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Dysmenorrhea is the term for describing complex menstrual flow and painful spasmodic cramps during menstruation, 
and pain without any pathology is considered Primary Dysmenorrhea (PD). It is the most frequent ailment among women 
of all ages and races. The pain is dull and throbbing in character and occurs in the lower back and abdomen. Symptoms 
commonly appear 6 to 12 months after menarche, with the most significant incidence in the late teen and early twenties. 
Physical exercise is nearly a new non-medical intervention to relieve PD associated pain. Aerobics, stretching and 
Resistive exercises for 8-12 weeks, either supervised or unsupervised, relieves pain. Exercises are believed to cause 
hormonal changes in the uterine lining, which reduces PD symptoms. Researchers have presumed different pain-reliev-
ing methods, ranging from non-opioids to opioids to hormonal for variations in pain sensitivity. Exercise-induced an-
algesia provides the central pathway as the primary mechanism for pain reduction while, another way to reducing pain 
in PD may be a hormonal interaction. The hormonal changes causing exercise-induced pain modulation during the men-
struation cycle is not clearly understood and the interaction and activation of all the central and endocrine components, 
which is a complex mechanism, is also not explained clearly. This study briefly reviews the physiological mechanism 
of Exercise-induced analgesia and its potent roles in controlling the pathogenesis of PD for pain relief.
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INTRODUCTION

Dysmenorrhea, or unpleasant cramps associated with men-

struation, is the most frequent ailment among women of all 

ages and races. Its prevalence ranges from 16.8% to 81%, 

with rates as high as 90% having been reported. It usually 

starts in adolescence and can result in school and work ab-

sences and restrictions on social, academic, and physical 

activities. In the absence of any pathology, it is classified 

as primary dysmenorrhea (PD); otherwise, it is classified as 

secondary. Symptoms commonly appear 6 to 12 months fol-

lowing menarche, with the most significant incidence in late 

teen and early twenties [1]. The pain is dull and throbbing 

in character and occurs in the lower back and abdomen. It 

is related to the commencement of flow and can remain for 
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up to 72 hours. The majority of the girls report moder-

ate-intensity pain and premenstrual symptoms (41.49%) 

such as headache, back and thigh pain, diarrhea, nausea, and 

vomiting, all of which have a significant negative influence 

on their quality of life [2]. Pain and discomfort during the 

menstrual cycle are due to inflammatory uterine changes 

which are regulated by hormones. 

The hypothalamus-pituitary gonadal system regulates the 

menstrual cycle and secretes FSH (follicle-stimulating hor-

mone) and LH (luteinizing hormone). These hormones pro-

mote the growth and maturation of follicles and release estro-

gen in the first phase of the cycle. In the late phase (luteal 

phase) progesterone concentration increases as follicle mature 

by corpus luteum [3]. If no fertilization occurs, progesterone 

concentration decreases, and Arachidonic Acid (AA) starts ap-

pearing onto the cell membrane and metabolites in 

Prostaglandin (PG) and Leukotrienes (LT) via Cyclooxygenase 

(COX) and 5-Lipoxygenase pathway (LOX). The PG is in the 

form of two active components PGE2 and PGF2α; PGE2 pro-
motes vasodilatation of the endometrial blood vessels to en-

hance inflammation and swelling and attract the LT towards 

the active site, while PGF2α causes myometrial contraction and 
vasoconstriction to promote ischemia, and finally, pain sensi-

tivity decreases for the free nerve endings and pain appears. 

LT simultaneously promote the vasoconstriction and con-

traction of the muscle and helps PGF2α for the same [4,5]. 
Proinflammatory cytokines also play an essential role in the 

pathogenesis of PD by increasing the synthesis of PG.

NSAIDs, OCPs, physical exercises, and other complementary 

therapies are among the recommended treatments for PD. 

Physical exercise is nearly a new non-medical intervention 

to relieve PD associated pain [6]. One crucial element in 

pain management is that intervention must be affordable, 

both in time and expense. Exercise meets these requirements 

by providing an inexpensive alternative or an adjunct to zother 

analgesic agents. The PD pain reduced when exercises were 

done for 30-45 minutes, 3 days/week with variable intensities. 

