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Abstract: A series of novel superabsorbent composites of poly(acrylic acid)/semicoke were
prepared by polymerization of acrylic acid using ammonium persulphate as initiator,
N,N′-methylenebisacrylamide as crosslinker and semicoke which was the by-product of coal
carbonizing as the inorganic components. FTIR and SEM analysis indicated that the superabsorbent
composites had been successfully polymerized and the semicoke participated in construction of the
3D polymeric network. Meanwhile, the effects of initiator, crosslinker, semicoke, and neutralization
degree, as well as the pH value, were investigated, and the results showed that superabsorbent
composites containing 10% of semicoke possessed the maximum water absorbency of 584 g/g in
distilled water and 75 g/g in 0.9% NaCl solution. The superabsorbent composites kept the high
water absorbency within a wide pH range of 4–11, and still exhibited better re-swelling capability
even after seven times. The superabsorbent composite with its excellent performance is a potential
water-retaining agent used in agriculture.
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1. Introduction

Superabsorbent hydrogels are three-dimensionally crosslinked networks that can absorb and
retain possibly large amounts of water in the aqueous solvent [1]. Since the first superabsorbent
hydrogel was available in the 1970s by the American department of agriculture [2], superabsorbent
hydrogels have been promising applications in various fields such as agriculture and horticulture [3,4],
adsorbents [5,6], materials for personal hygiene products [7,8], drug delivery systems [9,10], etc. for
their excellent water-absorption and retention capabilities. Especially in agriculture, the superabsorbent
hydrogels have been widely sought after in society because of their water storage function and slow
release effect.

However, the superabsorbent hydrogels prepared by simply using fossil products such as
acrylic acid (AA), have the downsides of high cost, consequently restricting its applications in
agriculture. A large number of researches have indicated that the introduction of a certain amount
of inorganic substances into the polymeric structure of superabsorbent hydrogels cannot only
significantly increase its water absorption rate, but also effectively reduce the product cost. Therefore,
the superabsorbent composites, which incorporate the inorganic materials including silicate mineral
and metallic ions such as attapulgite [11,12], kaolinite [13,14], bentonite [15,16], titanium dioxide [17,18],
zinc oxide, and aluminum ions [19] into the superabsorbent composites have attracted researchers’
widespread attention.
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In recent years, with the concept of a “recycling economy” embedded deeply in human nature,
the using of wastes as inorganic components for preparation of superabsorbent composites has become a
new research tendency, with the purpose of realizing the substance circulation. These wastes applied in
the superabsorbent composites include industrial wastes (waste polystyrene [20–22], polyacrylonitrile
fiber wastes [23,24], etc.) and crop wastes (flax yarn wastes [25,26], corn stalks [27], etc.). For instance,
Ismail et al. synthesized superabsorbent composites through emulsion polymerization of waste
polystyrene starch, as well as acrylic acid, and the maximum water absorbency reached 500 g/g
in distilled water [20]. Zhang et al. developed the eco-friendly flax yarn waste/polyacrylic acid
superabsorbent composites, the water absorbency reaching a maximum of 490 g/g in rainwater and
90 g/g in 0.9 wt% NaCl solution [25].

Oil shale semicoke (SC) is a byproduct from the thermal processing of oil shale consisting of the
stable carbonic matter and other inorganic minerals, including quartz, kaolinite, hematite, carbonate,
and others [28]. Due to the current technology not fully utilizing the SC by high value-added approach,
many problems afflict the coal and petrochemical enterprises seriously, such as the high waste of land
resources and potential threat to the environment [29,30]. Encouragingly, a great deal of research has
investigated the utilization of SC in several fields in recent decades, and provided many basic datum
and methods for effective recycling of SC. For instance, Nicolini et al. recommended the addition of SC
in soils to degrade the polycyclic aromatic hydrocarbons (PAHs), thus allowing the future using of SC
as an agricultural soil conditioner [31]. The application of SC as alternative fuel in iron ore sintering
was studied by Luo et al., and showed that coke breeze could be substituted with SC without affecting
the sintering [32]. Wang et al. loaded the V2O5 onto the activated SC (ASC) via impregnation method
and used for low temperature selective catalytic reduction of NOX with NH3. The prepared V2O5/ASC
catalyst helped to improve conversion rate and N2 selectivity [33]. For all this, the overall utilization
amount of SC is still limited, so the novel transformation path of SC waste to new materials still needs
to be explored.

