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Cathepsins in digestive cancers
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ABSTRACT
Cathepsins are lysosomal peptidases belonging to the papain family, and 

based on their catalytic sites, these enzymes can be divided into serine, cysteine 
and aspartic proteases. The studies conducted to date have identified, 15 types of 
cathepsins that are widely distributed in intracellular and extracellular spaces. These 
proteases participate in various pathological activities, including the occurrence and 
development of human cancers. Several recent studies suggest that cathepsins, 
particularly cathepsins B, D, E and L, contribute to digestive tumorigenesis. Cathepsins 
were found to promote the development of most digestive cancers except liver 
cancer, in which they might have the opposite effects. Due to their important roles 
in digestive tumors, cathepsins might be therapeutic targets for the treatment of 
digestive cancers.

INTRODUCTION

Cathepsins are lysosomal globular proteases 
belonging to the papain family [1]. These enzymes are 
widely distributed in intracellular and extracellular spaces. 
Cathepsins were first proposed in the 1920s. Since the 
crystal structure of the first cathepsin (cathepsin B) was 
determined, researchers in this field have successively 
identified an increasing number of cathepsins and their 
inhibitors. To date, more than 20 types of cathepsins, 
ranging from cathepsin A to Z, have been reported 
in various organisms, including animals, plants and 
microorganisms. Fifteen types of cathepsins are expressed 
in humans, and these are divided into serine, cysteine 
and aspartic proteases [1]. This protease family plays 
important roles in many biological activities, such as 
the growth and development of organisms, immune 
responses, and the development of various diseases, 
including tumorigenesis [2-7].The relationship between 
cathepsins and tumors has been studied for approximately 
40 years [8]. Various cathepsins contribute to extracellular 
matrix (ECM) degradation and remodeling in the tumor 
microenvironment [9, 10], resulting in the acceleration 
of tumor progression and invasion [11-16]. In general, 
a higher level of cathepsins is associated with a poorer 
prognosis [17-19]. Over the past few years, cathepsins 
were found to be overexpressed in digestive cancer 

cells and to particularly promote cancer invasion and 
metastasis. Here, we review the relationship between 
human cathepsins and digestive cancers.

CLASSIFICATION OF CATHEPSINS

Fifteen types of human cathepsins have been 
reported to date. Based on their catalytic mechanism, 
cathepsins are subdivided into serine (A and G), cysteine 
(B, C, F, H, K, L, O, S, V, W and X) and aspartic proteases 
(D and E) [1, 20]. We describe the classification of 
cathepsins in Table 1.

SYNTHESIS AND MODIFICATION OF 
CATHEPSINS

Almost all types of cathepsins share a common 
synthetic pathway. First, cathepsins are synthesized 
as precursors without activity in the ribosome. These 
precursors are composed of signal peptides, precursor 
peptides and catalytic domains. Second, the precursors 
are translocated to the endoplasmic reticulum, where the 
signal peptide of each procathepsin is hydrolyzed, yielding 
the precursor peptide and the catalytic domain, and the 
protein is also glycosylated in the endoplasmic reticulum. 
Third, the proteins are transported to the Golgi apparatus, 
where they are further glycosylated and phosphorylated to 
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form mannose-6-phosphate proteins. Finally, the modified 
proteins are recognized by mannose-6-phosphate receptors 
in the lysosome, where the proenzymes are hydrolyzed at 
low pH, resulting in the removal of the prodomains to 
yield active and mature cathepsins [6, 21-24] (Figure 1).

However, recent studies showed that the mannose-
6-phosphate marker is not always necessary. Sortilin, a 
multifunctional glycoprotein that serves as a multi-ligand 
receptor, can induce protein translocation. Specifically, 
sortilin can bind to cathepsins D and H in the Golgi 
apparatus and mediates their transport from the Golgi to 
the lysosome [25].

Procathepsins are activated via two proteolytic 
pathways [1, 26]. The first is autocatalytic activation [27-
30]. Glycosaminoglycans (GAGs) and negatively charged 
surfaces have been reported to facilitate the autocatalytic 
activation of cysteine cathepsins. The binding of GAGs 
induces a conformational change in the cathepsin zymogen 
and loosens the interaction between the propeptide and the 
mature part of the enzyme, enabling easier processing by 
another procathepsin molecule. Notably, although GAGs 
play important roles in cathepsin activation, the GAG-

binding surface has not been demonstrated to be shared 
by all cathepsins [31-33]. Another activation method is 
catalysis by other proteases. For example, cathepsins C 
and X are activated by cathepsin L or S to eliminate the 
prodomains, and cathepsin B is cleaved and activated by 
cathepsin D [34, 35].

