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Abstract

The question whether tumorigenic cancer stem cells exist in human melanomas has arisen 

recently1. Here we show that in melanomas, tumor stem cells (MTSC) can be isolated 

prospectively as a highly enriched CD271+ MTSC population using a process that maximizes 

viable cell transplantation1,6. In this study the tumors sampled were taken from a broad spectrum 

of sites and stages. High viability FACS isolated cells resuspended in a matrigel vehicle were 

implanted into T, B, and NK deficient Rag2−/− γc−/− mice (RG) mice. The CD271+ subset of 
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cells was the tumor initiating population in 9/10 melanomas tested. Transplantation of isolated 

melanoma cells into engrafted human skin or bone in RG mice resulted in melanoma from 

CD271+ but not CD271− cells. We also showed that tumors transplanted by CD271+ patient cells 

were capable of metastasis in-vivo. Importantly, CD271+ melanoma cells lacked expression of 

TYR, MART and MAGE in 86%, 69% and 68% of melanoma patients respectively suggesting 

why T cell therapies directed at these antigens usually result in only temporary tumor shrinkage.

Cancers derive by clonal progression to appear as abnormal growths. At diagnosis, they can 

be at a stage ranging from low risk of metastasis and likely cure, to highly aggressive with a 

marked tendency for metastasis. We proposed that at early stages, the self-renewing, 

minority tumorigenic population can differentiate nonmalignant progeny, and at later stages 

the self-renewing cancer cell population may become the dominant population in a 

tumor2-4. Identifications of cancer stem cells (CSCs) in solid tumors3, 5-9 provided 

evidence that CSC appear to recapitulate the developmental program of corresponding 

normal tissue stem or progenitor cells, although in an incomplete and disorganized 

manner10. Malignant melanomas, like normal melanocytes, derive from the neural crest 

lineage11. The prospective isolation of mammalian neural crest stem cells was achieved by 

sorting for the CD271 cell subset12. Expression of CD271 has been found on a number of 

human neural crest derived tissues and in some human cancers including melanomas13, 14. 

Therefore, we searched for melanoma tumor initiating cells by testing surgical patient 

samples with monoclonal antibody (Mab) to CD271 as well as with Mabs to other cell 

surface antigens involved in maturation of melanocytes and/or melanoma development 

(Supplementary Table 1).

Melanomas can quickly progress from localized cutaneous disease to regional lymph node 

and more advanced visceral metastasis. A broad spectrum of freshly resected melanomas 

that included primary cutaneous lesions as well as nodal, in-transit, and cutaneous metastasis 

(Supplementary Table 2) were used to profile expression of CD271 and other candidate 

MTSC markers by FACS. After analyzing multiple samples, we found that CD271 was the 

most reliable cell surface molecule in distinguishing heterogeneous populations within 

melanomas (Supplementary Table 1). CD271 was found to be heterogeneously expressed in 

9 out of 10 melanomas analyzed comprising from ~2.5% to ~41% (mean=16.7%) of the 

total cell population (Supplementary Fig. 1).

In order to assess the presence of MTSC and to avoid factors which could allow selection of 

the most aggressive tumor subsets during passaging, our cells were isolated directly from 

surgical patient samples and transplanted using the recently reported melanoma in-vivo 

transplantation assay1 (see Methods and Supplemental Section). Strikingly, we found that 

the CD271+ cell population isolated directly from six different patients transplanted 

melanomas in RG mice at a dramatically higher rate as compared to CD271− or Lin- (bulk 

population) cells obtained from the same tumor (Fig. 1), (Supplementary Fig. 2-4; 

Supplementary Table 3). In doses ranging from 10 to 105 cells, CD271+ cells engrafted in 

70% (26/37) of the transplants compared to 7% (3/41) of CD271− (p < 0.0001) and 16% 

(5/30) of Lin- cells (p < 0.0001). Some melanomas were too small for direct analysis, and in 

these cases pieces of freshly resected tumors were transplanted subcutaneously onto the 
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back of RG mice (Xeno P0, n=3). Alternatively, xenografts were established from cells 

amplified in-vitro for 1-2 passages (Xeno Pi, n=2) after being isolated from patient tumors. 