The VAS (visual analogue scale), McGill Pain Questionnaire 

(MPQ), Adverse Effects of exercises, overall menstrual symp-

toms (back pain, fatigue), Moos menstrual distress ques-

tionnaire (MMDQ), use of rescue analgesics medication, re-

striction of daily activity, quality of life, and absence of 

work were used as outcome measures of exercise’s effect on 

PD which improves significantly [7]. Aerobic exercise for 

30-45 minutes at 70-85% HRmax, 3-5 days/week, for 8-12 

weeks, either guided or unsupervised, relieves pain. Stretching 

or weight training for 10-20 minutes, 2-3 days/week, for 

8 weeks shows substantial improvement, although the qual-

ity of research is weak, necessitating more investigation and 

assessment [8-13]. As most studies have shown, there is a 

considerable improvement in pain and posit various mecha-

nisms involved in pain modulation in PD. 

Researchers have presumed different pain-relieving meth-

ods, ranging from non-opioids to opioids to hormonal 

changes for variations in pain sensitivity. Evidence shows 

that concurrent exercise-induced increases in endorphins or 

endocannabinoids are mainly responsible for pain reduction 

in PD related pain. Similarly, a small number of studies 

show that the production of anti-inflammatory macrophages 

in physically exercising muscle suppresses pro-inflammatory 

cytokine activity and regulates inflammatory responses [8,14]. 

Scientific evidence shows that a rise in PG causes pain and 

the influence of exercise on PG can help to relieve pain. 

Mosler et al. 1914 suggest that reducing uterine contractions 

by shunting blood away from the uterus reduces pain. 

Exercises are believed to cause hormonal changes in the ute-

rine lining, which assist in reducing symptoms of PD [15]. 

Exercise-induced analgesia, which has been extensively 

recognized in literature, relies on the central pathway as the 

primary mechanism for pain reduction, and hormonal inter-

action might be another approach to reduce pain in PD. 

However, the complicated process of pain relief by exercise 

training and the interaction of all central and hormonal 

components for pain modulation in PD does not adequately 

explain the changes during the cycle phases. Therefore, giv-

en the exercise type during different phases of the cycle, 

this review will cover all probable neural and hormonal 

mechanisms facts of pain relief involved in PD resulting 

from exercise training.

EFFECTS OF EXERCISES ON 
CENTRAL NERVOUS SYSTEM

Aerobically or anaerobically exercised either, most re-

searchers study the effects of aerobic mode of exercise and 

very few on resistive training. A single aerobic exercise ses-
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sion improves pain, and its effect lasts for less than 30 mi-

nutes [16]. Exercise, regardless of the time of injury or in-

sult, shows the same result either done before (preventive 

effect) or after the insult or injury (therapeutic Effect). 

Repetitive swimming for 50-90 minutes for 5 days/week or 

treadmill for 10-60 minutes for 3 to 7 days/week improves 

mechanical pain and thermal sensitivity [17,18]. The level 

of pain reduction is directly related to the intensity and vol-

ume, not the frequency of the exercises [19]. If the training 

continues at moderate intensity before and after the onset 

of injury, hypoalgesia will be more, and as the intensity 

reaches exhaustion point, the effect will start declining, or 

pain will be more severe than before [20]. It all suggests that 

the volume and intensity of exercise are the keys to pain 

relief. Most of the studies showing the hypoalgesia effect of 

exercise have been animal trials, and very few human trials 

are available. Therefore, we will have our discussion weight-

ed towards the findings we got in the animal trials.

1. Endogenous opioids 

One of the most familiar mechanisms studied for exercise- 

induced analgesia. It shows the effect via β-endorphin, met- 
enkephalin, 2-endogenous, which increases with aerobic train-

ing for 5 to 8 weeks in Periaqueductal Grey (PAG), Rostral 

Ventral Medial Medulla (RVM), and Hypothalamus and re-

mains high for approximately 48 hours [21,22]. If the training 

continues for more than 9 weeks or 45 sessions, the effects 

start declining as mu-opioid receptors were absent or reduced 

[23], which suggests that regular stimulation of the system 

produces down regulation of the opioids and expression of the 

receptors. Several studies showed an elevated plasma β-endor-
phin level at 85% HRmax or up to 80% of VO2max, and its 

concentration increases with an increase in intensity [24,25]. 