CATHEPSIN LOCALIZATION

Cathepsins are mainly located in the lysosome 
and prefer an acidic environment, but their location can 
also change under different conditions. These enzymes 
might be released into the nucleus to shear histone and 
regulate gene expression [36] or be transported to the cell 
surface and secreted into the ECM to perform different 
functions [31, 37]. For example, in tumor cells, cathepsins 
translocate to the cell surface to degrade the ECM, 
allowing the invasion or metastasis of tumor cells. Some 
types of cathepsins (such as cathepsin B and L) can also 
migrate into the circulatory system and are detected in 
serum, but their expression level can present substantial 
changes, making them potential clinical indices.

Figure 1: Cathepsin synthesis.
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CATHEPSIN FUNCTIONS

The original meaning of cathepsin is “digest”, and 
the basic function of proteases is hydrolysis. Over the 
past few years, researchers have demonstrated that the 
cathepsin family participates in various physiological 
and pathological processes. These enzymes participate in 
development and differentiation [21], such as angiogenesis 
[38], the hair follicle cycle [39] and the occurrence of 
sperm and ovum during reproduction [40]. Moreover, 
cathepsins are involved in organism apoptosis [41], 
immune responses [5, 42] and skeletal metabolism [43]. 
In addition, the processing of some hormones depends on 
cathepsins [21]. For instance, thyroid hormones must be 
processed by cathepsin B for maturation [44]. Cathepsins 
also contribute to some diseases, such as osteoporosis, 
osteoarthritis, pycnodysostosis, rheumatoid arthritis, 
Down syndrome, Alzheimer’s disease and asthenic bulbar 
paralysis [7, 40, 45, 46].

CATHEPSIN INHIBITORS

Since the last century, when the first cathepsin 
crystal structure was determined, cathepsin inhibitors 
have been studied in increasing detail. Cathepsin 
inhibitors combine with some groups in the active center 
of cathepsins to diminish or block cathepsin activity, but 
these compounds do not denature the enzymes themselves. 
Based on their binding properties, cathepsin inhibitors 

include reversible and irreversible inhibitors. Depending 
on the source, inhibitors are divided into endogenous 
inhibitors and synthetic inhibitors. Endogenous 
inhibitors include thyropins, the precursor peptide, the 
serpin family, the cystatin family, α2-macroglobulin 
and cytotoxic T lymphocyte antigen-2β [5, 6, 47-49]. 
Compared with endogenous inhibitors, there are more 
synthetic inhibitors, such as aldehydes, ketones [47, 
48], nitriles [50], epoxysuccinyls [47, 48], hydrazones, 
carbohydrazides [47, 51], vinyl sulfones [52], β-lactams 
[53] and phosphoryl dipeptides [54] (shown in Table 
2). In general, synthetic inhibitors have been developed 
more rapidly than endogenous inhibitors because they are 
easier to prepare and modify; thus, synthetic inhibitors 
might be more specific for cathepsins. More accurate 
and effective inhibitors have been designed, and these 
inhibitors have become increasingly more useful, with 
some inhibitors having entered clinical trials. We believe 
that the development of related instruments and an in-
depth analysis of cathepsin structures will advance the 
field of inhibitor research.

CATHEPSINS AND DIGESTIVE 
CANCERS

Digestive cancers include esophageal cancer, 
gastric cancer, colorectal cancer, pancreatic cancer and 
liver cancer. Similar to other cancers, digestive cancers 
exhibit a complex progression via multistep pathways 

Table 1: Human cathepsin isoforms
Species Protein family Number of amino acids (aa) EC No. Location
Cathepsin A 480 3.4.16.5 Brain, skin, placenta, platelet, liver
Cathepsin G 225 3.4.21.2 Skin, monocytes, neutrophils

Cathepsin D 412 3.4.23.5 Spleen, kidney, liver, melanoma, plasma, 
platelets

Cathepsin E 401 3.4.23.34 Brain, intestine, stomach,
Erythrocytes, lymph nodes, skin, spleen, lung

Cathepsin B 339 3.4.22.1 Liver, kidney, thyroid gland, spleen

Cathepsin C 463 3.4.14.1 Lung, spleen, kidney, placenta, cytotoxic T 
lymphocytes