It is worth noting that the content of inorganic mineral and carbonic matter of some SC components
is about 70% and 30%, respectively [34]. The carbonic matter of SC is mainly composed of PAH
which contain a large number of active functional groups, such as hydroxyl group or carboxyl
group. These functional groups could replace inorganic minerals to form a favorable interaction with
the hydrogel’s backbone since silicate minera particles did not have proper surface functionalities.
Furthermore, the introduction of inorganic minerals not only significantly improved its water absorption
and stability, but also effectively reduced the product cost. Thereby, the application of SC into
the superabsorbent composites, like other inorganic minerals, is entirely feasible and has broad
prospects. So in this study, we designed and prepared a series of superabsorbent composites by
polymerization of AA as the presence of SC, using ammonium persulphate (APS) as initiator and
N,N’-methylene-bisacrylamide (MBA) as crosslinker in aqueous solution. The affecting factors of the
water absorbency, such as content of APS, MBA, and SC, as well as neutralization degree were all
investigated. The swelling kinetics, water-retention capacity, and the reswelling capability were also
tested carefully. We expected the experiment result can be an effective reference for application of the
SC in superabsorbent composites and agriculture ultimately.

2. Materials and Methods

2.1. Materials

Oil shale semicoke micropowder (Yaojie Coal and Electricity Group Co., Ltd., Gansu, China, XRF
composition analysis: SiO2 54.85%, Fe2O3 14.12%, Al2O3 21.70%, MgO 1.55%, CaO 2.48%, K2O 1.45%),
milled through 300-mesh screen before using; Acrylic acid (AA, chemically pure) was purchased from
Shanghai Wulian Chemical Factory, (Shanghai, China); Ammonium persulfate (APS, analytical grade)
was obtained from Xi’an Chemical Reagent Factory, (Xi’an, China) and used after the recrystallization.
N,N′-Methylene bisacrylamide (MBA, chemically pure) was supplied from Shanghai Chemical Reagent
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Factory (Shanghai, China); other chemical reagents were all analytical grade and utilized as obtained
without further purification. All the solutions were prepared with distilled water.

2.2. Preparation of the Superabsorbent Composites

Typically, 800 mg of SC (10 wt% to the total amount of AA and SC) was dispersed in 30 mL of
distilled water and then transferred to a 250 mL three-necked flask equipped with a stirrer, a reflux pipe
and a nitrogen line while constantly stirring to disperse SC uniformly. Subsequently, the dispersion was
heated to 75 ◦C and kept for 30 min under the nitrogenous atmosphere to remove oxygen. Later, 5 mL of
aqueous solution containing 365 mg of APS (1.60 mol% of AA) was dropped into the three-necked flask
and continuously stirred for 2 min. After that, a mixing solution containing 7.2g of AA (neutralized
60% with 8.0 mol/L NaOH) and 61.7 mg of MBA (0.4 mol% of AA) was dropped into the reaction
system. The oil bath was held constantly at 75 ◦C for 2 h to complete the reaction and the entire process
of reaction was implemented under the atmosphere of nitrogen. The resultant products were dried
at 90 ◦C to a constant weight. A series of superabsorbent composites with different content of SC,
crosslinker, initiator, and acrylic acid were prepared via the above procedure. All samples were milled
and passed through a 40–60 mesh sieve. The yields of simples prepared in various conditions are all
listed in Table S1.