CD271+ expression in xenografted tumors varied from 6.4% to 75.3% (mean=26.3%) of the 

total cell population (Supplementary Fig. 5). The CD271+ population isolated from 

xenografted tumors engrafted growing melanomas in 72% of CD271+ cell injections (26/36) 

compared to 20% tumor engraftment from CD271− cells (5/25) (p=0.0001) (Table 1; 

Supplementary Fig. 6a, 7-9).

Further, we wished to determine whether newly identified MTSCs were capable of self-

renewal and differentiation in-vivo. First, we analyzed engrafted melanomas derived from 

purified CD271+ cells. All but one tumor redeveloped both CD271+ and CD271− cell 

populations with very similar proportions of positive and negative cells as compared to the 

cancer samples from which they were initially purified (Supplementary Fig. 10). We tested 

whether the CD271+ and/or the CD271− cells from xenografts representing two different 

patients were able to secondarily transplant melanoma in-vivo; 72.2% (13/18) of the samples 

of CD271+ cells engrafted growing melanomas, compared to 27.7% (5/18) for CD271− 

cells (p=0.009), in cell doses ranging from 10 to 5×103 injected cells (Supplementary Fig. 

6b). Altogether CD271+ melanoma cells isolated from xenografted samples engrafted at 

72% (39/54) compared to 23% (10/43) for CD271− cells (p<0.0001) (Table 3) that required 

higher cell doses and longer latency.

In summary, our tumorigenic assays with surgical and xeno transplanted melanomas 

described above provide strong evidence that in most patients MTSCs reside in the CD271+ 

fraction, which are able not only to induce tumors but also to re-establish the original 

CD271 expression heterogeneity of the primary tumor. It is important to note however, that 

there was an increase in combined engraftment efficiency of CD271− cells isolated from 

xenopassaged melanomas compared to the combined engraftment frequency of CD271− 

cells isolated from surgical samples (Table 3). In addition, in our experiments with 

established melanoma cell lines we observed that unfractionated cells were able to engraft at 

100% frequencies from as little as 10 cells (Supplementary Fig. 11). These results, suggest 

that melanoma cells kept for prolonged periods of time in-vitro as cell cultures or in-vivo as 

passaged xenografts continue to undergo malignant progression, such that successful 

subclones emerge, in some samples independent of their cell surface immunophenotype. 

Additional experiments would be required to understand precise molecular mechanisms 

underlying tumorigenic evolutions of cells during their passaging in-vitro or in-vivo, and 

their relationship to the patient's tumor.

Further we wished to determine whether MTSCs can be identified in the context of more 

physiologically relevant human tissue micro-environment. We therefore created humanized 

mice by grafting fragments of normal human skin or bone onto the back of RG and NSG 

mice (see supplementary section). CD271+ but not CD271− cells isolated from two 

independent primary dermal melanomas (Mel43 and Mel826) induced tumors in the human 

skin grafts (Fig. 2a-b). Similarly, CD271+ cells but not CD271− cells isolated from 

melanoma adjacent to the patella (Mel 210) formed a tumor in NSG mouse grafted with 

human bone fragment (Fig. 2c).
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The poor survival rate of melanoma patients diagnosed with advanced stages is due to the 

high metastatic potential of this cancer that rapidly invades lungs, liver, brain and other 

organs. Organ analysis of the humanized mouse injected intradermaly with Mel826 CD271+ 

patient's cells revealed that these cells had metastasized into the lungs and caused formation 

of metastatic nodules (Fig. 2b). In-vivo intradermal tumorigenic assays of melanomas 

surgically removed from two additional patients Mel1119 and Mel213 have demonstrated 

that tumors formed by CD271+ cells had the ability to form metastases in the liver 

(Supplementary Fig. 2b) and lung (Supplementary Fig. 4a-b), while no tumors nor 

metastases were observed in matching mice injected with CD271− cells isolated from the 

same patients. These results show that CD271+ MTSCs give rise to cell population in the 

tumor capable of metastasis. Expression of CD271 in primary melanomas has been 

previously associated with perineural invasivion15; in addition, other groups have shown 

that CD271 and its ligand NGF can regulate invasive properties of metastatic melanoma cell 

lines in-vitro16, 17. Further studies will be required to elucidate precise molecular 

mechanisms driving metastatic progression of CD271+ cells in-vivo.