Cathepsin F 484 3.4.22.41 Brain, heart, skeletal muscle, testis, ovary, 
macrophages

Cathepsin H 335 3.4.22.16 Liver, kidney, spleen

Cathepsin K 329 3.4.22.38
Osteoclasts, macrophages, epithelial cells of 
the gastrointestinal, respiratory and urinary 
tracts in human embryos and fetuses, lung

Cathepsin L 333 3.4.22.15 Liver, thyroid gland, kidney
Cathepsin O 321 3.4.22.42 Liver, kidney, placenta, ovary

Cathepsin S 331 3.4.22.27 Spleen, lymph nodes, antigen-presenting 
cells, heart

Cathepsin V 334 3.4.22.43 Cornea, testes, thymus

Cathepsin W 376 3.4.22.- Spleen, lymph nodes (specifically cytotoxic T 
lymphocytes)

Cathepsin X 303 3.4.18.1 Liver, kidney, placenta, lung
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involving the activation of oncogenes, such as K-sam and 
c-met [55], and the inactivation of anti-oncogenes, such as 
adenomatous polyposis coli (APC) [56] and tumor protein 
53 (TP53) [57]. Many cathepsins, as tumor-promoting 
factors, contribute to digestive cancer development. Their 
expression is up-regulated in various digestive cancers, 
and the enzymes are activated and translocated during the 
progression of tumor development.

Digestive cancers progress through several 
important stages, and cathepsins take part in the relevant 
processes. Cathepsins contribute to at least three stages 
of cancers. First, a major feature of cancer cells is 
their enormous proliferative capacity, which requires 
the participation of various cytokines, and cathepsins 
can process these into mature proteins to promote cell 
division. Second, the growth of cancer cells requires blood 
vessels to provide nutrients and exclude metabolites. In 
this stage, cathepsins contribute to degradation of the 
vascular basement membrane and activate growth factors 
to promote angiogenesis. In addition, when secreted into 
pericellular environments, cathepsins cleave laminin, 
collagen, elastin, E-cadherin, and other matrix proteins 
[14], degrading the junctions between cells and the ECM 
and thereby allowing cancer cells to invade or metastasize 
[20].

As shown in a previous study, even though 
the cathepsin family is very important in digestive 
cancers, not all of its members are required for cancer 
development. Of all the cathepsins, cathepsins B and L 
are the two most frequently researched cathepsins in 
digestive tumors. Many reports on cathepsins D and E are 
available in the literature, but fewer studies have examined 
the other cathepsins. Interestingly, cathepsins function 
as a network and can substitute for each other when 
necessary. As shown by Akkari et al. [41], cathepsins 
have a compensatory mechanism in cancers. For instance, 

cathepsins B and S are predominantly responsible for 
pancreatic neuroendocrine tumor growth and invasion. 
The deletion of cathepsins B and S in RIP1-Tag2 mice 
yielded no differences in tumor invasion. Researchers 
have detected a significant increase in the levels of 
cathepsin Z, which is expressed at lower levels under 
normal conditions [41], indicating that other cathepsins 
might compensate for a loss of the main type of cathepsin. 
However, the mechanism underlying the activation of the 
compensatory pathway remains unknown and is worth 
further exploration.

ESOPHAGEAL CANCER

Esophageal cancer is the sixth leading cause of 
cancer-related death. Once this type of cancer develops, 
it will rapidly spread and can invade other tissues 
[58]. Cathepsins B, C, D, K, and S are up-regulated in 
esophageal adenocarcinoma [59].

Cathepsin B is a potential target for detecting 
esophageal cancer [60] because it is expressed at low 
levels in the normal esophageal mucosa but is significantly 
overexpressed in esophageal cancer [61]. Habibollahi et 
al. used white-light upper endoscopy combined with near-
infrared imaging to detect cathepsin B and thereby screen 
for esophageal adenocarcinoma [62]. The results indicate 
that cathepsin B appears to have huge potential for clinical 
applications.

As shown by Andl et al., the loss of tumor 
suppressor genes, such as E-cadherin and transforming 
growth factor type II receptor, initiates esophageal cell 
invasion, and this effect is further promoted by cathepsin 
B, resulting in increased levels of transforming growth 
factor-β (TGFβ) and thereby aiding the development of 
cancer [63].