2. Serotonergic system

The function of serotonin is for both pain onset and pain 

relief. It mediates through 5-HT receptors. The concentration 

of 5 HT receptors increases in the Brainstem, Lumber spinal 

cord, and Parieto-occipital cortex with 60 minutes of swim-

ming or 15 minutes on the treadmill for 6 days/week, for 

4 weeks and remains higher for a week after exercising than 

sedentary subjects [26,27]. The Serotonin analgesic effect at 

the level of RVM is regulated by serotonin transporter 

(SERT), extracellularly [28]. Only two weeks of treadmill 

training can decrease the concentration of SERT with corre-

sponding increase in the levels of 5HT leading to hypo-an-

algesia [29]. Similarly, reductions in non-inflammatory mus-

cle pain can be experienced with 8 weeks of training, done 

before the injury. It means SERT alters the pain behavior 

and exercise can affect it with regular training by activating 

the opioids receptors in PAG, which is required to control 

SERT activity [21]. 

3. Endocannabinoids system

Pain modulation occurs via endocannabinoid receptors CB1 

and CB2 in the spinal cords PAG, RVM, and dorsal horn [30]. 

These receptors bind to anandamide (AEA) and 2-arach-

idonylglycerol (2-AG) and produce analgesia. CB receptors 

are on the pain-sensing C fibers, increasing the nociceptive 

threshold to stimuli and improving pain. The CB receptors 

expression increases in dorsolateral and ventrolateral PAG 

with aerobic and resistance training [31,32]. Similarly, to sero-

tonin-opioids interaction, there are pieces of evidence that in-

dicate a specific link between the opioid and the endocannabi-

noid system. The studies that show the relationship between 

them were not performed for exercise-induced analgesia, 

though it shows the positive result for fear stress [33]. While 

one researcher shows improvement in analgesia with 25% of 

Maximum Isometric contraction of handgrip dynamometer 

and found that here analgesia is produced primarily by endo-

cannabinoids, its action depends on the opioid system [34].

4. NMDA receptor alteration and nor-adrenergic 

system

N-methyl D-aspartate (NMDA) receptor NR1 subunit 

(p-NR1) phosphorylation in the RVM causes chronic hyper-

algesia, and its downregulation causes analgesia [35]. An hour 

per day of exercise done for a week can prevent an increase 

in NR1 expression in RVM [21] and suggests that NMDA 

receptor non- phosphorylation in the neurological system is 

related to exercise-induced analgesia. Exercise activates the 

nor-adrenergic system and leads to release of catecholamines 

[36]. These chemicals bind to their respective receptors (α1, 

α2, β2 adrenergic) which are located in PAG, dorsal raphe, 

and spinal cord dorsal root ganglion (DRG) and mediate pain. 

Thus, exercise increases catecholamines and upregulation of 
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Table 1. The mechanism of action of exercises on Central Nervous System and hormones for exercise induced analgesia in PD

Systems Exercise protocol Exercise effects Mechanism of action

CNS
Endogenous opioids 85% HRmax or at 80% of VO2max

20-30 mins
5-8 wks (Max 45 Sessions)

↑↑ concentration 
(max 48 hrs)

• Modify Ca2+ activated K+ channels
• ↓↓ Neural excitability & Neural firing
• ┤Neurotransmitters

Endocannabinoids system 25% MIC or 75-85% HRmax
30 mins

↑↑ concentration • ↑ Nociceptive threshold
• Hyperpolarization 
• ↓ in excitatory cell firing rate 
• SUPPR neurotransmitter release 
• ↓ nociceptive impulses

Serotonergic system 75-85% HRmax
15 to 60 mins 
2-8 wks

↑↑ concentration 
(168 hrs)

• ↓↓ expression of SERT 
• ↑↑ 5HT
• ↑↑ Serotonin levels in the RVM

NMDA receptor and 
nor-adrenergic system

75-85% HRmax
1 hour
1 week

↑ expression • ↑ NR1 expression
• NMDA receptors non-phosphorylation
• ↓↓ Neural excitability & Neural firing
• ┤Neurotransmitters

