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Abstract: Cellular senescence is a form of proliferative arrest triggered in response to a wide variety
of stimuli and characterized by unique changes in cell morphology and function. Although unable
to divide, senescent cells remain metabolically active and acquire the ability to produce and secrete
bioactive molecules, some of which have recognized pro-inflammatory and/or pro-tumorigenic
actions. As expected, this “senescence-associated secretory phenotype (SASP)” accounts for most
of the non-cell-autonomous effects of senescent cells, which can be beneficial or detrimental for
tissue homeostasis, depending on the context. It is now evident that many features linked to cellular
senescence, including the SASP, reflect complex changes in the activities of mTOR and other metabolic
pathways. Indeed, the available evidence indicates that mTOR-dependent signaling is required for
the maintenance or implementation of different aspects of cellular senescence. Thus, depending on
the cell type and biological context, inhibiting mTOR in cells undergoing senescence can reverse
senescence, induce quiescence or cell death, or exacerbate some features of senescent cells while
inhibiting others. Interestingly, autophagy—a highly regulated catabolic process—is also commonly
upregulated in senescent cells. As mTOR activation leads to repression of autophagy in non-senescent
cells (mTOR as an upstream regulator of autophagy), the upregulation of autophagy observed in
senescent cells must take place in an mTOR-independent manner. Notably, there is evidence that
autophagy provides free amino acids that feed the mTOR complex 1 (mTORC1), which in turn is
required to initiate the synthesis of SASP components. Therefore, mTOR activation can follow the
induction of autophagy in senescent cells (mTOR as a downstream effector of autophagy). These
functional connections suggest the existence of autophagy regulatory pathways in senescent cells
that differ from those activated in non-senescence contexts. We envision that untangling these
functional connections will be key for the generation of combinatorial anti-cancer therapies involving
pro-senescence drugs, mTOR inhibitors, and/or autophagy inhibitors.

Keywords: mTOR; autophagy; senescence

1. Introduction

It has now become evident that cellular senescence is not a homogeneous phenotype.
Rather, several types of senescence, with different consequences for tissue homeostasis,
can be recognized [1–6]. Features such as the nature of the senescence-inducing stimulus,
the cell of origin, and the ability of senescent cells to synthesize and release bioactive
molecules have all been described as determinants of the ultimate effects of senescent cells
in complex tissues [4,7–9]. Underlying the diversity of senescent cells are complex cell-
autonomous synthetic and catabolic pathways. Understanding these metabolic changes is
particularly relevant for drug-induced senescence, which is often encountered in the context
of cancer treatment [10–14]. By modifying the metabolic status of senescent cells, one would

Int. J. Mol. Sci. 2021, 22, 8149. https://doi.org/10.3390/ijms22158149 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms22158149
https://doi.org/10.3390/ijms22158149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22158149
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22158149?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 8149 2 of 16

expect to tilt the balance towards less harmful and more therapeutically effective forms of
senescence. In this review, we begin with a general account of cellular senescence, in order
to then discuss the role of mTOR and autophagy in this process. In light of the extensive
number of cellular systems in which cellular senescence has been studied, therapies that
induce senescence as part of their anti-cancer effects, such as cyclin-dependent kinase 4
and 6 (CDK4/6) inhibitors [15–20], will be used to illustrate key concepts and functional
connections.

2. Cellular Senescence in a Nutshell

Cellular senescence is a unique form of cell cycle arrest triggered in response to
a wide range of physiological and pathological stimuli [5,9]. The initial description of
cellular senescence was based on analyses of primary human fibroblasts propagated in
culture [21,22]. After undergoing several rounds of division, these cells enter a state of
proliferative arrest characterized by an inability to respond to growth factors [2]. The
finite number of doublings before exiting the cell cycle, known as the Hayflick limit, was
later shown to be the result of cell division-driven telomere shortening [3]. Importantly,
subsequent studies demonstrated that a similar phenotype can be triggered in response to
the stress that accompanies oncogene activation, DNA damage, reactive oxygen species
(ROS) generation, mitochondrial dysfunction, chemotherapeutic drugs, and other stim-
uli [23]. To distinguish them from the process of “replicative senescence” that occurs in
primary human cells, these various forms of senescence were grouped under the name of
“premature senescence” or “stress-induced senescence” [1]. What most of these forms of
cellular senescence have in common is the activation of the DNA damage response [24–26],
although some stimuli, including the exposure to some chemotherapeutic drugs, induce
senescence with no evidence of direct genomic damage [27].