Table 2: Cathepsin inhibitors

Inhibitor source Inhibitor
Endogenous inhibitors Thyropins

Precursor peptide
Serpin family
Cystatin family
α2-Macroglobulin
Cytotoxic T lymphocyte antigen-2β

Synthetic inhibitors Aldehydes
Ketones
Nitriles
Epoxysuccinyls
Hydrazones
Carbohydrazides
Vinyl Sulfones
β-lactams
Phosphoryl dipeptides
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Moreover, cathepsin D contributes to the 
development of esophageal cancer [64]. Previous studies 
have demonstrated that cathepsin D exacerbates the 
invasion of esophageal squamous cell carcinoma, and high 
cathepsin D expression is associated with poor prognosis 
[65].

GASTRIC CANCER

Gastric cancer is the fourth most common cancer, 
and has one of the highest incidences of malignant cancer. 
Several types of cathepsins have functions in gastric 
cancers.

Cathepsin B, which is increasing up-regulated 
during tumor stage progression (T, N and TNM stages), is 
associated with poor prognosis in patients and an increase 
in tumor size. Additionally, a high cathepsin B expression 
level decreases laminin expression to promote gastric 
cancer cell invasion and metastasis [66].

In early gastric cancer, cathepsin D activates micro-
lymph node metastasis [67], and studies have shown 
that human telomerase reverse transcriptase (hTERT) 
can stimulate cathepsin D expression by activating 
early growth response protein 1 (an important nuclear 
transcription factor that can promote cell proliferation), 
thereby inducing cancer cell invasion [68]. Anterior 
gradient 2 (AGR2), a p53 suppressor that is widely 
expressed in many tumors, is known to stimulate the 
proliferation and development of cancer cells. The 
expression of cathepsins B and D is post-transcriptionally 
induced by AGR2 to promote cancer cell dissemination 
[69]. Moreover, the oncogene c-myc is involved in the 
positive regulation of cathepsins. In addition to external 
factors, cathepsins can also activate each other. It has been 
reported that cathepsin D activates cathepsin B and then 
activates urokinase-type plasminogen activator to increase 
the number of malignant cancer cells [70-72].

Cathepsin E also presents a high expression level 
in gastric carcinoma and signet-ring cell carcinomas of 
the stomach [73]. Decreasing the expression of cathepsin 
E will reduce the differentiation of gastric tumors [74, 
75]. Because cathepsin E has the ability to promote 
differentiation, it might serve as a marker of gastric 
differentiation [75].

Coronin 3 is an F-actin-binding and F-actin-
interacting protein that is involved in the regulation of 
actin-dependent biological processes, such as cell motility 
and migration. Recent research showed that coronin 3 is 
involved in the development and metastasis of a variety of 
malignant tumors. Cathepsin K was shown to be positively 
correlated with coronin 3, which is activated during 
metastasis of the MKN28-M gastric cell line [76].

Forkhead box O3A has been shown to increase 
cathepsin L promoter activity, leading to an increase in 
cathepsin L expression and facilitating gastric cancer 
cell migration and invasion. Moreover, cathepsin L 

overexpression represses the expression of E-cadherin, 
causing gastric cancer cells to undergo the epithelial-
mesenchymal transition [77]. In addition, cathepsin L also 
participates in the venous invasion of tumors [78].

Cathepsin S is up-regulated in 16 gastric cell 
lines and more than a thousand clinical samples. It can 
influence the expression levels of 197 proteins, one-third 
of which participate in cellular movement. The migration 
and invasion of gastric cancer cells is suppressed by the 
knockdown of cathepsin S. A clinical study showed that 
the serum cathepsin S level in early stages is lower than 
that at later stages and that patients with a high serum 
cathepsin S level have a poorer survival rate. Cathepsin 
S is positive correlated with gastric cancer development 
and was recently proposed as a new biomarker for the 
diagnosis and prognosis of gastric cancer [79]. 

The cathepsin X level is increased in H. pylori-
infected gastric mucosa and gastric cancer [80]. Cathepsin 
X up-regulation is related to the tumorigenesis of gastric 
cancer and is directly associated with higher invasiveness 
in vitro. Ribosomal phosphoprotein P0 (RPLP0) can 
mediate protein synthesis, gene transcription and DNA 
modification, and cathepsin X interacts with RPLP0 in the 
N87 gastric cell line to promote cell cycle and resistance 
to apoptosis. The knockdown of cathepsin X inhibits the 
proliferation of gastric cancer cells [81].