2.3. Water Absorbency and Swelling Kinetics Measurements

About 50 mg of the dried superabsorbent composites were immersed in 400 mL of distilled water
or 0.9 wt% NaCl solutions with various pH values ranging from 2 to 14 for 4 h to reach the swelling
equilibrium at room temperature. The superabsorbent composites were filtered with 100 mesh, and the
swollen samples were drained under gravity for 10 min until there was no redundant water. The water
absorbency Qeq (g/g) was calculated by Equation (1) as follows:

Qeq = (W2 −W1)/W1, (1)

where W1 (g) and W2 (g) are the weights of the dry sample and swollen sample, respectively.
The swelling kinetics were investigated by measuring the water absorbency of 50 mg superabsorbent
composites in 400 mL of distilled water or 0.9 wt% NaCl solution in different immersion times (10 min,
15 min, 30 min, 45 min, and 60 min), and the water absorbencies (Qeq) (g/g) were calculated according
to Equation (1).

2.4. Water Retention and Reswelling Capability Measurements

The water retention capability was tested via the following methods. Pre-weight dry
superabsorbent composites (50 mg) were immersed in 400 mL of distilled water or 0.9 wt% NaCl
solution to reach the swelling equilibrium at room temperature. The superabsorbent composites were
filtered with 100 mesh, and the swollen samples were drained under gravity for 2 min until there was
no redundant water. The water-absorbed superabsorbent composites were weighted and placed in
petri dishes at room temperature. The water retention properties at room temperature were calculated
v the following formula:

Water retention = Qt/Qi, (2)

where Qt is the weight of superabsorbent composites at time “t” and was calculated by Equation
(1), Qi is the initial weight of swollen superabsorbent composites. The reswelling of superabsorbent
composites was investigated by measuring the water absorbency of 50 mg in 400 mL of distilled
water until reaching the swelling equilibrium. The water absorbency of superabsorbent composites
was calculated by Equation (1). The swollen sample was dried in a 90 ◦C oven to constant weight.
We repeated the above process seven times and calculated the water absorption capacity of each
swelling state.
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2.5. Characterization

The polymerization structure of superabsorbent composites were analyzed with the FTIR in
the wave number region of 4000–400 cm−1 using a Fourier transform infrared spectrometer (Nicolet
NEXUS FTIR spectrometer, Thermo Fisher Scientific, Wilmington, DE, USA) by KBr pellet method.
The morphology of the superabsorbent composites was observed with the Field Emission Scanning
Electron Microscope (FE-SEM, JSM-6701F, JEOL, Tokyo, Japan) after coating the samples with gold film.
The X-ray diffraction (XRD) pattern of crystal phase was collected in the range of 2θ = 3–80◦, using a
SmartLab SE multifunctional X-ray diffractometer (Rigaku Co., Tokyo, Japan). The thermal behavior
was performed using a STA449C thermogravimetric analyzer (NETZSCH Co., Ltd., Selb, Germany) at a
heating rate of 10 ◦C/min, in a temperature range from 100 to 700 ◦C under the synthetic air (component,
O2:N2 = 1:4; flow rate, 50 mL/min). The Energy Dispersive Spectrometer (EDS, JSM-5600LV, JEOL,
Tokyo, Japan) was performed.

3. Results and Discussions

3.1. FTIR Analysis

The FTIR spectra of SC, PAA, PAA/SC (10 wt%) and the physical mixture of PAA with SC
(m/m = 10) were shown in Figure 1. For the SC (Figure 1a), the absorption peaks at 1034 cm−1,
791 cm−1, 695 cm−1, 538 cm−1, 469 cm−1 were attributed to the Si–O, Si–O–Si and Si–O–Al, respectively.
More importantly, the peaks at 1100 cm−1, 3694 cm−1 and 3619 cm−1 assigned to the stretching vibration
of the apical Si–O group, as well as the stretching vibration of O-H in kaolinite [13,27], suggested the SC
contained the silicate mineral of kaolinite. The XRD characterization also verified the kaolinite of in SC
(Figure S1, Supplementary Material). In addition, The SC also contained the carbonic matter, and the
content was 27.3% based on the TG characterization (Figure S2, Supplementary Material). In the FTIR,
the characterization peaks appearing at 2924 cm−1 and 2848 cm−1 were symmetric and asymmetric
stretching vibration towards –CH2, characterization peak at 1613 cm−1 and 1434 cm−1 were -OH or
the asymmetric stretching of –COO− and the scissoring vibration of –CH [35]. They were derived
from the carbonic matter, which was mixed with the silicate mineral of kaolinite to form a SC [28].
After the polymerization reaction, the C=O stretching vibrations at 1710 cm−1 (Figure 1b), assigned
to carboxylic group of un-neutralized PAA, appeared. Besides, the new peaks at 1568 cm−1 and
1407 cm−1 were related to the asymmetric and symmetric –COO− stretching vibrations for carboxylate
salt of PAA, indicating that the polymerization reaction was successful. Compared with infrared
spectra of SC and PAA, the characterization peaks of PAA all appeared in the FTIR of PAA/SC, but the
absorption bands at 1613 cm−1 (–OH or –COO− asymmetric stretching of SC), 1568 cm−1 and 1407 cm−1

