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ABSTRACT: A general approach to determine orientation and
distance-dependent effective intermolecular exciton transfer integrals
from many-body Green’s functions theory is presented. On the basis of
the GW approximation and the Bethe−Salpeter equation (BSE), a
projection technique is employed to obtain the excitonic coupling by
forming the expectation value of a supramolecular BSE Hamiltonian
with electron−hole wave functions for excitations localized on two
separated chromophores. Within this approach, accounting for the
effects of coupling mediated by intermolecular charge transfer (CT)
excitations is possible via perturbation theory or a reduction technique.
Application to model configurations of pyrene dimers shows an
accurate description of short-range exchange and long-range Coulomb
interactions for the coupling of singlet and triplet excitons. Computational parameters, such as the choice of the exchange-
correlation functional in the density-functional theory (DFT) calculations that underly the GW-BSE steps and the convergence
with the number of included CT excitations, are scrutinized. Finally, an optimal strategy is derived for simulations of full large-
scale morphologies by benchmarking various approximations using pairs of dicyanovinyl end-capped oligothiophenes (DCV5T),
which are used as donor material in state-of-the-art organic solar cells.

1. INTRODUCTION

Energy transfer in molecular materials is a process in which
excitation energy migrates among chromophores, e.g., a single
molecule or a fragment of a larger macromolecule or molecular
assembly. The control and optimization of this transfer is key to
the functionality of many photoactive materials.1,2 Natural light
harvesting architectures reach near 100% efficiency converting
light into a chemical form (electrical energy, molecular
synthesis).3,4 In contrast, the performance of many synthetic
molecular devices is currently limited to significantly lower
values. For instance, record power-conversion efficiencies of
single-junction organic photovoltaic cells of around 11%5 still
trail the estimated thermodynamic maximum,6 in part due to
excitonic losses. Explicit simulations of the dynamics of excitons
in complex molecular systems can be a powerful asset in
revealing the interplay of electronic structure and molecular
morphology on the micro- and mesoscale. Applied to a realistic
representation of device materials, this knowledge will further
new optimization strategies for the energy transfer processes
involved. As the size of functional parts of these systems is
typically on the scale of 10−100 nm, explicit ab initio treatment
of the exciton dynamics is computationally intractable. Because
of the disorder inherent to most organic materials as a result of
material processing and thermal vibrations at room temper-
ature, excitons tend to localize on one to a few chromophoric
fragments. Localized exciton states |A⟩ can be used to define a
supramolecular, tight binding like Hamiltonian as

∑ ∑̂ = ϵ | ⟩⟨ | + | ⟩⟨ | + | ⟩⟨ |
≠

H A A J A B J B A
A

A
A B

AB BATB
(1)

where ϵA is the associated excitation energy and JAB is the
coupling between the two exciton states. JAB is sensitive to the
molecular arrangement, i.e, the distance and relative orientation
between chromophores, and constitutes a key ingredient in the
calculation of exciton transfer rates. Depending on the type of
excitation and length-scale on which the transfer occurs,
different interactions and mechanisms mediate the coupling, as
depicted schematically in Figure 1.
In this paper, a dimer projection (DIPRO) method for

exciton coupling based on many-body Green’s functions theory
within the GW approximation and Bethe−Salpeter equation
(GW-BSE)7−9 is presented. Monomer electron−hole wave
functions are used as pseudo diabatic states, and a projection
method is employed to express these functions in the basis of
products of single-particle functions used to determine the GW-
BSE Hamiltonian in a supramolecular calculation. This dimer
projection procedure allows for an efficient evaluation of the
direct excitonic transfer integral JAB using linear algebra
methods.
The GW-BSE approach, which is traditionally more rooted in