As the exit from the cell cycle in senescent cells is commonly established and main-
tained through the activation of tumor suppressor pathways centered on p53 and/or
pRb [28], it was rapidly recognized that cellular senescence represented a cell-intrinsic
mechanism that limits the proliferation of damaged and potentially cancerous cells [4].
Thus, much like apoptosis, cellular senescence acts as a barrier that cells must overcome in
order to become immortalized and transformed, explaining the high frequency at which
these pathways become disrupted in human cancers [29,30].

Unlike cells undergoing other forms of cell cycle arrest, senescent cells acquire a set
of unique morphological and functional features [31]. Under the microscope, they appear
as enlarged and flattened cells, with large nuclei and multi-vacuolated cytoplasms [32].
A higher number of lysosomes, which results in higher β-galactosidase activities at sub-
optimal pH [33,34], is also typical of most senescent cells. Another feature of senescent
cells is the accumulation of senescence-associated heterochromatin foci (SAHF), regions
of chromatin condensation associated with the silencing of several genes involved in
proliferation [35,36]. It is important to stress, however, that these microscopic features,
along with the activation of the p53 and pRB pathways, are not necessarily specific to
cellular senescence. Therefore, several markers of senescence are commonly required to
confirm the presence of senescent cells [5].

A turning point in the field was the realization that cellular senescence also occurs in
the context of complex tissues [37–40]. It is now accepted that senescent cells participate in
processes as diverse as embryonic development, wound healing, and tissue repair [4,8].
Senescent cells also accumulate in aging tissues, contributing to the tissue and organ dys-
function that accompanies organismal aging [7,9]. Indeed, persistent senescent cells have
been linked to chronic inflammation and a decrease in lifespan [37]. Accordingly, target-
ing senescent cells in aged mice, using genetic or pharmacological approaches, attenuates
chronic inflammation and restores fitness, demonstrating a causal link between the accumu-
lation of senescent cells and age-related decay [14]. Therefore, targeting senescence could
represent a powerful strategy to prolong the period of time free of chronic diseases [41].
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In line with these in vivo effects, and far from being passive bystanders, senescent
cells can synthesize a wide variety of bioactive molecules that can then be secreted to
the extracellular environment [13]. Secreted factors include growth factors, cytokines,
chemokines, proteases, and components of the extracellular matrix [11]. As expected,
this “senescence-associated secretory phenotype (SASP)” greatly expands the effects of
senescent cells arising in complex tissues [12,42,43]: while some SASP factors perpetuate, or
even promote, senescence [44], others can stimulate proliferation or enhance the migration
of non-senescent neighbor cells [10]. Of note, due to the trophic and pro-inflammatory
actions of many SASP components [11], senescent cells arising in tissues can promote an
inflammatory microenvironment that, in the long run, could facilitate tumorigenesis [45,46].
Similarly, senescent cells arising in the tumor microenvironment, after exposing cancer
cells to senescence-inducing chemotherapeutic drugs or radiation, could perpetuate a post-
therapy inflammatory state leading to cancer recurrence [47]. Thus, in contrast to the view
of cellular senescence as a cell-autonomous mechanism that suppresses the proliferation
of cells at risk of malignant transformation [33,48], the long-term persistence of senescent
cells in tissues may have non-cell-autonomous detrimental effects [49], likely reflecting
the chronic actions of SASP profiles enriched in inflammatory molecules [50,51]. It is
important to mention, however, that senescent cells do have the ability to signal their own
removal through the secretion of factors that attract and activate immune cells [52]. This
has led to the notion that chronic senescence, with its detrimental consequences for tissue
homeostasis, may reflect, at least in part, a decline in the ability of the immune system to
remove senescent cells from tissues [49,53].