(–COO− asymmetric and symmetric stretching of PAA) shifted to 1560 cm−1 and 1400 cm−1 (Figure 1c).
Forthermore, the characterization peaks of PAA/SC significantly shifted compared to infrared spectra
of the physical mixture of PAA with SC (Figure 1d), suggested graft polymerization between PAA and
SC through the hydroxyl or carboxyl group in carbonic matter of SC, and the SC participated in the
construction of the 3D polymeric network.
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elemental mapping was conducted and results revealed the homogeneous distribution of C, O, Si, Al 
and Fe over the entire structure of the obtained PAA/SC (10 wt%) (Figure S3, in Supplementary 
Material). This result proved the SC had finely dispersed and was embedded into the matrix of the 
PAA network. In addition, the SC had a role to relax the chain entanglement of PAA, which is similar 
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Figure 1. FTIR spectra of (a) SC, (b) PAA, (c) PAA/SC (10 wt%) and (d) the physical mixture of PAA
with SC (m/m = 10).

3.2. SEM Analysis

The surface morphologies of superabsorbent composites towards PAA, PAA/SC (10 wt%) and
PAA/SC (18 wt%) were shown in Figure 2. As can be seen, a comparatively smooth, dense and tight
surface was observed to the PAA (Figure 2a). When the SC was introduced, the superabsorbent
composites of PAA/SC (10 wt%) and PAA/SC (18 wt%) exhibited a relatively coarse and loose pleat
surface (Figure 2b,c). The superabsorbent composite containing 10 wt% of SC showed lots of folds on
the surface (Figure 2b). With the increase of SC content to 18 wt%, the surface roughness was obviously
improved and the book-like structure was obviously found. Besides, some gaps also appeared in the
surface of the composite containing 18 wt% of SC (Figure 2c). The corresponding elemental mapping
was conducted and results revealed the homogeneous distribution of C, O, Si, Al and Fe over the entire
structure of the obtained PAA/SC (10 wt%) (Figure S3, in Supplementary Material). This result proved
the SC had finely dispersed and was embedded into the matrix of the PAA network. In addition,
the SC had a role to relax the chain entanglement of PAA, which is similar to the clay of kaolinite,
attapulgite, and so on [14,36]. The loose surface facilitates the permeation of water into the polymeric
network and increases water absorption.
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(c) 18 wt%.

3.3. Water Absorbency

3.3.1. Effect of Initiator Content on Water Absorbency

The effect of the initiator APS content on the water absorbency of the superabsorbent composites
in distilled water and 0.9% NaCl solution as shown in Figure 3a (7.2 g AA, 10 wt% SC, 0.4 mol% MBA
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and neutralization degree 70% of AA were selected, and conditional screening of APS usage was
conducted under nitrogen atmosphere). It can be seen that the water absorbency of the superabsorbent
composites increased with the increase of the APS content, and reached an optimal value of 459 g/g in
distilled water and 53 g/g in 0.9% NaCl solution as increasing the APS content to 1.6 mol%, respectively.
Further increasing the content of APS, water absorbency of the superabsorbent composites began
to decline. The polymerization reaction began from the decomposing of APS at the polymerization
temperature. When the content of APS was lower than 1.6 mol%, a large number of free-radical sites on
the polymer macromolecular chain may not form effectively, which limits the reaction process of chain
transfer and the growth of grafting polymerization chain. Therefore, increasing the content of APS will
produce more free-radical sites and extend the three-dimensional network, consequently improving
the water absorbency of the superabsorbent composites. However, with further increasing of the APS
content, the excess radicals cause the bimolecular collision termination step, thereby shortening the
average length of the water absorption chain, and resulting in a decrease of water absorbency [37,38].
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Figure 3. (a) Effects of APS content on the water absorbency (7.2 g AA, 800 mg SC, 0.4 mol% MBA and
neutralization degree 70% of AA were selected and conditional screening of APS usage was conducted
under nitrogen atmosphere); (b) Effects of MBA content on the water absorbency (7.2 g AA, 800 mg SC,
1.60 mol% APS and neutralization degree 70% of AA were selected and conditional screening of MBA
usage was conducted under nitrogen atmosphere).

