 2010). For the ion-pairing RP-HPLC,
the volatile ion-pairing reagents such as triethylammonium
acetate or tripropylammonium acetate are be used v. For
example, Turnock et al. determined sugar nucleotide pools of
Trypanosoma brucei, Trypanosoma cruzi and Leishmania major.
0.5–4% acetonitrile in 20 mM triethylammonium acetate buffer
(pH = 6) was used as mobile phase. A C-18 column was used. MS
was operated in negative ion mode and analysis was carried on in
MRMmode. The method successfully quantified the intracellular
sugar nucleotides, and had a lower limits of detection at about
1 pmol/injection (Turnock and Ferguson 2007).

Phosphate Sugars
Except for nucleotide sugars, another sugar source for
glycosylation reactions are phosphate sugars. Phosphate
sugars includes glucose-6-phosphate, glucose-1-phosphate,
and the sugars involved in pentose phosphate pathway such
as sedoheptulose-7-phosphate, erythrose-4-phosphate and
ribose-5-phosphate. Phosphate sugars are the precursors for
the biosynthesis of many natural products. For example, the
sweetener erythritol is biosynthesized from erythrose-4-
phosphate (Rzechonek et al., 2018), while riboflavin
(vitamin B2) comes from ribulose-5-P (Nielsen and Bacher
2009), etc.

Different phosphate sugars can be determined after
transforming into glucose-6-phosphate or glyceraldehyde-3-
phosphate by corresponding transketolase or transaldolase
(Bergmeyer et al., 1974). Glucose-6-phosphate can be
determined by the reaction catalyzed by glucose-6-
phosphate dehydrogenase, in which glucose-6-phosphate
and NADP are converted into 6-phosphogluconic acid and
NADPH. The reaction is followed by measuring OD at 340 nm,
as the reduction of NADPH. Glyceraldehyde-3-phosphate
reacts with NAD in the presence of arsenate, generating
glycerate-3-phosphate and NADH. The reaction can also be
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followed by changes of OD at 340 nm, as the generation of
NADH (Bergmeyer et al., 1974).

Determination of phosphate sugars by HPLC is challenging,
since most phosphate sugars are highly hydrophilic and having
no UV absorption. Alternatively, detectors such as pulsed
amperometric detector (PAD) (Marcellin and Abeydeera
2009), amperometric detector (Qian et al., 2008) or aerosol
detector (Hinterwirth et al., 2010) are adopted in researches.
Hinterwirth et al. (2010) has established a method for the
separation of sugar phosphates using HPLC. The HPLC
method consisted a mixed mode chromatography with
reversed-phase/weak anion-exchangers and charged aerosol
detector. The method enabled almost complete resolution for
a mixture of six hexose phosphates.

For a more precise detection and quantification capacity, mass
spectrometry coupled with HPLC are used for determination of
phosphate sugars (Feurle et al., 1998; Sekiguchi et al., 2005;
Antonio et al., 2008; Kato et al., 2012; Xia et al., 2013; Qiu
et al., 2016). Hydrophilic columns and ion-pairing reagents
adding mobile phase are often applied for a better resolution.
Antonio et al. used LC-MS/MS to detect phosphate sugars in
Arabidopsis thaliana leaf tissue. A ZIC-HILIC column (150 ×
2.1 mm, 3.5 μm) was used for separation. Mobile phase composed
of 0.1% (v/v) formic acid (FA) in acetonitrile (A) and 0.1% FA in
5 mM ammonium acetate. MS was operated in the negative ion
mode. A full scan mode over the scan range m/z 50 to 1,000 was
applied. The method enabled separation and detection of eight
sugar related compounds in less than 15 min. Limits of detection
is 2.0 μmol/L for sugar phosphates (Antonio et al., 2008). Luo
et al. described a method for simultaneous determination of
multiple intracellular metabolites, including phosphate sugars
by LC-MS/MS. A good resolution was achieved by use of the
volatile ion pair modifier tributylammonium acetate (TBAA) in
the mobile phase. 29 metabolites including sugar phosphates,
nucleotides and carboxylic acids were separated on a
C18 revered-phase column. The limits of detection for
metabolites were mostly below 60 μmol/L (Luo et al., 2007).
Qiu et al. compared different column, mobile phase and MS
scan mode on simultaneous determination of 25 metabolites,
including phosphate sugars. The NH2P-50 2D (2.0 × 150 mm,
5 μm) column, and the mobile phase of 1.5 mmoL/L ammonium
bicarbonate and 0.1% concentrated ammonia in aqueous solution
was shown to give best resolution for separation of all metabolites.
The author also showed Full scan MS mode was better than the
MRM mode for simultaneous detection of multiple metabolites.
The calibration curved of this method showed good linearity
within the range of 1—10,000 μg/L (Qiu et al., 2016).