Pioneering studies of T cell immunity to melanoma antigens18, 19 have led to 

immunotherapy trials20. Multiple immunotherapies based on the well defined melanoma 

tumor antigens (MTAs) such as Tyrosinase, MART/MELAN-A and other have had limited 

success in melanoma patients21, 22. Our IHC expression analysis of Mel327, Mel525 and 

Mel425 tumor sections with CD271 Mab and with MTA Mab cocktail (Tyr/MART/

HMB-45) revealed that the CD271+ cells driving melanoma progression lack expression of 

those markers (Fig. 3a). At the same time MAGE family proteins (MAGE C1, C2) were 

found to be expressed on a higher fraction of CD271+ cells (Supplementary Fig. 14) of the 

same patients. Next, we used melanoma tissue arrays to individually assess expression of 

MTAs (TYR, MART1, MAGE (C1-C2)) and CD271 in multiple melanoma patients. In 86% 

(42/49), 69% (31/45) and 68% (28/41) of melanoma patients CD271+ tumor cells either 

completely or partially lacked expression of TYR, MART1 and MAGE(C1-C2) respectively 

(Fig. 3b-d; Supplementary Fig. 15-27). These results uncover possible limitations of existing 

melanoma immunotherapies, and can be used to argue in favour of new approaches that will 

be directed at all MTSCs in a tumor, as well as their progeny.

In this study, the neural crest stem cell marker, CD271, was implicated as a cancer stem cell 

marker, allowing identification and prospective isolation of melanoma cancer stem cells. 

Previous studies on human melanoma have found several candidate markers that 

unequivocally identify within the tumor a cancer stem cell population23, 24. A recent 

report1 using principally metastatic melanoma cells isolated either from patients lymph 

nodes or from tumors passaged by serial xenografts in mice revealed frequencies of ~1 in 2 

to ~1 in 8 cells that are tumor initiating. That study has been popularly characterized as 

showing that in melanoma there are no cancer stem cells and that in fact, all cells in a cancer 

may be equally tumorigenic25-27. Our data based on transplantation of a broad spectrum of 

both primary and advanced stage melanomas contradicts those conclusions. Importantly, 

differences in MTSC frequencies are not due to the mouse strains used (RG vs. NSG) as 

revealed in our direct comparison of their tumor cell engraftment sensitivity (Supplementary 

Fig. 13). In the studies of hematopoietic cancers we and others found that a continuous 

selection of more malignant cell subsets occurs28, 29 and that it might be triggered by 
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oncogenic mutations affecting early stages of HSC differentiation30. This opens the 

possibility that during cancer progression the entire tumor may be made up of less and of 

more aggressive malignant clones. The extreme of this view is that some subclones may 

emerge (either as a result of passaging or disease progression) that largely or completely fail 

to differentiate non-tumorigenic subsets. This view could reconcile the data presented here 

with a previous report1. Melanomas are intrinsically extremely aggressive tumors and can 

quickly undergo tumorigenic evolution towards more malignant stages. Our data is 

consistent with the possibility that some metastatic melanomas may have very high 

frequencies of tumorigenic cells (for example in Mel415 Supplementary Fig. 12) similar to 

the rare outlier cases in other cancers3. The most crucial test of the TSC hypothesis is that 

markers or pathways restricted to TSCs can be targets for curative therapies in the patient, 

which has not yet been done. Conversely, therapies targeting markers on the progeny of 

TSCs, but not on TSCs themselves, should be less efficient. MTAs (TYR, MART-1, MAGE 

C1-C2) used during induced or adoptive T cell immune responses are expressed at high 

frequencies on CD271− cells, (Supplementary Fig. 28) but are either completely or partially 

lacking on the CD271+ cells of the significant proportion of melanoma patients analyzed. 

Existing immunotherapies fail to completely eradicate melanomas19, 20, perhaps because 

all MTSCs also need to be eliminated. Identification of MTSCs by their cell surface 

immunophenotype may allow patient by patient selection for more efficient 

immunotherapies and/or drugs to be tested in clinical trials.

Methods Summary

Tumor tissues were digested into single cell suspension as previously described6, 7, 9. 