Underlying senescence phenotypes, including the SASP, are complex changes in
cellular metabolism [54,55]. In fact, dysregulation of cellular metabolism is a hallmark of
cellular senescence [52], a feature partially attributed to epigenetic modifications [56]. For
example, studies carried out in models of oncogene-induced senescence (OIS) have revealed
the existence of a predominantly mitochondrial oxidative metabolism with increased
oxygen consumption, ATP production, and lipid catabolism, in senescent cells [57–59]. In
other models, however, senescent cells seem to acquire a more glycolytic state, even in
the presence of high oxygen levels [60]. Among the signaling circuitries involved in the
modulation of catabolic and synthetic processes, as well as the maintenance of the energy
balance, those centered on mTOR have slowly emerged as key determinants of senescent
phenotypes [61].

3. mTORC1 Activity in Senescent Cells

mTOR (mechanistic target of rapamycin) is a serine/threonine kinase involved in the
integration of multiple metabolic and growth-promoting signals [62]. Upon activation,
mTOR promotes cell growth and survival through the regulation of protein synthesis and
other biosynthetic processes while limiting autophagy-mediated catabolism [63,64]. An
extensive biochemical characterization has revealed the existence of two mTOR-containing
multiprotein complexes (mTORC1 and mTORC2), each distinguished by its own set of
accessory proteins and differential sensitivity to the drug rapamycin, and each involved in
the regulation of unique aspects of cell growth [65]. On the one hand, mTORC1 (containing
at its core mTOR, mLST8, FKBP12, DEPTOR, and the scaffold protein RAPTOR) inte-
grates nutrient, growth-promoting, and stress-related signals and translates these inputs
into adaptive responses that tune the balance between anabolism and catabolism [66,67].
mTORC2 (containing mTOR, mSIN1, DEPTOR, and the scaffold protein RICTOR), on the
other hand, orchestrates dynamic rearrangements of the cytoskeleton and the activation of
pro-survival pathways in response to growth-promoting signals [68,69]. Unlike mTORC1,
which can be acutely inhibited by rapamycin, mTORC2 is inhibited only upon chronic
exposure to this drug [69–71]. Interestingly, mTOR has been found in several subcellular
compartments, including mitochondria, the plasma membrane, the endoplasmic reticulum,
the nucleus, and lysosomes [72–74]. While the functions of mTOR at different subcellular
localizations remain incompletely understood [72], mitochondria-localized mTOR seems to
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promote the synthesis of the mitochondrial transcription factor A (TFAM), mitochondrial
ribosomal proteins, and components of complexes I and V, necessary for the coordination
between mRNA translation and energy production [75–77]. Similarly, lysosomal mTOR
seems to be essential for autophagy and lysosomal biogenesis [78].

Activation of mTORC1 by nutrients and/or growth factors typically promotes protein
synthesis while, at the same time, suppressing catabolic processes [79,80]. For example,
mTORC1 promotes the de novo synthesis of lipids through the activation of the sterol
regulatory element-binding protein (SREBP), an important transcriptional regulator of
lipogenic genes [81,82]. Additionally, the S6K kinase, a downstream target of mTORC1,
facilitates the de novo synthesis of nucleotides through phosphorylation of carbamoyl-
phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase enzymes (CAD),
as well as the transcriptional activation of pentose phosphate pathway (PPP) enzymes that
produce ribose and pyrimidines [83,84]. Moreover, protein synthesis is enhanced by S6K
and the mTOR-mediated phosphorylation and inhibition of 4E-BP, events required for the
initiation of cap-dependent translation and ribosome biogenesis [85–87]. These and other
mTORC1-dependent processes provide the necessary building blocks to sustain cellular
growth and proliferation [88,89]. It is therefore hardly surprising that mTOR activity is
upregulated by oncogenic signals in the majority of human malignancies [90].

Accumulating evidence indicates that mTORC1 activity is required for the orches-
tration of cellular senescence [91]. For example, senescence can be delayed, and some of
its features even reversed, following inhibition of mTORC1 in primary fibroblasts under-
going oncogene-induced senescence [92,93]. A similar senescence-impairing effect was
documented in primary fibroblasts that were pre-treated with rapamycin before entering
replicative senescence [94], although inhibition of mTORC1 resulted in a state similar to
quiescence [95] and therefore did not confer a proliferative advantage to cells [96,97]. Some
of these findings have been replicated in models of senescence caused by ectopic expression
of cyclin-dependent kinase (CDK) inhibitors (such as p21 and p16), whereby the pharma-
cological inhibition of mTORC1 led to a delay, or even a suppression, of the senescent
phenotype [96,98,99]. Interestingly, it has been proposed that cell cycle arrest coupled to
hyperactive mTOR leads to cellular senescence, whereas cell cycle arrest accompanied by
low levels of mTOR activity leads to quiescence [100,101]. For example, cell cycle arrest
secondary to stabilization of p53 led to inhibition of mTOR and quiescence in WI-38 cells.
On the other hand, doxorubicin-mediated cell cycle arrest, which was not accompanied by
mTOR inhibition, led to senescence instead of quiescence [102].