Hormones
Progesterone 30 to 95% HRmax or 75% of 

VO2 max
20-30 mins, 3/d/wk 
8 weeks

↑↑ concentration 
(untrained)

↔ (trained) or 
↑ (untrained)

• regulates the synthesis of PG and LT
• ┤MMP expression 
• ↓ IL-8 mRNA expression
• Indirectly regulates Hypoxia

Prostaglandins 100-150 Watts or 30 to 95% 
HRmax or 60% MVC

Single session

↑↑↑↑ PGE2 and 
↑↑ PGF2α

60-90% metabolic 
clearance of concentration

• ↓ PGF2α/PGE2 ratio 
• ↓ PGF receptor expression 

Inflammatory markers
Arachidonic acid 30% to 80% of HRmax

20-40 min
Single session

↑↑ Cytochrome P450 
(EET, DHET & ratio)

↑ PG & LT

• Hyperpolarize of the vascular smooth 
muscle

• ↑ Pro-fibrinolysis
• ↓ Inflammation

↑: increase, ↑↑: highly increase, ↓: decrease, ↓↓: highly decrease, ┤: inhibition, HRmax: maximum heart rate, VO2max: maximum oxygen
consumption, MIC: maximum isometric contraction, MVC: maximum voluntary contraction, EET: epoxyeicosatrienoic acid, DHET:
dihydroxyeicosatricnoic acid, SERT: serotonin transporter, 5HT: 5-hydroxytryptamine receptors, NMDA: N-methyl D-aspartate, NR1:
subunit of NMDA receptor, MMP: matrix metalloproteases, IL-8: interleukin 8, RVM: rostral ventral medial medulla, SUPPR: suppress.

its receptors in the nervous system [37].

CENTRAL NERVOUS 
SYSTEM-MEDIATED ANALGESIA

Exercise increases opioid tone in the CNS by modifying Ca2+ 

activated K
+ channels, resulting in a decrease in neural excit-

ability, neural firing, and inhibition of neurotransmitters (Table 

1). The excitatory interaction between PAG and RVM facili-

tates and inhibits nociceptive signals, resulting in analgesic ac-

tion [38]. 

Simultaneously, exercise also lowers the expression of 

SERT and raise the concentration of 5HT [29], which in-

creases serotonin levels in the RVM and modulates pain. 

SERT activity is controlled by serotonin concentration in 

RVM and is mediated by opioid receptors in PAG [39]. 

Although in RVM, on the other hand, NMDA receptors also 

help with pain modulation with SERT. In RVM, non-phos-

phorylation of NMDA reduces channel conductance and its 

insertion into the synapse, resulting in analgesia [31]. 

As a result, exercise increases opioid receptor activation and 

neuronal pain activity through the non-phosphorylation of 

NMDA and restricts SERT expression, which either prevents 

hyperalgesia or induces hypoalgesia. All of this occurs in a 

single set of occasions for controlling pain, and opioids may 

be the prime cause of hypoalgesia as they control the other 
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events for the same purpose. In contrast, overstimulation of 

the opioid system can cause downregulation, eliminating the 

hypoalgesia effects. 

A variety of endogenous pathways, including non-opioid 

systems, affect pain perception. In the exercise analgesia as 

well the role of the nor-adrenergic (NA) system is studied. 

Catecholamines can modulate the nociceptors pathway by 

activating α2 adrenergic receptors (α2-AR) [40], which in-

hibits the development of cyclic adenosine monophosphate, 

induces hyperpolarization and in turn decreases the ex-

citable cell firing rate [41]. It regulates pain via diverse lo-

cations in PAG and DRG. Anti-nociceptive effects of α2 re-

ceptors are associated to the interaction of opioid receptors, 

which results in the release of endogenous opioids such as 

β-endorphin and induces analgesia in inflamed conditions 

[42]. At the same time, NA activates α2, α1, and β adreno-
ceptors in non-inflamed models, causing anti-nociception 

against PGE2 [43]. 