Tumor cell suspensions were stained with anti human CD271 antibodies directly conjugated 

to Biotin (557195 BD Pharmingen) or Alexa Fluor 647 (560326 BD Pharmingen) and a 

human lineage cocktail of Mabs directly or custom conjugated to pacific blue: anti-CD45 

(4528 Invitrogen), CD2 (555324 BD Pharmingen), CD3 555329 BD Pharmingen), CD31 

(303114 Biolegend); in case of xenografted tumors the following antibodies to mouse 

lineage markers were used: H2Kd (553565 BD PharMingen), CD45.2 (109820 Biolegend) 

and mTer119 (557915 BD PharMingen) directly conjugated to pacific blue or FITC. All 

antibodies were used in a 1:50 dilution except H2Kd (1:100) to allow separation of mouse 

cells. Propidium iodide was used to exclude nonviable cells. Flow cytometry analysis and 

cell sorting was performed on a BD FACSAria (Becton Dickinson) under 20 psi with a 100-

μm nozzle.

During FACS isolation of candidate MTSC populations we adopted the strategy of setting 

up negative and positive sort gates at least one log apart to prevent cross-contamination 

between negative and positive cell fractions that might occur when low expressing positive 

cells cannot be distinguished from negative cells with a high degree of probability. FACS-

sorted tumor cells were counted in hemocytometer (Hausser Scientific, Horsham, PA) and 

graded numbers of cells were suspended in a volume of 50 μl of media containing 30% 

Standard Matrigel (354234 BD Pharmingen, Franklin Lakes, NJ). Suspension was then 

injected by 31-gauge insulin syringes (Becton Dickinson) intradermaly on the flank of B-, 

T- and NK cell deficient 4 to 8 weeks old RG mice anesthetized with isoflurane-O2.
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Methods

Tumor specimens were provided by SU hospital after obtaining the informed consent. 

Experiments were conducted on Rag2−/γc− DKO mice in accordance with guidelines 

established by the SU Administrative Panels for Lab Animal Care.

Primary Tumor Implantation

RG mice were anesthetized with isoflurane-O2 and small pieces (<2 mm) of fresh tumor 

were implanted on both sides of the flank. The incision was sealed with surgical staple.

Tumor Digestion

Tumors were minced with a razor blade, and then placed in a solution of liberase 

blendzymes 2 and 4 (Roche) in Media 199 (Invitrogen) at 37°C for up to 3h to allow 

complete cell dissociation with pipetting every 30 min. Cells were filtered through 40μm 

nylon mesh, treated with LCK buffer to eliminate erythrocytes and washed twice with 

HBSS/2% Heat Inactivated Calf Serum (HICS). Cells were stained for flow cytometry or 

injected into mice as whole-tumor single-cell suspensions.

Analysis and Cell Separation by Flow Cytometry

The single-cell suspensions were washed in HBSS/2% HICS and counted and then 

resuspended in 100 μl per 106 cells of HBSS and incubated with 1 mg/ml Sandoglobin for 

10 min. The suspensions were then washed with HBSS/2% HICS, resuspended in 100 μl per 

106 cells of HBSS, and stained with antibodies. Anti-CD271 (biotin-, or Alexa Fluor647 -

conjugated, BD Pharmingen), at a 1:50 dilution; lineage markers diluted at 1:50 anti-CD45, 

CD2, CD3, CD31 directly or custom conjugated to pacific blue were used to allow 

identification of contaminating nontumor cells from patient samples. Tumors that had been 

passaged in the mouse were incubated with anti-H2kd (diluted 1:100; BD Pharmingen) anti-

mCD45.2 and mTer119. Antibodies were directly conjugated to Pacific Blue or FITC, 

Stained cells were washed and resuspended at 0.5 ml per 106 cells with Hoechst 33342 or 

propidium iodide to allow exclusion of nonviable cells. Flow cytometry analysis and cell 

sorting was performed on a BD FACSAria (Becton Dickinson) under 20 psi with a 100-μm 

nozzle.

Single-Cell Suspension Injections

FACS-sorted tumor cells were counted in hemocytometer (Hausser Scientific, Horsham, 

PA) and graded numbers of cells were suspended in a volume of 50 μl of media containing 

30% standard Matrigel (354234 BD Pharmingen, Franklin Lakes, NJ). Suspension was then 

injected by 31-gauge insulin syringes (Becton Dickinson) intradermaly on the flank of B-, 

T- and NK cell deficient 4 to 8 weeks old RG mice anesthetized with isoflurane-O2.