Recently, it was reported that rapamycin-mediated inhibition of mTOR could abrogate
senescence induced by doxorubicin or hydrogen peroxide in mesenchymal stem cells
purified from human umbilical cords, an effect attributed to a reduction in the levels of
DNA damage [103]. It has also been revealed that the delayed replicative senescence in
endothelial cells caused by inhibition of mTORC1 could be modulated by microRNAs
through their influence on PTEN [104,105]. Finally, evidence has emerged indicating that
mTOR may be involved in the maintenance of senescence in models of cardiomyocyte
differentiation [106–108]. Thus, exposure of human cardiac progenitor cells to doxorubicin
led to ROS accumulation and DDR activation, promoting cellular senescence [109,110]. In
addition, accumulation of ROS in cardiomyoblasts and primary cardiomyocytes induces a
DNA damage response and typical senescence characteristics. In this setting, inhibition of
mTOR prevents mitochondrial dysfunction and induction of senescence [111]. These data
are in agreement with the fact that treatment of senescent cells with rapamycin, a known
activator of autophagy, can reduce mitochondrial mass and ROS generation, as well as
several other markers of cellular senescence [112,113].

Interestingly, mTORC1 inhibition can also suppress the expression and secretion
of inflammatory cytokines in senescent cells by selectively blocking the translation of
membrane-bound IL-1 alpha and by reducing the transcriptional activity of NF-kappa
B [114], which in turn leads to a reduction in the expression and secretion of IL-6 and
IL-8 [115]. The effects of mTORC1 inhibition on the secretory phenotype might reflect,



Int. J. Mol. Sci. 2021, 22, 8149 5 of 16

at least in part, the ability of 4EBP1, one of the substrates of mTORC1, to regulate the
phosphorylation of the RNA-binding protein ZFP36L1 during senescence, thus inhibiting
its ability to degrade the transcripts of SASP components [116].

Overall, the dependence of senescent cells on mTOR activity could have important
consequences for therapies involving pro-senescence drugs. Notably, several studies sug-
gest that CDK4/6 inhibition activates mTORC1, which in turn may be necessary for the
survival, and therefore persistence, of senescent cells [117]. Accordingly, the combination
of mTORC1 and CDK4/6 inhibitors reduces cancer cell growth more effectively and delays
resistance to therapy in models of breast carcinoma, anaplastic thyroid carcinoma, and
cholangiocarcinoma [118–120]. Other studies have pointed to similar synergic therapeutic
activities between mTORC1 and CDK4/6 inhibitors, particularly in the context of breast
tumors [121–123]. Interestingly, the resistance to CDK4/6 inhibition commonly observed
in pancreatic ductal adenocarcinoma (PDAC) was attenuated by mTOR inhibitors [124]. In-
deed, the combination of mTORC1 inhibitors and CDK4/6 inhibitors had a potent activity
across a large number of patient-derived models of PDAC and breast cancer [118,125]. Sim-
ilarly, PI3K inhibitors, which are expected to reduce mTORC1 activity, acted synergistically
with CDK4/6 inhibitors in models of mesothelioma and K-Ras-mutated non-small cell lung
cancer (NSCLC) [126,127]. In contrast to these reports, which highlight a positive role of
mTOR in senescence induced by CDK4/6 inhibition, a significant inhibition of mTORC1
signaling was observed in melanoma and glioma cells after treatment with the CDK4/6
inhibitor palbociclib [16,18,128].