Endocannabinoids (ECB) is another non-opioid system 

that helps with pain relief. The receptors are negatively cou-

pled to the adenylate cyclase, positively coupled with the 

Mitogen-activated protein kinase [44], producing hyper-

polarization and a decrease of the excitatory fire rate and 

inhibiting the release of neurotransmitters [45]. It has re-

ceptors in PAG, RVM, DRG, and immune cells, and it inter-

acts with the opioid system, allowing one system to activate 

the other [46]. The AEA concentration increases when 

opioid receptors are stimulated during exercise training [33], 

but this alone is not enough to cause analgesia. While an in-

crease in 2AG concentration induces substantial analgesia, 

the opioid system does not endorse its activation [25]. NA 

and partially ECB enable the opioid pathway to provide pain 

relief. As a result, it is reasonable to conclude that opioids 

are the leading cause of exercise-induced analgesia combined 

with endocannabinoids. 

EFFECTS OF EXERCISE ON HORMONES 
AND INFLAMMATORY MARKERS

1. Progesterone

Progesterone has anti-inflammatory effects by regulating 

the synthesis of PG and LT. Its concentration increases with 

exercises, but more significant changes occur in the luteal 

phase of menstruation, and its concentration depends on the 

intensity of exercises, as it shows maximum concentration 

at exhaustion. All these changes are more evident in un-

trained individuals than trained [47]. The concentration of 

the circulation hormones can be increased or decrease from 

the source or by affectioning the metabolic clearance. 

Estimated hepatic blood flow decreases markedly up to 60% 

in 40 minutes during exercises [48]. As the metabolic clear-

ance improves, the concentration will come back to normal 

as in trained subjects.

Researchers showed that if exercises performed for 20 to 

30 mins for 8 weeks, 3 days in a week at 30 to 95 % of 

maximum output or 75% of VO2max would significantly im-

prove progesterone’s plasma concentration [49]. Even in an-

imal studies, the progesterone plasma concentration increases 

with 10 to 30 minutes of swimming [50].

Under the exercise condition, progesterone increases, but LH 

concentration did not significantly change in any phase of 

the cycle [47,50]. As LH, FSH, and progesterone are interre-

lated, it would therefore appear that any increase in proges-

terone is independent of the hypothalamus-pituitary gonadal 

system. However, lactate affects the cAMP of the ovary, 

which in turn increases progesterone concentration [50].

2. Prostaglandins

The contribution of Prostaglandins to exercise is con-

troversial as PG has its potential role in proinflammatory 

action, and its concentration is higher in PD [5]. In sympto-

matic PD women, excess PG due to increased uterine pro-

duction causes pain, but its actual plasma concentration dif-

fers significantly from symptom severity. The difference 

between pain and plasma amount could be because of the 

low metabolic clearance of PG. However, the metabolic 

clearance rate of PG increases with exercises [51]. 

The lung is a primary organ for the synthesis of PG and 

can take up and release catabolized PG into the circulation 

from other organs. PGs are moderately temporary molecules 

with a short life span, usually just a second to a minute. 

Nearly 60-90% circulating concentration of PGE2 and 

PGF2α is inactivated in a single passage through the pulmo-
nary circulation [52]. More or less, approximately 90% of 

the PG is expelled out from the blood. 

With exercises, PG synthesis increases, especially PGE2 
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and PGF2α in the skeletal muscle, which regulates the mus-
cle protein synthesis and its adaptation for training [53]. PG 

also has a potential role in exercise-induced hyperaemia in 

men and women following rhythmic or isometric muscle 

contraction. When exercises are performed at 50-75% of max-

imum workload or 60% of Maximum Voluntary Contraction 

(MVC), hyperaemia appears in skeletal muscles as it ex-

presses COX, PGE2, and PGF2α synthase [54,55]. 

3. Arachidonic acid

AA metabolized into PG and LT via COX and LOX. AA 

can be converted into other metabolites also via 

Cytochrome P450 (CYP). CYP converts AA into epox-

yeicosatrienoic acid (EET), which further hydrolyzed in di-

hydroxyeicosatricnoic acid (DHET). EET is the potential 

substrate for endothelial-derived hyperpolarization factor 

(EDHF). The hyperpolarize of the vascular smooth muscle 

causes relaxation via Ca
2+
 dependent K

+
 channels [49]. 