GC-MS is also used for determination of phosphate sugars
(Cipollina et al., 2009; Spegel et al., 2013; Liu et al., 2015; Uifalean
et al., 2016; Xu et al., 2016; Shen et al., 2017). Sample derivation
are usually required, the reagents such as methoxyamine and
N-methyl-N-trimethylsilyl trifluoroacetamide are usually applied
for better volatility of the chemicals (Spegel et al., 2013; Liu et al.,
2015; Uifalean et al., 2016; Xu et al., 2016). For example, Spegel
et al. determined intracellular metabolites in β-cells by GC-MS.
The samples were treated for derivation with methoxyamine
hydrochloride and N-methyl-N-trimethylsilyl

trifluoroacetamide after extraction. The separation was
performed on a 30 × 0.25 mm DB5-MS column with a phase
thickness of 0.25 μm. The ionization energy was set to 70 eV and
the data acquisition rate was 20 Hz with a scanning range of
50–800 m/z. The data were treated using MATLAB and HMCR.
Peak identification was performed using NISTMS search 2.0. The
study successfully determined metabolites concentration in the
control of insulin release in cell. The changes in ribose 5-
phosphate and other metabolites were well recorded (Spegel
et al., 2013).

Glycerol Derived Metabolites
Glycerol derived metabolites not only take part in the
biosynthesis of varies natural products [such as Menaquinone-
7 (vitamin B7)] (Cui et al., 2019), but also as a precursor for the
biosynthesis of other precursors (such as acyl-CoAs, IPP, and
DMAPP, etc.). In these compounds, the direct precursors of the
glycerol moieties are 1,3-biphosphoglycerate (1,3-BPG), 2 (or 3)-
phosphoglycerate [2 (or 3)-PG] or phosphoenolpyruvate (PEP).

It is difficult to determine the intracellular pool of 1,3-BPG, as
1,3-biphosphoglycerate spontaneously decomposes to give 3-
phosphoglycerate and inorganic phosphate. The amount of
1,3-biphosphoglycerate is very low and its estimation is hardly
possible. The only way to determine the concentration of 1,3-
biphosphoglycerate is by enzymatic reaction (Bergmeyer et al.,
1974; Inoue et al., 1987), however the accuracy is not guaranteed.

While few studies have reported determination of glycerol
phosphates with HPLC, the concentration of 2-PG, 3-PG and
PEP can still be determined by MS-aided techniques. These
compounds are often quantified along with other metabolites
such as phosphate sugars and carbolic acids in metabolome
related researches (Kato et al., 2012; Spegel et al., 2013;
Rehberg et al., 2014; Nishino et al., 2015; Qiu et al., 2016;
Uifalean et al., 2016; Boone et al., 2017). The signals of 2-PG
and 3-PG are not easily separated by liquid chromatography, and
better resolution is achieved by optimization of the column and
mobile phase. Qiu et al. reported that with the use of a NH2P-50
2D column, and mobile phase consisted of ammonium
bicarbonate and 0.1% ammonia added acetonitrile aqueous
solution or methanol aqueous solution, a complete separation
of 2-PG and 3-PG can be achieved (Qiu et al., 2016).

IPP and DMAPP
Isopentenyl diphosphate (IPP) and dimethylallyl diphosphate
(DMAPP) are the common precursors of terpenes, a large
natural products family for biosynthesizing of nutritious
supplements carotenoids, including the famous molecule such
as lycopene (Ma et al., 2019), β-carotene (Kim et al., 2008),
astaxanthin (Park et al., 2018), etc. The biosynthesis of terpenes
starts with the condensation of IPP and DMAPP, which are
isomers to each other.