As mentioned above, cystatin is an inhibitor that 
forms very tight equimolar complexes with cysteine 
proteases, competing with substrates to block the activities 
of these proteases. Reductions in cathepsin activity 
(cathepsins B, L, and V) by cystatin in gastric cancer 
might be useful for preventing gastric tumorigenesis [82]. 
In addition, some drugs have been developed based on 
the characteristics of cathepsins. For example, based on 
the overexpression of cathepsin B in tumors, a prodrug 
of doxorubicin (Ac-Phe-Lys-PABC-ADM) was designed. 
Cathepsin B cleaves the Phe-Lys dipeptide at the Lys-
PABC bond, releasing doxorubicin to kill gastric cells and 
reducing the toxicity of doxorubicin [83]. These cathepsin-
based antitumor drugs might become a new method of 
tumor treatment.

COLORECTAL CANCER

Colon carcinoma is a major cause of death, 
particularly in the western world [84]. In general, 
cathepsins B, D, L and H are significantly up-regulated 
in colorectal carcinoma but are expressed at low or 
undetectable levels in normal tissue, suggesting that these 
proteins are involved in colorectal carcinoma growth and 
development. 

Chan et al. tested 558 participants with colon 
cancer and found that 82% were positive for cathepsin 
B [85]. Cavallo-Medved et al. validated these results 
and revealed that up-regulated levels of cathepsin B are 
associated with poor prognosis [86]. The localization of 
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cathepsin B is likely to change during tumorigenesis. 
In the normal colorectal mucosa, cathepsin B is likely 
located in the epithelium and is only active in the older 
cells at the colorectal surface. In contrast, in tumor tissues, 
cathepsin B is localized at the base of cells close to the 
basement membrane. Moreover, the location of cathepsin 
B is unchanged in most well-differentiated and half of 
moderately differentiated colon carcinomas, whereas this 
enzyme is diffusely spread throughout the cytoplasm in 
poorly differentiated colon carcinomas [84].

Compared with cathepsin B-negative tumors, 
cathepsin B-positive colon cancers are more likely to have 
K-ras and BRAF mutations and have higher multivariate 
hazard ratios [85]. A previous study investigated two colon 
carcinoma cell lines, namely HCT-116 (with a mutated 
K-ras allele) and HKh-2 (with a disruption in the mutated 
allele), and showed that cathepsin B expression and 
activity are higher in HCT116 cells than in HKh-2 cells. 
The researchers speculated that active K-ras increases 
cathepsin B, and cathepsin B then initiates a proteolytic 
cascade in colon carcinoma cells [86]. In addition to K-ras, 
other regulators of cathepsin B have also been identified. 
Using multi-cellular tumor spheroid cocultures of colon 
cancer cells to reveal the mechanism, researchers have 
shown that cathepsin B up-regulation is mediated by 
the mitogen-activated protein kinase and p38 signaling 
pathways.

In the early stages of colorectal cancer, cathepsin 
X is up-regulated and functions to stabilize tumor cell 
formation. Interestingly, its function changes as the 
tumor progresses, and loss of cathepsin X contributes to 
tumor progression and local invasion [87]. The findings 
suggest that the functions of cathepsins in tumors are 
complex and might differ depending on the stage of cancer 
development.

PANCREATIC CANCER

Pancreatic cancer is the fifth leading cause 
of malignancy-related death, exhibits systemic 
micrometastasis and has a poorer prognosis than other 
human cancers. The overall five-year survival rate among 
patients with pancreatic cancer is less than 5% [88]. 
Cathepsins show very moderate reactivity in normal 
pancreatic tissue but are up-regulated in pancreatic cancer 
cells. The study by Niedergethmann et al. showed that 
cathepsins B and L contribute to perineural invasion 
[89]. Singh et al. performed a study of 127 patients 
with pancreatic cancer and found that their plasma 
cathepsin L levels were elevated and are associated with 
a poor prognosis [90]. The available evidence shows that 
cathepsin L is overexpressed following myc activation 
in the β-cell compartment and might be a target of myc-
driven tumorigenesis [91].