The stable metabolite of EET, DHET, which causes vaso-

dilatation in skeletal muscle and regional circulation like the 

heart shows a positive relationship with exercises. Dynamic 

exercises at different intensities (30% to 80% of HRmax) 

and duration (20-40 min) improve plasma concentration. 

The significant changes appear at a higher intensity and 

short duration (80% and 20 min) and moderate-intensity 

and more prolonged duration (60% and 40 min). The mag-

nitude of changes in the plasma concentration depends on 

the intensity and duration of exercise [56]. The acute bouts 

of maximal Exercise (Bruce Protocol) at maximum HR and 

the point of exhaustion show the same result in isolated con-

centration and the EET/DHET ratio [57]. The changes in 

the plasma concentration convey that the AA metabolism 

shifted towards CYP pathways during exercises. The release 

of EET and DHET improves the vascular tone, BP, produces 

pro-fibrinolysis, and reduces inflammation [58].

4. Pro-inflammatory cytokines

The release of pro-inflammatory and anti-inflammatory 

cytokines is affected by exercises. Aerobic exercise lowers 

pro-inflammatory cytokine levels (TNF-α [tumor necrosis 

factor-α], IL-6, and IL-1β) [59] and activates macrophages 
to release anti-inflammatory cytokines (IL-10) and decrease 

proinflammatory cytokines (TNF-α, IL-6, and IL-1β) [23]. 

It has been demonstrated that physical exercise and 

C-Reactive Protein (CRP) have an inverse relationship and 

CRP and pro-inflammatory cytokines are directly related 

[60]. 

HORMONAL MEDICATED ANALGESIA

Hormonal action is the possible mechanism for exercise- 

induced analgesia in clinical trials (Fig. 1). Pain perception 

and the prevalence of many symptoms are similar in male 

and female in childhood, but they vary after puberty when 

gonadal hormones play a significant role in reproduction [61]. 

The central anti-inflammatory, neuroprotective, and analgesic 

properties of progesterone are particularly apparent [62], and 

pain relief may be provided by neurohormone, endorphins, 

hypnotic and depression effects on the brain during preg-

nancy and luteal menstrual phase [63]. Exercises demonstrate 

improvement of the plasma level of progesterone in untrained 

healthy females during the luteal stage [47].

Researchers have reported that progesterone plays a pro-

tective role in fibromyalgia and Caesarian section pain sen-

sitivity in females. It correlates negatively with the pain sen-

sitivity, and the maximum response for pain modulation was 

in the luteal phase [64]. It also reduces pain and uterine 

contractions in cases of threatened abortion due to luteal 

phase insufficiency [65]. Still, the role of progesterone is 

controversial as few of the studies showed a positive correla-

tion with mechanical pain, hyperalgesia, and ischemic pain 

in the luteal phase of menstruation [66]. In contrast, no as-

sociation exists between progesterone and heat tolerance and 

threshold during end-term pregnancy and 4 to 8 weeks of 

the postpartum period [67]. Though progesterone spikes in 

the luteal phase during exercise training, it returns to its 

normal plasma levels after few weeks of training. 

Progesterone has anti-inflammatory effects by regulating 

the synthesis of PG and LT [4]. In the absence of pregnancy, 

progesterone level declines during the late secretory phase, 

and the cycle starts with the vital enzyme Matrix 

Metalloproteases (MMP), as MMP expression inhibited by 

progesterone [68,69]. MMP action takes some time to initiate 

the cycle, and during that period if progesterone level im-

proves, the menses will decrease. The critical duration to ini-

tiate the cycle and action of MMP is 36 hours, and a total 
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Fig. 1. Exercise induced analgesia in primary dysmenorrhea. AEA: anandamide, 2AG: 2-arachidonylglycerol, PG: prostaglandins, MMP:
matrix metalloproteases, EET: epoxyeicosatrienoic acid, DHET: dihydroxyeicosatricnoic acid.

of 36 hours is not a window for the irreversible action of 

progesterone. Initial first 24 hours progesterone will inhibit 

MMP 1, 2, and 3, and if the rise is in 48 hours after the 

decline, only MMP1 and 3 inhibited, and MMP2 will carry 

forward the inflammatory cycle [70]. It could be possible that 

as the progesterone rises with exercises, it controls all these 

activities and modulates pain but the raise exact time and 

phase in which it minimizes inflammatory action requires 

clinical trials to confirm the changes throughout the cycle. 