Few studies are present for the detection of IPP and DMAPP.
Before the year of 2000, most quantitation studies were done
using radio labelled precursors and radio detector for the
quantitation of IPP and DMAPP (Bruenger and Rilling 1988;
McCaskill and Croteau 1993; Lange et al., 2001). Then methods
based on liquid chromatography coupled tandem mass
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spectrometry was developed, and determination of terpene
precursors become easier (Henneman et al., 2008; Jauhiainen
et al., 2009; Henneman et al., 2011). Henneman et al. used HPLC-
MS/MS to quantify IPP/DMAPP pool along with six other
intermediates in terpene biosynthesis. The samples were
separated on a C18 column (4.6 mm × 50 mm, 3 μm) eluted
using solution A (20 mm NH4HCO3, 0.1% triethylamine) and
solution B (acetonitrile aqueous solution, 0.1%triethylamine).
The analyze time is 12 min per sample. Mass spectrometry
was tuned on negative MRM mode. Most metabolites had
been successfully quantified, and the lower limit of
quantitation of IPP/DMAPP is 0.42 μmol/L (Henneman et al.,
2008). The only problem of the method above is its inability to
separate the isomer IPP from DMAPP. Jauhiainen et al. solved
this problem by detecting different MS2 spectra of IPP and
DMAPP, based on different signal intensity ratio of the MS2
spectra of the isomers. In detail, the fragment ionm/z 177, formed
by pyrophosphate group cleavage, was used for detection of IPP.
While the fragment ion m/z 159 was more suitable for detection
of DMAPP. After data calibration with IPP and DMAPP
standards, both the concentration of IPP and DMAPP were
quantified successfully (Jauhiainen et al., 2009). Tong et al.
developed a method based on enzymatic reaction followed
HPLC with fluorescence detection to determine the basal level
of IPP in untreated cells (Tong et al., 2013). In the method, IPP
and farnesyl diphosphate (FPP) can be catalyzed by
geranylgeranyl diphosphate synthase into geranylgeranyl
diphosphate (GGPP), which was further conjugated on a
fluorescently labelled peptide. The resulted peptide can be
determined using HPLC with a fluorescence detector. This
method is specific for detection of IPP without the
interference of DMAPP. The lower limit of detection reached
about 5 pg (0.017 pmol) per injection.

Others
Except for the direct precursors described above, the biosynthesis
of natural products always require energy and reducing power to
complete a series of reactions. The successful proceeding of
reactions depends on the intracellular level of the energy and
reducing power donors. Those chemicals includes nucleotide
phosphates (ATP, GTP, TTP, dTDP, etc.) and adenine
dinucleotides (NAD(P)H and FADH). Herein, we will take
ATP and NAD(P)H as examples to discuss the quantitation
methods of energy and reducing power donors.

ATP
The most common principle for ATP determination by
enzymatic reactions is the luciferase reaction (Strehler 1974;
Yang et al., 2002; Gorman et al., 2003; Gorman et al., 2007).
Luciferase catalyzes luciferin and ATP into adenyl-luciferin,
whereas adenyl-luciferin can be oxidized into adenyl-
oxyluciferin by the oxygen in atmosphere, in the same time
light emission happens (Strehler 1974). The emission of light
can be followed by a spectrometer. The quantitation of ADP and
AMP was done after conversion into ATP by pyruvate kinase or
myokinase (Gorman et al., 2003). Because of the high sensitivity
and specificity of luciferase, the reaction is widely used for ATP

determination. Currently, commercialized kits have also been
developed for determination of intracellular ATP based on
different enzymatic reactions.

HPLC is widely used for determination of intracellular ATP
(Kawamoto et al., 1998; Huang et al., 2003; Caruso et al., 2004;
Zur Nedden et al., 2009; Zhou et al., 2012). Ionized reagents such
as potassium phosphate are used as mobile phase. Huang et al.
detected intracellular nucleoside triphosphate levels in cells by a
reverse phase ion-pair HPLC. Separations were performed using
a C-18 (150 × 4.6 mm, 3.5 μm) column. The mobile phase
consisted of 10 mM tetrabutylammonium hydroxide, 10 mM
KH2PO and 0.25% MeOH (A) and 5.6 mm
tetrabutylammonium hydroxide, 50 mM KH2PO and 30%
MeOH (B). The UV detector was set at 254 nm. High
resolution of nine nucleoside triphosphate in 16 normal or
tumor cell lines was achieved. The detection limits of ATP
and ADP are 2.44 pmol and 1.39 pmol per injection,
respectively (Huang et al., 2003). Fluorescence detector is also
adapted sometimes. For example, Kawamoto et al. used HPLC
with fluorescence detector to quantify ATP and related
metabolites from rat caudal artery. The samples were derived
with chloroacetaldehyde to produce high fluorescent signals.
After separation, the samples were detected by RF-10A
fluorescence detector. The wavelength for excitation and
emission were set at 270/410 nm for ethenopurine derivatives
and 285/395 nm for underivatized purines. The ethenopurine
derivatives of ATP were separated within 15 min, and the lower
limits of detection was 0.04 pmol per injection (Kawamoto et al.,
1998).