3.3.2. Effect of Crosslinker Content on Water Absorbency

Figure 3b (7.2 g AA, 10 wt% SC, 1.60 mol% APS and neutralization degree 70% of AA were
selected and conditional screening of MBA usage was conducted under nitrogen atmosphere) showed
the effect of the MBA content on the water absorbency of superabsorbent composites. With the MBA
content increasing from 0.4 mol% to 0.7 mol%, the water absorbency dropped rapidly from 460 g/g to
342 g/g in distilled water and from 53 g/g to 36 g/g in 0.9 wt% NaCl solution, respectively. The excess of
crosslinker resulted in the generation of more crosslink points and an increase of the crosslink density,
which decreases the gel network space left for holding water to enter, and causes the reduced water
absorbency. The effect of the MBA for the water absorbency of the superabsorbent was quantitatively
analyzed with Flory’s theory, as presented in Equation (3) [39]:

Qeq = kC−n, (3)

where Qeq is equilibrium water absorbency; C is the concentration of MBA; k and n are power law
constants for an individual superabsorbent, which can be obtained from the curve fitted with Equation
(3). As known from the calculation of PAA/SC superabsorbent composites, a power law relation
between Qeq and C was as follows: Qeq = 14.96 C−0.4678 in distilled water and 3.98 C−0.5363 in 0.9 wt%
NaCl solution, respectively. However, lower MBA content did not necessarily mean higher water
absorption capacity. When the MBA content was below 0.4 mol%, the number of effective crosslinking
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points in the reaction system had decreased and the three-dimensional hydrophilic network of the
superabsorbent composites couldn’t be formed efficiently. As a result, the soluble components in the
superabsorbent composites increased, but the water absorption decreased [40].

3.3.3. Effect of Neutralization Degree on Water Absorbency

Figure 4a showed the effect of the neutralization degree on the water absorbency of superabsorbent
composites. As can be seen in Figure 4a (7.2 g AA, 10 wt% SC, 0.4 mol% MBA and 1.6 mol% MBA
were selected and conditional screening of neutralization degree of AA was conducted under nitrogen
atmosphere), the water absorbency of the superabsorbent composites increased with the increase
of neutralization degree of AA. As the neutralization degree of AA exceeded the critical value 60%,
the water absorbency of the superabsorbent composites appeared to decrease. This trend can be
attributed to generating the negatively charged carboxylate groups (–COO−) and introduction of
sodium ions (Na+). The number of the negatively charged carboxylate groups in the gel network
increased after neutralizing AA with NaOH, which resulted in the increase of the osmotic pressure
difference between the gel network and the external solution. On the other hand, the negatively charged
carboxylate groups attached to the polymer chains set up an electrostatic repulsion, which tended
to expand the network of the swollen superabsorbent composites. In addition, the hydrogen bonds
weakened interaction among the original –COOH groups with a decreasing of the proportion of
–COOH group and leading to the decrease of effective crosslinking density. However, further increasing
of the neutralization degree caused more sodium ions (Na+) to react with carboxylate groups (–COO−),
and reduced the electrostatic repulsion, consequently presenting a decrease of water absorbency [41].
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Figure 4. (a) Effects of the neutralization degree on the water absorbency (7.2 g AA, 800 mg SC, 0.4 mol%
MBA and 1.6 mol% MBA were selected and conditional screening of neutralization degree of AA was
conducted under nitrogen atmosphere); (b) Effects of SC content on the water absorbency (7.2 g AA,
0.4 mol% MBA, 1.60 mol% APS and neutralization degree 60% of AA were selected and conditional
screening of SC usage was conducted under nitrogen atmosphere).