Taken together, most reports suggest a positive role of mTOR in the implementation
of different aspects of cellular senescence, although the extent to which mTORC1 activity is
required varies depending on the modality of senescence and/or the cell lineage involved.
Thus, the effects mTOR inhibition can range from a reversion of senescence features, as
occurs in models of OIS [92], to reduced viability of senescent cells, as occurs in models of
senescence induced by CDK4/6 inhibition, or more subtle changes in SASP profiles [3,129].
Figure 1 depicts some of the upstream inputs and downstream effectors of mTORC1 in
senescent cells; the functional connection between mTORC1 and autophagy is also shown
(see below).
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senescent by different stimuli. Some of these stimuli induce senescence by activating the DNA damage response, while
others, including some chemotherapeutic drugs (e.g., CDK4/6 inhibitors), do not seem to require this step to activate the
senescence program. It has been shown that p53-dependent responses induce the inhibition of mTORC1 through pathways
that impinge on the tuberous sclerosis complex (TSC1/TSC2) or, indirectly, through activation of AMP-activated protein
kinase (AMPK). Similarly, pro-senescence stimuli coursing with absence of DNA damage (e.g., senescence induced by
CDK4/6 inhibitors) would be expected to lead to mTORC1 inhibition by relieving Rheb GTPase. As mTORC1 activity is
elevated in senescent cells, it is thought that inputs for mTORC1 activation are provided by senescence-associated autophagy.
By undergoing activation driven by the amino acids released by autophagy-mediated recycling, Rag-GTPases orchestrate
the recruitment of mTORC1 to the lysosome membrane, a step that enables the activation of mTORC1 by the lysosomal
GTPase Rheb. Known substrates of mTORC1 complexes include the protein S6 kinase (S6K) and the eukaryotic translation
initiation factor 4E binding protein (4E-BP). Phosphorylation of these proteins by mTORC1 leads nucleotide synthesis
by CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase), lipid synthesis by sterol
regulatory element binding protein (SREBP), and protein synthesis by the combined actions of S6K, eIF-4B, and eIF-4E.
Notice that, in non-senescent cells, active mTORC1 complexes also inhibit autophagy by blocking the activity of proteins
responsible for the initiation of the process (e.g., ULK1) and by sequestering transcription factors needed for lysosomal
biogenesis (TFEB).

4. Autophagy in Senescent Cells

Autophagy is a highly regulated catabolic process in which cellular components are
targeted for lysosome-mediated degradation [130,131]. Basal levels of autophagy serve
as a quality control mechanism that prevents the accumulation of protein aggregates and
damaged organelles [132]. In metabolically challenged or damaged cells, on the other hand,
an increased autophagic flux provides basic metabolic substrates necessary for short-term
survival [133]. Under these circumstances, autophagy is thought to maintain the mito-
chondrial function, the energy balance, and lipid metabolism and also provides substrates
that feed metabolic pathways needed for amino acid and nucleotide synthesis [134–137].
At the organismal level, autophagy constitutes an important mechanism of adaptation
to starvation and metabolic disturbances; it also serves as a mechanism that prevents the
emergence of neurodegenerative diseases driven by the reduced elimination of misfolded
or aggregated proteins [138,139]. Notably, the role of autophagy in cancer appears to be
context-dependent [140,141]. While autophagy deficiency may promote tumorigenesis
in some models [142–144], fully transformed cancer cells still depend on autophagy to
withstand the metabolic stress present in tumor microenvironments [145,146].

A hallmark of the autophagic process is the enclosure of cellular components by
double-membrane structures known as autophagosomes [147]. The formation of au-
tophagosomes involves an orchestrated series of events, including the initial nucleation
of an isolating membrane, or phagophore, followed by elongation and membrane clo-
sure [148]. Subsequently, autophagosomes are fused with lysosomes [149,150], forming
secondary vacuoles known as autolysosomes, in which the contents and membranes of
autophagosomes are degraded [151]. This dynamic process of degradation is carried out
by the sequential involvement of several functional complexes formed by proteins encoded
by evolutionarily conserved genes known as autophagy-related genes (ATG) [152].