LC-MS/MS is also widely used for ATP quantitation, the
separation of the adenine nucleotides are usually accomplished
by the addition of volatile ion-pairing reagents into the mobile
phase (Qian et al., 2004; Cohen et al., 2009; Seifar et al., 2013;
Zhang et al., 2014). MRMmode is applied for MS data collection.
Zhang et al. established a method using LC-MS/MS for
quantitation of endogenous adenine nucleotides in human
plasma. The mobile phase was made based on ion-pairing
reagents diethylamine (DEA) and hexafluoro-2-isopropanol
(HFIP). The samples were separated by an aminopropyl
(NH2) column. MS was tuned at negative-ion MRM mode.
The method was reported to have satisfactory linearity,
sensitivity, accuracy, reproducibility and matrix effects. The
lower limits of quantitation is 2.0 ng/mL (Zhang et al., 2014).

NAD(P)H
The featured fluorescence and absorption characteristic of
NAD(P)H can be applied for its intracellular quantitation. The
fluorescent excitation wavelength of NAD(P)H is 340 nm, and
emission wavelength is 460 nm. The strongest absorption
wavelength is at 340 nm. Based on these principles,
spectroscopy or fluorescence spectroscopy can be applied for
determination of intracellular NAD(P)H (Villette et al., 2006;
Saliola et al., 2012). Saliola et al. examined intracellular NAD(P)H
level with a FluoroMax-3 (Horiba Jobin-Yvon)
spectrofluorometer. The excitation wavelength was set at
366 nm, and the emission spectra were recorded from 370 nm
to 440 nm. The corresponding NAD(P)H concentration was
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calculated at the basis of a NADPH standard curve obtained from
solutions of different concentrations (Saliola et al., 2012).
NAD(P) can be converted into NAD(P)H by alcohol
dehydrogenase (NAD) or by glucose phosphate dehydrogenase
(NADP) [107], thus total and individual amount of NAD(P)H
and NAD(P) can be calculated respectively (Wise and Shear 2006;
Ogasawara et al., 2009). The spectroscopy based method is fast
and easy. However, NADH andNADPH can not be distinguished
directly, and other chemicals in cell may interrupted the detection
result.

HPLC for NAD(P)H detection has promised an at least five
times more sensitive result than enzymatic reaction (Ogasawara
et al., 2009). Peaks of NADH and NADPH can be easily seperated
by HPLC. Ion-pairing reverse phase HPLC with fluorescent
detection (Ogasawara et al., 2009) or UV detection (Yoshino
and Imai 2013) are usually applied. Ogasawara et al. detected
NADPH and total NADPH (NADP + NADPH) in human red
blood cells with HPLC equipped with an fluorescent detector
(Ogasawara et al., 2009), the mobile phase consists of 5%
methanol and 95% 0.1 M phosphate buffer, a reverse phase
RP-C-18 (4.0 mm × 250 mm, 5 μm) column was applied for
compounds separation. The excitation and emission
wavelength was set at 340 nm and 460 nm, respectively. The
peak of NADPH was detected, total amount of NADPH and
NADP was monitored after converting NADP into NADPH by
glucose phosphate dehydrogenase. The concentration of
NADP(H) was calculated based on an NADPH standard curve
(Ogasawara et al., 2009).

LC-MS based detection of NAD(P)H has also been widely
used, giving a clear distinguish among reduced and oxidized
formed NADH and NADPH and a much higher detection
sensitivity (Ortmayr et al., 2014; Lu et al., 2017). Ortmayr
et al. evaluated several analytical workflow for analyzing
oxidized and reduced form of NADPH in the yeast Pichia
pastoris. An optimal chromatographic separation is achieved
with a silica-based C-18 (2.1 mm × 150 mm, 3 μm) column.
The mobile phase consisted of 5 mM ammonium acetate (pH
6.0, A) and methanol (B). An excellent chromatographic
resolution of NADP and NADPH was 4.9 min within a
total run time of 12 min. LC-MS/MS in negative multiple
reaction monitoring mode was used for detection and
quantitation. The method was proved to be appropriate for

quantitation of oxidized and reduced form of NADPH in
yeast cells (Ortmayr et al., 2014).

DISCUSSION

In this review, methods commonly used for precursors
quantitation were discussed in detail. Table 3 summarized the
characteristics of the methods. Each method has advantages and
limitations, and is suitable for different experimental purposes.