3.3.4. Effect of Semicoke Content on Water Absorbency

The introduction of SC can change the composition and structure of superabsorbent composites,
thus affecting their water absorbency. As shown in Figure 4b (7.2 g AA, 0.4 mol% MBA, 1.60 mol%
APS and neutralization degree 60% of AA were selected and conditional screening of SC usage was
conducted under nitrogen atmosphere), with the SC content increasing from 0 wt% to 10 wt%, the water
absorbency increased rapidly from 150 g/g to 584 g/g in distilled water and from 46 g/g to 75 g/g in
0.9 wt% NaCl solution, respectively. When the SC content was over 10 wt%, the water absorbency of the
superabsorbent composite gradually decreased. The reason may be the SC participate in construction
of the three-dimensional network and relieved the entanglement of polymer chains and weakened the
hydrogen bonding interaction between the functional groups [27,42]. In addition, the introduction of
SC could prevent the polymer network structure from collapsing effectively during the drying process,
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so that the water absorbent of superabsorbent composites could be improved. However, with the
increase of SC content, the activity of hydroxyl or carboxyl groups in the humus of SC was weakened,
which affected the graft polymerization. And an excess of SC particles was filled in the polymer
network structure by the physical form and resulted in the decrease of gel hydrophilicity. On the other
hand, physical filling of SC will block the polymer networks structure and lead to decrease the water
absorbency of the superabsorbent composites. It is worth noting that the water absorbency of the
superabsorbent composites of the introduction SC significantly outperformed the blank sample.

3.3.5. Effect of pH on Water Absorbency

The swelling properties of the PAA/SC in the solutions with various pH values were evaluated
and shown in Figure 5. It can be seen that the water absorbency of PAA/SC almost kept constantly in
the pH range of 4–11, but rapidly increased with increasing pH in the range of 2–4 and decreasing pH
from 11 to 13. At strong acidic solution (pH < 4), most of the carboxylate groups were protonated
to form –COOH groups, the hydrogen bonds formed among –COOH groups induced polymer and
polymer interactions that predominate over polymer and water interactions, which also reduced the
water absorbency [43,44]. Meanwhile, limited anion–anion electrostatic repulsion may also lead to a
decrease in absorbency. At basic pH (pH > 11), the increase of ionic strength of the external solution
caused a rapid decrease of ion osmotic pressure and an increase abruptly of screening effects of Na+.
In the pH range of 4–11, because of the buffer action of –COO− and –COOH groups in aqueous
solution, the water absorbency of PAA/SC kept almost constantly equal to their equilibrium water
absorbency [45]. This feature of wide pH range towards PAA/SC will facilitate its application in various
types of soil.
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0.4 mol% MBA, 1.60 mol% APS and neutralization degree 60% of AA were selected and prepared
superabsorbent composites with SC content 0 wt%, 2 wt%, 6 wt%, 10 wt%, 14 wt% and 18 wt%,
respectively).

3.3.6. Swelling Kinetics

The introduction of SC into superabsorbent composites can affect the composition of the gel
and swelling kinetics. As shown in Figure 6, the effect of the solution on the swelling behaviors of
superabsorbent composites of different SC content were measured in distilled water and in 0.9 wt%
NaCl ssolution. It can be seen that the swelling rate of the superabsorbent composites in distilled
water and salt solution sharply increased within 1800 s and 2700 s, respectively. Then the swelling rate
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began to level off, and the swelling kinetic curves became flatter. The swelling kinetics behavior of the
PAA/SC was evaluated by means of the Scott’s second-order Equation (4) [46]:

t/Qt = 1/KsQ∞2 + t/Q∞, (4)