Humanized Mice Models

Generation of RG mice with grafted human skin: briefly, full thickness human skin sample 

was obtained under signed consent from patients undergoing breast reduction, 

abdominoplasty or face lift. Adult mice were anesthetized by inhalation of 2% isoflurane in 

100% oxygen at a flow rate of 2L per minute. The dorsum of the mouse was shaved with an 
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electric clipper and then treated with a depilatory agent to completely remove the hair. 

Following sterile prep, a rectangular area of approximately 1 – 1.5 cm by 1 – 1.5 cm of skin 

was resected leaving the panniculus carnosus intact. Human skin graft was sutured in place 

with 6-0 prolene and covered with a non-adhesive dry dressing. Mice are then allowed to 

recover from anesthesia in a warm chamber then housed individually in separate cages.

Generation of NSG mice with grafted human bone: briefly, human abortuses' bones were 

obtained from Advanced Bioscience Resources, Inc. Adult mice are anesthetized by 

inhalation of isoflurane. 2% isoflurane in 100% oxygen at a flow rate of 2L per minute will 

be used. A small patch of fur is shaved, and a small (2mm) incision is made in the skin. A 

pair of blunt forceps is used to generate a small pocket underneath the skin and a small (5 

mm) piece of aborted long bone is inserted into the pocket. The incision is then closed with 

a single wound clip. A 10 microliter volume of 2% Iidocaine:1/100000 epinephrine is 

applied to the wound site, which provides analgesic for a period of 2 hours. Mice are then 

allowed to recover from anesthesia in a warm chamber then housed individually in separated 

cage.

Tissue Immunofluorescence

A small piece of tumor specimen was kept aside and frozen in optimal cutting temperature 

(OCT) embedding media. Seven-micron sections were cut, fixed in ice-cold acetone for 4 

min, and air-dried. Slides were then rinsed in PBS, and blocked in PBS with 1% BSA, 5% 

goat serum (for extracellular antigens) and 1% BSA, 5% goat serum and 0.01% triton-X100 

(for intracellular antigens) for 30 min. Primary antibodies used: rat anti- human CD271 

(27005 Abcam), Pan Melanoma cocktail (mixture of mouse anti- human Tyrosinase, -

MART1 and -HMB-45 antibodies) (CM165B Biocare Medical) and -MAGE(C1-C2) a kind 

gift of Leonard Cohen Lab LICR New York Branch. Sections were incubated with the 

primary antibody diluted in blocking solution overnight at +4°C, washed in PBS, followed 

by secondary antibodies (goat anti-rat AlexaFluor 594 and goat anti-mouse AlexaFluor 488 

(Molecular Probes)) incubation for 1h at RT. Slides were again washed, incubated with 

Hoechst 33342 (Invitrogen, Carlsbad, CA) for 3 min, rinsed in PBS, and coverslipped with 

Fluoromount G (Southern Biotech, Birmingham, AL). Staining was analyzed under 

LeicaDM4000B microscope. Pictures were taken under 40x objective and scale bars are 

equal to 50um

Melanoma Tissue Array Immunostaining

Paraffin melanoma tissue array slides (US Biomax Inc) containing 80 1.5mm tissue cores 

from primary and metastatic melanoma patients were deparaffinized through three changes 

of xylene, incubating 10 min in each change. Slides were hydrated to water by dipping them 

20-30 times in each of two changes of 100% ethanol, two changes of 95% ethanol, one of 

80% ethanol, one of 70 % ethanol, and two changes of distilled water. Slides were placed in 

microwave, covered with 50mM TRIS/20mM EDTA pH 9.0 buffer and microwaved for 15 

minutes. Slides were cooled for 30 minutes, rinsed in distilled water twice and once in PBS 

for 5 minutes. Three tissue array slides were stained each with the following antibody 

combination: CD271 (abcam ab3125 R5) 1:100 & TYR (novacastra #NCL-L-TYROS) 1:20; 

CD271 1:100 & Mart-1 (biocare #CM077) 1:400; CD271 1:100 & MAGE (abcam ab60049) 
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1:50 for 45 minutes at RT. Slides were washed for 15 minutes in PBS. The following 

fluorescent secondary antibodies at 1:100 were used to visualize each antigen: goat anti 

mouse IgG1_AF594 for CD271, goat anti mouse IgG2a_AF647 for TYR, goat anti 

rabbit_AF647 for MAGE, goat anti mouse IgG2b_AF647 for MART1. Slides were 

incubated in the dark for 45 minutes. Slides were washed for 15 minutes in PBS and 

mounted in fluorescent mounting medium containing DAPI (ProLong antifade reagent with 