Enzymatic reaction provides fast and high-throughput
detection, can be applied for detection of various metabolites,
while the specificity is lower than other methods. The
commercialized kits developed with high detection accuracy
are very useful for high-throughput detection of specific
compounds. Acyl-CoAs, ATP and NAD(P)H can be quantified
easily using this method. HPLC provides a more specific
detection, but having trouble for determination of metabolites
with low UV absorption. The LOQ range of HPLC with UV
detector is 10–100 μmol/L, which would be much improved when
using fluorescence detector (to 4–5 μmol/L) (Tong et al., 2013)
(Kawamoto et al., 1998). HPLC is a good choice for quantitation
of nucleotide sugars. GC-MS analysis is also a choice of
metabolites detection with higher specificity, but the
metabolites must be volatile or can be derived into volatile
molecule before analysis. GC-MS can be used for detection of
amino acids and phosphate sugars. LC-MS/MS brings up to now
most sensitive (LOQ < 5 μmol/L) and specific detections for
metabolites, and can be applied to all the precursors
mentioned in this article. However, the price for LC-MS/MS
operation andmaintenance are much higher than the former two.
All the precursors mentioned in this review can be quantified by
LC-MS/MS. Because of its high sensitivity and broad detection
range, LC-MS/MS, or LC-MS/MS combined with GC-MS are
widely used for metabolome analysis.

Apart from the methods above, many other methods have also
been developed for metabolite quantitation. For example, there
are many researches about metabolite determination using
capillary electrophoresis (CE) (Cavazza et al., 2000; Boniglia
et al., 2010; Tian et al., 2014; Crespo et al., 2015; de Souza
Crespo et al., 2015). CE has emerged as a promising
complementary technique to HPLC, as it has several

TABLE 3 | Comparison of the methods mentioned in this article.

Methods LOQa

(μmol/L)
Throughput Precursors can be

quantified by this
method

References

Enzymatic
reactions

~10 High acyl-CoA, amino acids, nucleotide sugars, phosphate
sugars, ATP, NAD(P)H

Decker (1965)

HPLC 5–100 Low acyl-CoA, amino acids, nucleotide sugars, ATP, NAD(P)H (Tomiya et al., 2001; Huang et al., 2003; Zhang et al., 2012;
Shurubor et al., 2017)

GC-MS 5–100 Low amino acids, phosphate sugars Kvitvang et al. (2014)
LC-MS/MS < 5 Low acyl-CoA, amino acids, nucleotide sugars, phosphate

sugars, glycerol derived metabolites, IPP and DMAPP, ATP,
NAD(P)H

(Piraud et al., 2005a; Luo et al., 2007; Turnock and Ferguson
2007; Antonio et al., 2008; Henneman et al., 2008; Gilibili
et al., 2011; Zhang et al., 2014; Gotoh et al., 2015; Wang
et al., 2015; Qiu et al., 2016)

aLOQ, is the lower limits of quantitation, calculated from the corresponding research papers, the unit was normalized to μmol/L.
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advantages such as fast analysis, small sample volume demanding
and low consumption of solvents (Tian et al., 2014). Capillary
electrophoresis (CE) tandem mass spectrometry are also used in
studies (Lehmann et al., 2000; Feng et al., 2008; Watanabe et al.,
2015). Sometimes, NMR is also applied for detection of
precursors (Sonnewald et al., 1994; Ramm et al., 2004). Those
methods provides alternative choices for determination of natural
products precursors according to different purposes.

In spite of great progress achieved in method development,
there is still room for improvements. The biggest challenge is how
to ensure both throughput and specificity. For enzymatic
methods, evolution or engineering of enzymes with improved
substrate binding affinity would increase the detection specificity,
application of fluoresce instead of absorbance would also increase
the sensitivity. MS detection provides most specific analysis up to
now in spite of low throughput, to solve the problem, Matrix-
Assisted Laser Desorption/Ionization-Time of Flight (MALDI-
TOF) mass spectrometry (MS) has been developed which enabled
high throughput detection of molecules, but mostly appropriate
for detection of molecules with high molecule weight
(biopolymers such as DNA, proteins, peptides and
carbohydrates). If this technique can be improved for accurate

detection of compounds with molecule weight of 50–1,000 Da, it
will greatly improve the throughput of metabolites quantitation.
There is also difficulty in detection and quantitation of some
metabolites without commercial standards, therefore, free and
comprehensive on line mass spectrometry databases for
metabolomics analysis would promote the development of
this area.
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