where Qt is the water absorbency at a given time t; Ks is swelling rate constant; Q∞ is the equilibrium
water absorbency and Kis = KsQ∞2 is the initial swelling rate of the superabsorbent composites.
Based on the experimental data, the plots of t/Qt vs. t were given perfect straight lines with good linear
correlation coefficient, indicating that the swelling of the PAA/SC fit well with the Scott’s swelling
theoretical model. Also, by fitting experimental data using Equation (4), the swelling kinetic parameters
including Ks, Q∞ and Kis can be calculated by the slope and ordinate intercept of lines [47]; results are
listed in Tables 1 and 2.Polymers 2020, 12, x FOR PEER REVIEW 10 of 14 
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(7.2 g AA, 0.4 mol% MBA, 1.60 mol% APS and neutralization degree 60% of AA were selected and
prepared superabsorbent composites with SC content 0 wt%, 2 wt%, 6 wt%, 10 wt%, 14 wt% and
18 wt%, respectively).

Table 1. Swelling kinetic parameters of PAA/SC prepared by different content of SC in distilled water
(7.2 g AA, 0.4 mol% MBA, 1.60 mol% APS and neutralization degree 60 % of AA were selected and
prepared superabsorbent composites with SC content 0 wt%, 2 wt%, 6 wt%, 10 wt%, 14 wt% and
18 wt%, respectively).

Samples Qeq (g/g) Q∞ (g/g) Kis (g/g·s) Ks (× 10−5, g/g·s)

PAA/SC (0 wt%) 151 158 1.6009 6.4128
PAA/SC (2 wt%) 313 320 3.9246 3.8326
PAA/SC (6 wt%) 366 378 4.3605 3.0518
PAA/SC (10 wt%) 584 592 6.6798 1.9060
PAA/SC (14 wt%) 436 441 5.1533 2.6498
PAA/SC (18 wt%) 381 398 4.7455 2.9958
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Table 2. Swelling kinetic parameters of PAA/SC prepared by different content of SC in 0.9 wt% NaCl
solution (7.2 g AA, 0.4 mol% MBA, 1.60 mol% APS and neutralization degree 60% of AA were selected
and prepared superabsorbent composites with SC content 0 wt%, 2 wt%, 6 wt%, 10 wt%, 14 wt% and
18 wt%, respectively).

Samples Qeq (g/g) Q∞ (g/g) Kis (g/g·s) Ks (× 10−4, g/g·s)

PAA/SC (0 wt%) 46 48 0.5256 2.2812
PAA/SC (2 wt%) 60 63 0.6646 1.6745
PAA/SC (6 wt%) 67 68 0.7205 1.5582
PAA/SC (10 wt%) 75 78 0.7798 1.2817
PAA/SC (14 wt%) 69 70 0.7033 1.4353
PAA/SC (18 wt%) 63 65 0.7455 1.7645

According to the obtained Q∞ and Kis data of PAA/SC, the initial swelling rate can be obtained in
the following order: PAA/SC (10 wt%) > PAA/SC (14 wt%) > PAA/SC (18 wt%) > PAA/SC (6 wt%)
> PAA/SC (2 wt%) > PAA/SC (0 wt%) in distilled water and PAA/SC (10 wt%) > PAA/SC (18 wt%)
> PAA/SC (6 wt%) > PAA/SC (14 wt%) > PAA/SC (2 wt%) > PAA/SC (0 wt%) in 0.9 wt% NaCl
solution, respectively. The results indicated that the modest introduction of SC into PAA system could
improve the swelling rate of superabsorbent composites. The reason was the coarse surface of the
superabsorbent composites will accelerate the diffusion of water molecular into the matrix of PAA/SC.
In addition, the extended three-dimensional network and the weaker chain entanglement of PAA/SC
also sped up the swelling process.