As it has already been mentioned, basal and induced modalities of autophagy can be
distinguished depending on nutritional conditions [153]. Under nutrient-rich conditions,
autophagy is greatly suppressed, although it still occurs at constitutively low levels [154]. In
cells growing under starving conditions, on the other hand, autophagy rates are induced in
order to maintain the energy balance and a substrate reserve within cells [155]. Not surpris-
ingly, mTOR-centered signaling is also involved in the regulation of autophagic flux [156].
Thus, the inhibition of mTORC1 that follows nutrient or growth factor deprivation is a
key event associated with higher rates of autophagy [157,158]. Mechanisms involved in
autophagy upregulation in the context of mTORC1 inhibition include the activation of
proteins necessary for autophagosome formation [159,160], as well as the activation of
transcription factors required for lysosomal biogenesis [161,162]. For example, inhibition
of mTORC1 fails to produce the phosphorylation-dependent inactivation of ULK1 and
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ATG13, two early effectors in autophagy induction that, together with FIP200 and ATG101,
drive autophagosome formation [163–165]. Similarly, mTORC1 inhibition driven by nutri-
ent deprivation leads to nuclear translocation of the transcription factors TFEB and TFE3,
with the subsequent activation of genes required for lysosomal biogenesis [162,166,167].
An increased lysosomal mass results in increased rates of protein degradation and the
reconstitution of a pool of amino acids that allows the reactivation of the mTORC1 pathway
after prolonged starvation [78,168–170].

It has now become evident that lysosome-located mTORC1 constitutes a key molecular
node that connects autophagy and the amino acid availability that is required for the
survival of cells growing under metabolically challenging conditions [73,171–173]. Under
metabolically favorable conditions, mTORC1 is recruited to the lysosomal membrane
by Rheb [174], which binds to GTP and activates the mTORC1 complex [175]. Upon
growth factor or nutrient deprivation, on the other hand, the GTPase-activating complex,
TSC1/TSC2, converts active lysosomal Rheb-GTP into inactive Rheb-GDP, leading to
mTORC1 inactivation and autophagy upregulation [176]. Anchoring of mTORC1 to the
lysosomal membrane is mediated by the actions of Rag-GTPases and the pentameric
Ragulator complex [177–179]. Indeed, heterodimeric Rag-GTPases are essential elements
of the nutrient sensing machinery [180]. By undergoing changes in activity, driven by the
amino acid and the nutritional status, Rag-GTPases modulate the recruitment of mTORC1
to the lysosome membrane, enabling its activation by lysosomal Rheb [64,177] (Figure 1).

Although autophagy was initially thought to be a process that counteracted cellular
senescence by removing damaged macromolecules or organelles, research from Narita’s lab
indicated that autophagy upregulation was required for the implementation of oncogene-
induced senescence (OIS) [181–183]. Thus, inhibition of autophagy in primary human
fibroblasts delayed the onset of senescence driven by the overexpression of oncogenic H-
Ras [93]. As a result, autophagy-deficient, H-Ras-expressing fibroblasts were rendered more
proliferative than autophagy-proficient controls [93]. Similarly, studies carried out in adult
human lung fibroblasts (HLF) showed that autophagy upregulation was associated with
senescence induction in models of myofibroblast differentiation, fibrosis, and mesenchymal
stem cells [184,185]. Interestingly, autophagy in the context of OIS was later shown to
generate a high flux of recycled amino acids and other metabolites, which are subsequently
used by lysosome-bound mTORC1 for the synthesis of SASP factors such as the cytokines
IL-6 and IL-8 [186,187]. Indeed, a TOR-autophagy spatial coupling compartment (TASCC)
responsible for the synthesis of some SASP factors was proposed [186]. Thus, a catabolic
process (autophagy) can be coupled to an anabolic process (mTORC1-dependent protein
synthesis) in order to effectively coordinate the production of SASP proteins [181,187,188].
Attractive as this model may seem, it is presently unclear whether it can be extrapolated
to other modalities of senescence, particularly models of drug-induced senescence in the
context of cancer treatment [189–191]. In addition, the model must be reconciled with the
fact that autophagy upregulation is commonly accompanied by mTORC1 inhibition in non-
senescent cells [192–194]. As it has already been mentioned, mTORC1 inhibition secondary
to a reduced availability of metabolic substrates and/or growth factors is accompanied by
high rates of autophagy [159,160]. Therefore, while mTORC1 is an upstream regulator of
autophagy in most cells, at least in certain types of senescent cells, autophagy can feed the
mTORC1 complex, a step necessary to implement the SASP [184,195].