DAPI, Invitrogen cat#P36935). Slides were scanned and photographed at 20X using Zeiss 

AxioImager motorized upright fluorescent microscope using appropriate filters for each 

fluorochrome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Isolation of melanoma tumor stem cells (MTSC) expressing CD271P75(NGFR) from 
melanoma patients
a, Representative contour plot FACS gating sequence leading to purification of live, hLin- 

(CD45−/CD2−/CD3−/ CD31−), CD271+ and C271− cells from Mel114 patient sample; 

CD271+ but not CD271− melanoma cells induce tumors upon intradermal injection in 30% 

matrigel into B-, T- and NK cell deficient Rag2−/− γc−/− (RG) mice after 28-32 weeks. b, 
Summary Table of tumor formation frequencies by CD271+ and CD271− human melanoma 

cells isolated from all patients.
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Figure 2. MTSCs induce tumors in humanized mouse models
a, Humanized RG mice that contained skin grafts from the same healthy donor were used to 

assess the tumorigenic potential of CD271+ cells. Dermal melanoma xenograft (P0) from a 

primary patient (Mel43) was used to purify live, mLin-, CD271+ and CD271− melanoma 

cells by FACS and injected into separate human skin grafts on RG mice from the same 

healthy donor. (i) human skin graft of RG mice 28 weeks after injection of 2×104 CD271− 

cells and (ii) melanoma formation in human skin graft of RG mice 28 weeks after injection 

of 2×104 of CD271+ cells; b, Surgically resected primary melanoma from mel826 patient 

was used to isolate live, hLin-, CD271+ and CD271− cells by FACS and injected into 

separate human skin grafts on RG mice from the same healthy donor; (i) human skin graft 

16 weeks after injection of 2×104 CD271− cells; (ii)-(iii) melanoma tumor formation and 

lung metastasis 16 weeks after injection of 6×103 CD271+ cells; c, Surgically resected 

melanoma adjacent to the patella from the patient mel210 was used to purify live, hLin-, 

CD271+ and CD271− melanoma cells by FACS; 103 cells of each highly purified fraction 

were injected separately into two NSG mice subcutaneously near the grafted human bone 

fragment (i) human bone graft of NSG mice 20 weeks after injection of 103 CD271− cells 

and (ii) 103 CD271+ cells.
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Figure 3. Most melanomas contain CD271+ tumor cells that either completely or partially lack 
expression of MTAs
a. Immunofluorescent analysis of CD271, Tyr/MART1/HMB-45 expression in tissue 

sections of melanoma patients Mel525, Mel327 and Mel 425; b, Representative images of 

immunofluorescent analysis of CD271, TYR, MART1 and MAGE (C1-C2) expression in 

tissue cores of melanoma patient from tissue array. c, Table indicating expression of 

melanoma tumor antigens (MTAs) TYR, MART1 and MAGE C1-C2 in CD271+ cells of 

each patient's tumor. Colour bars indicate percentage range of CD271+ cells that expressed 

MTA; grey bars indicate that expression of CD271 and MTA was not detected during 

analysis of the tumor core. d, Stacked bar graph indicating proportion of melanoma patients 

with ranges of MTA positivity of CD271+ cells.
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Table 1

Summary of engraftments from xenografted tumors

Xenografted Samples (P0, Pi)

Cell Surface Phenotype CD271+ CD271−

Frequency of Tumor Formation 72% (26/36) 20% (5/25)

p = 0.0001

RG mice were injected with live, mLin− (H2−Kd−/mCD45−/mTer119−) CD271+ and CD271− melanoma cells isolated by FACS and mixed with 
matrigel. Numbers indicate ratio of tumor incidence relative to the number of injections.

Nature. Author manuscript; available in PMC 2011 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Boiko et al. Page 14

Table 2

Comparative analysis of melanoma initiation

Tumor Cell Source
Frequency of Tumor Formation

CD271+ CD271−

Patient samples 70% (26/37) 7% (3/41)

p = 0.04Xenografted samples
(P0,Pi,Ps)

74% (39/53) 23% (10/43)

Comparison summary table of CD271+ and CD271− melanoma cells tumor engraftment frequencies isolated directly from clinical patient samples 
and from xenografted tumors. p value refers to CD271− population in patient vs. xenograft samples
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