3.3.7. Water-Retention Capacity at Room Temperature

Figure 7 presented the water-retention capacity of PAA/SC with the swelling equilibrium at
room temperature. About 50 mg of the dried superabsorbent composites samples were immersed in
400 mL of distilled water and 400 mL 0.9 wt% NaCl solutions to reach the swelling equilibrium for 4 h,
respectively. At room temperature, the swollen samples were placed in glass dishes and exposed to air.
The PAA, which was swollen in distilled water and 0.9 wt% NaCl solutions needed 17 h or 8.5 h to lose
all the absorbed water, respectively. While the water-retention capacity of superabsorbent composites
of PAA/SC (10 wt%) had an understanding extension, needing 36 h and 23 h, respectively. This result
indicated that the introduction of SC into PAA system could improve the water-retention capacity of
superabsorbent composites. This feature of the water-retention capacity may be exploited so that the
addition of PAA/SC samples in the soil decrease water evaporation. The PAA/SC will endow the soil
with excellent water-retention capacity and is a potential water-retaining agent used in the agriculture.
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neutralization degree 60% of AA were selected and prepared superabsorbent composites with SC
content 0 wt%, 2 wt%, 6 wt%, 10 wt%, 14 wt% and 18 wt%, respectively); (b) Water-retention behaviors
of PAA/SC prepared by different content of SC with the swelling equilibrium in 0.9 wt% NaCl solution
at room temperature (7.2 g AA, 0.4 mol% MBA, 1.60 mol% APS and neutralization degree 60% of AA
were selected and prepared superabsorbent composites with SC content 0 wt%, 2 wt%, 6 wt%, 10 wt%,
14 wt% and 18 wt%, respectively).

3.3.8. Reswelling Capability

The dry superabsorbent composites still displayed a better water-absorbing capability than the
composites without SC, while the fully swollen superabsorbent was completely dehydrated at 90 ◦C in
a vacuum oven. Figure 8 showed the reswelling capability for PAA/SC superabsorbent composites as a
function of reswelling times in distilled water. It can be seen that the PAA/SC (14 wt%), PAA/SC (10 wt%)
and PAA/SC (6 wt%) showed good reswelling capability and still retained approximately 66.06%,
61.68% and 55.74% of their initial water absorbency after re-swelling seven times [48]. These results
suggested that the superabsorbent composites of PAA/SC were reusable and recyclable water-absorbing
materials, and can be especially useful in agricultural applications. In addition, it also showed that SC
could obviously prolong utilization periods of PAA/SC.
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times (7.2 g AA, 0.4 mol% MBA, 1.60 mol% APS and neutralization degree 60% of AA were selected
and prepared superabsorbent composites with SC content 0 wt%, 2 wt%, 6 wt%, 10 wt%, 14 wt% and
18 wt%, respectively).

4. Conclusions

As part of the efforts to reduce excessive environmental pollution and explore potential application
value for oil shale SC, a series of PAA/SC superabsorbent composites were synthesized in one step by
polymerization of AA using APS as an initiator and MBA as a crosslinker, as well as SC micropowder
as inorganic fillers and graft copolymers. FTIR and SEM analysis indicated that the superabsorbent
composites have been successfully prepared by free-radical polymerization and the shatter value of
polymeric structure increased with the increase of SC content. Meanwhile, the factors of effect on
water absorbency, such as content of initiator, crosslinker, SC, and the neutralization degree were
investigated. Under optimal synthesis conditions, it was shown that the superabsorbent composites
displayed the best water absorbency of 584 g/g and 75 g/g in distilled water and in 0.9 wt% NaCl
solution, respectively, as the 10 wt% of SC was introduced into the PAA/SC. Besides, the superabsorbent
composites had the high water absorbency in the pH range of 4–11, which was advantageous for
their potential application in agriculture. The swelling kinetics of PAA/SC obey Scott’s kinetic model
in distilled water and in 0.9 wt% NaCl solution, and the initial swelling rate constant reached the
maximum value with the SC content 10 wt%. After reswelling seven times, the superabsorbent
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composites of PAA/SC (14 wt%) showed good reswelling capability and still retained approximately
66.06%. The experiment result reported in this study not only realized the waste utilization and
effectively reduced the product cost, but also integrated the excellent water absorbing capability and
reswelling properties; the superabsorbent composites can be used as potential water-retaining agent in
agricultural applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/10/2347/s1,
Figure S1: XRD characterization of SC, Figure S2: TG characterization of SC and PAA/SC, Figure S3: Elemental
mapping images for C, O, Si, Al and Fe within the as-prepared PAA/SC, Table S1: The sample yield for
each condition.
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