In contrast to autophagy-dependent senescence, models of drug-induced senescence
suggest that autophagy is not involved in the implementation of senescence phenotypes per
se but constitutes, instead, a maintenance or survival mechanism [181,196]. For instance,
although induction of senescence in mammary epithelial cells exposed to pro-senescence
CDK4/6 inhibitors, such as palbociclib, is accompanied by high rates of autophagy, the
concomitant inhibition of CDK4/6 and autophagy does not render these cells more pro-
liferative but exacerbates the senescent phenotype [197,198] or leads to cell death [199].
In line with these observations, autophagy inhibition significantly improves the efficacy
of CDK4/6 inhibitors against breast cancer [200]. Interestingly, there is also evidence
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suggesting that autophagy induction can protect cancer cells from chemotherapy-induced
apoptosis by promoting senescence [183]. Overall, these studies suggest that autophagy up-
regulation in most senescent cells, including senescent cancer cells, represents a metabolic
adaptation that promotes cell viability [201,202], highlighting autophagy as a promising
target in cancer cells undergoing drug-induced senescence [203–206]. Nevertheless, a
note of caution must be added here: while apoptosis may be induced in senescent cells
exposed to autophagy inhibitors [207], an exacerbation of senescence, with its detrimental
consequences for tissue homeostasis, may also occur [181,208]. Between apoptosis and
an exacerbation of senescence, the blockade of autophagy could also have more subtle
consequences, such as SASP alterations that may be beneficial or detrimental depending
on the cancer type and context. Differences in the outcome of autophagy inhibition likely
reflect differences in the genetic background of cells undergoing senescence, as well as
differences in the specific senescence-inducing stimulus (Figure 2).
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Figure 2. The effects of inhibiting autophagy or mTORC1 in primary or cancer cells undergoing senescence. Senescent cells
subjected to mTORC1 or autophagy inhibition can have different fates depending on the senescence-inducing stimulus
and tumorigenic status. As illustrated at the top of the figure, normal or primary cells contain generally reduced, although
variable, basal levels of mTORC1 activity and autophagy. In contrast, most fully transformed—and genomically unstable—
cancer cells are characterized by high levels of mTORC1 activity and variable levels of autophagy. The dynamic variation in
the levels of autophagy in cancer cells likely reflects the effects of oncogenic stress and the metabolic challenges encountered
at the tumor microenvironment. As shown in the middle of the figure, induction of senescence in normal (diploid) primary
cells is generally accompanied by an upregulation of both mTORC1 activity and autophagy. Autophagy in this setting may
be functionally coupled to mTORC1-dependent synthesis of SASP components, a functional interaction that is required for
the implementation of the senescence program. As a consequence, inhibition of mTORC1 or autophagy can block senescence
altogether or specifically abrogate the synthesis of SASP components. Unlike primary cells, cancer cells rendered senescent
by pro-senescence chemotherapeutic drugs upregulate autophagy while retaining high levels of mTORC1 activity. In this
setting, mTORC1 and autophagic activities may be functionally uncoupled, with each activity contributing independently
to the maintenance or survival of senescent cells. As a consequence, inhibition of mTORC1 or autophagy would be expected
to reduce the survival of senescent cells, exacerbate the senescence phenotype, or lead to more subtle changes in SASP
profiles, depending on the biological context. Small arrows pointing up mean increased activity and small arrows pointing
down mean decreased activity.
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5. Conclusions and Future Directions

Several lines of evidence suggest that autophagy upregulation observed in senescent
cells [196] is not accompanied by a decrease in mTORC1 activity (as it does occur with the
upregulation of autophagy observed in non-senescent cells under conditions of nutrient
deprivation). Until now, however, it remains unknown whether these changes are universal
to all models of cellular senescence. For instance, it is possible that the mTORC1 functional
status in senescence, and its relationship with autophagy, may differ depending on the
type of senescence (replicative senescence, oncogene-induced senescence, drug-induced
senescence) and the cell type under study (transformed, immortalized, or primary cells)
(Figure 1). Moreover, it is not known whether inhibiting autophagy, mTORC1, or both
can lead to consistent alterations in the phenotypic features of senescent cells, such as
the SASP. This is important, taking into consideration that mTORC1 inhibition, as well as
autophagy inhibition, has been considered a therapeutic alternative in cancer. Untangling
these functional connections is therefore imperative for the generation of combinatorial anti-
cancer therapies involving pro-senescence drugs, mTORC1 inhibitors, and/or autophagy
inhibitors.
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