Moreover, cathepsin E is a candidate marker 
for the diagnosis of pancreatic cancer. Cathepsin E is 

overexpressed in pancreatic intraepithelial neoplasia 
and pancreatic ductal adenocarcinoma (PDAC) [92]. 
Confocal laser endomicroscopy has been used in vivo 
for detecting the cathepsin E levels and monitoring 
pancreatic carcinogenesis [93]. It has been demonstrated 
that cathepsin E exhibits greater sensitivity, specificity 
and diagnostic accuracy compared with the CA19-9, 
carcinoembryonic antigen and K-ras mutations [94]. 

Studies have been performed to determine the 
mechanism of cathepsin in pancreatic cancer. Hedgehog 
(Hh) signaling is involved in pancreatic cancer 
development and can regulate invasion by increasing 
cathepsin B expression. Hwang et al. [95] treated the 
PANC-1 cell line with cyclopamine (Hh signal inhibitor) 
and found a dose-dependent decrease in cathepsin 
B expression at both the mRNA and protein levels 
and reduced cell invasiveness [95]. However, under 
other conditions, cathepsin B might mediate cancer 
cell apoptosis. PS-341 (bortezomib) is a proteosome 
inhibitor with broad antitumor activity. It induces the 
redistribution of lysosomal cathepsin B to the cytosol and 
activates downstream caspase-2 to induce mitochondrial 
depolarization and apoptosis in pancreatic cancer cells 
[96]. The function of AGR2 in PDAC is the same as that 
in gastric cancer. Procathepsin D secretion is strongly 
inhibited in AGR2-silenced FA6 cells [97]. S100P 
belongs to the S100 calcium-binding protein family and 
can increase cathepsin D expression to activate pancreatic 
cancer cell invasion [98].

Of course, inhibitors have also been used and 
detected in pancreatic cancer. For example,VBY-825 can 
reversibly inhibit cathepsins B, L and S to decrease tumor 
growth in a mouse pancreatic islet cancer model [99]. 

LIVER CANCER

Compared with the previously described digestive 
cancers, fewer studies have investigated cathepsins in 
liver cancer. Some studies have shown that the serum 
levels of cathepsins B and L are increased in patients 
with liver cancer [100]. However, unlike the high level 
of cathepsins in other digestive cancers, Lingyu Qin et al. 
showed that data from the Oncomine database revealed 
a significantly lower level of cathepsin B mRNA in 
hepatocellular carcinoma (HCC) than in the corresponding 
normal tissues. However, cathepsin B is significantly 
associated with survival and tumor grade. Patients with 
lower cathepsin B expression have worse overall survival, 
and cathepsin B expression might be an independent 
prognostic marker for patients with HCC [101].

Decades ago, cathepsins B and D were implicated in 
HCC cell apoptosis, and these cathepsins exert protective 
effects in this cancer. The higher expression of cathepsins 
B and D is associated with a higher rate of apoptosis. Both 
the cathepsin B-specific inhibitor CA-074 Me and the 
cathepsin D inhibitor pepstatin A can markedly decrease 
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apoptosis. An in vitro study conducted in HepG2 cells 
demonstrated that cathepsin B cleaves B cell lymphoma-2 
(Bcl-2), an inhibitor of apoptosis, and reduces the Bcl-
2/Bax ratio to speed up cell death [102]. Cathepsins in 
liver cancer might undergo contrasting regulation through 
an as-yet-unknown mechanism, but cathepsin B- or 
D-specific agents might be developed as treatments for 
hepatocellular carcinoma. 

As shown in the study by Pinlaor et al. [103], 
cathepsin F is expressed by O. viverrini, and its gene 
and protein levels are increased in the human liver fluke, 
O. viverrini, which might contribute to hepatobiliary 
abnormalities, such as cholangiocarcinoma.

CONCLUSIONS

Cathepsins participate in a wide range of organism 
activities based on their hydrolysis effect. In digestive 
cancers, the expression of cathepsins is up-regulated by 
tumor-promoting factors, such as C-myc, K-ras, AGR2, 
MAPK, p38, and the Hh signaling pathways. In digestive 
cancer cells, activated cathepsins hydrolyze growth 
factors, such as EGF, VEGF, and TGFβ, to induce their 
maturation and promote cancer cell proliferation. In 
contrast, cathepsins degrade extracellular matrix proteins 
to accelerate cancer cell invasion and metastasis. In most 
digestive cancers, cathepsins promote cancer development 
but might have opposite effects in liver cancer. Although 
the roles of cathepsins in tumorigenesis require further 
investigation, these enzymes might be potential targets in 
the discovery of drugs that can be used for the treatment 
of digestive cancers.
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