Fall in progesterone causes local changes in the endometrium, 

induces vasoconstriction in arterioles, and reduces the MMP 

[71]. Lack of progesterone also upregulates the IL-8 mRNA ex-

pression after 48 hours of decline; IL-8 causes the pro-

duction of MMP [72]. So MMP is activated by the decline 
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in progesterone and IL-8 activation, but hypoxia regulates 

the production of IL-8 [73]. So, with progesterone rise, the 

MMP production decreases directly and indirectly by IL-8 

and hypoxia. At the same time, hypoxia is essential to con-

trol the inflammation and repair of the endometrium and 

can affect the pain modulation, though it affects the uterine 

contraction and causes ischemia and pain [74]. Gannon et 

al. [75] failed to find episodes of menstrual ischemia, but 

his finding may be less impactful as of less resolution 

fluxmeter. This approach would not allow focused and pro-

longed ischemia-reperfusion events. In contrast, in animal 

studies transient hypoxia in the endometrium appears. 

In PD, there is a hyper exaggerated inflammatory re-

sponse, and the critical component of hyper contraction of 

the uterus is PGF2α only [76], which causes vasocontraction 
and hyperalgesia. In Heavy menstrual bleeding, the PGF2α/ 
PGE2 ratio and PGF receptor expression reduce sig-

nificantly, which results in vasodilatation of spiral arterioles 

by increasing PGE2 production at the expense of PGF2α 
[77]. PGF2α and endothelin-1 are two endometrial factors 

with known vasoconstriction properties [78]. As the CL ages 

from the mid to late luteal phase, PGF2α concentration in-
creases and the ratio to PGE2 also improves. PGF2α pro-
duction is an auto amplification loop as luteal cells with 

PGF2α induces production of further PGF2α by luteal cell. 
The intercellular mechanism via the action of cytosolic 

Phospholipase A2 and COX-2 and fall in progesterone in-

duces COX-2 for PG synthesis [79].

PG increases during exercise; however, PGE2 rises faster 

than PGF2 possibly altering the ratio and reducing spiral ar-

teriole constriction and pain in PD. As per our knowledge, 

none of the studies has analyzed PGE2/PGF2 ratio varia-

tions in any condition similar to PD despite the need for 

clarification. It is also crucial to know the benefits of higher 

progesterone levels and COX-2 expression on PG concen-

tration during different phases of menstruation as even a 

small amount of PG is potent enough to show its effects. 

Exercise’s effect on hypoxia-induced ischemia in PD is es-

sential to note as hypoxia causes hyperaemia in skeletal 

muscles [55]. Since hypoxia is an essential component of en-

dometrial repair during the menstruation period, the alter-

ation in blood flow in the endometrium with exercise during 

the early and late luteal phases must be determined. Exercise 

also affects AA metabolism, shifting the pathway towards 

CYP and controlling PG synthesis output. Exercise increases 

the EET/DHET ratio, which triggers arteriole vasodilation. 

Since it has a positive and negative effect on the EET/DHET 

and PGF2/PGE2 ratios, this may cause pain relief in PD. 

CONCLUSION

Despite everything, pain improves with exercises in PD. 

The pain relief could be because of the synergistically work-

ing of both opioids and the non-opioids systems. Hormonal 

changes occur during exercises as raises progesterone con-

centration in the late luteal phase, high metabolic clearance 

rate of PGs, and shifting of AA metabolism towards the 

CYP. All of these changes influence blood flow by manag-

ing arteriole vasoconstriction and the sensory pathway. 

Though the parameters to assess the desired effect need 

clarification, whether the progesterone alone or any other 

changes in the inflammatory process cause pain reduction 

in PD. To evaluate the precise pain control, high-quality 

RCT’s are required to assess the effect before, during, and 

after the cycle by progesterone or any other mechanism. To 

assess pain regulation in PD, it is crucial to understand the 

gradual increment and long-term changes in plasma concen-

tration and expression of all main hormones and inflammatory 

components involved in PD.
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