the solid-state community, has recently received increasing
attention from several groups for the treatment of electronically
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excited states of molecular systems.10−18 One of the earlier key
results is that it allows accurate description of localized
(Frenkel) and bimolecular charge transfer (CT) excitons on
an equal footing12,19,20 owing to its accurate inclusion of long-
range Coulomb and short-range exchange interactions. A
similar accuracy, in particular of the CT excitations, can
typically only be achieved by time-dependent density-functional
theory (TDDFT) with functionals tuned for the specific system
or by higher-order wave function based approaches at
significant computational cost. As has been shown by several
authors, using efficient localized orbital based implementations,
GW-BSE can be readily applied to molecules or clusters of
molecules of technological relevance.16,17,21 Similarly, it has
been realized that the use of simple self-consistent quasi-
particle updates at GW level leads to improved agreement with
reference energies (from experimental and/or high-level
theories) as well as to a significant reduction of the notorious
dependency on the DFT starting point.22 On the basis of these
promising findings, a variety of development directions are
currently being pursued, aiming at increased efficiency, e.g.,
scaling with system size via improved models for microscopic
dielectric screening,23 overcoming current limitations, such as
the treatment of transitions with multiple-excitation character,22

or the inclusion in hybrid quantum-mechanical molecular-
mechanics (QM/MM) calculations.16−18 Specifically, here the
focus is on developing a technique that allows to extend the
accuracy of GW-BSE in molecule/cluster calculations to study
excited state dynamics and coarsened models for supra-
molecular aggregates via eq 1.
Having an accurate representation of long-range Coulomb

and short-range exchange interactions is of particular relevance
for describing the wide range of possible excitonic coupling
mechanisms, depending on the type of excitation and the
involved length scales. Singlets can exhibit significant coupling
even for distances exceeding 1 nm, typically estimated in the
Förster picture from the interaction of the transition dipoles of
the two chromophores involved in the transfer,24 see Figure 1i.
On shorter length scales, higher-order multipole terms in the
Coulomb coupling2 and short-range exchange effects can
significantly influence the distance and orientation dependence
of singlet couplings. Triplets couple exclusively via exchange
interaction, which decays exponentially with chromophore
distance and are therefore restricted to next neighbor
transfers.25 For the exchange based contributions to singlet
and triplet coupling, two distinctly different pathways need to
be considered. The electron−hole pair can transfer either as an
entity (Figure 1ii) or via intermediate CT states26 (see Figure
1iii). Inclusion of the CT mediated processes into an effective

coupling is particularly important because they can, at short
chromophore distances, contribute equally or even more than
the direct process, depending on the details of the CT wave
function and its energy relative to those of the localized
excitons. Approximate CT wave functions have previously been
constructed using, e.g., constrained DFT to study their coupling
to localized excitations derived from TDDFT.27 GW-BSE
allows to derive both from the same Hamiltonian, and to this
end, intermolecular CT excitations of types A−B+ and A+B− are
constructed within GW-BSE-DIPRO as product states from the
respective monomer single-particle orbitals. All the couplings
between the CT excitations, as well as to the localized
monomer excitons, are calculated. From these, an effective
coupling JAB

eff is determined via a reduction technique, which
maps the complete multistate system onto two effective states.
Unlike previous approaches based on first-order perturbation
theory, this reduction technique method is also applicable to
cases with energetic resonances of CT and localized excitons.
In the following, GW-BSE-DIPRO is first applied to model

configurations of pyrene dimers at various distances and
orientations. As small-molecule prototype systems, these allow
for a detailed analysis of the quality of the approach in
application to bright and dark singlet, as well as triplet excitons.
Particular emphasis is placed on the convergence of the results
with respect to the number of included CT excitations as well
as the differences between the perturbation and reduction
techniques. After assessing the choice of the exchange-
correlation functional in the density-functional theory (DFT)
calculations that underly GW-BSE, optimizations of computa-
tional parameters are evaluated. For DCV5T-Me3, a dicyano-
vinyl end-capped oligothiophene used as donor material in
state-of-the-art organic solar cells, this aims at defining a
benchmark for the application of GW-BSE-DIPRO to large-
scale morphologies of technologically relevant materials (Figure
2).

The paper is organized as follows: section 2 gives a concise
overview of the GW-BSE formalism, including computational
details, followed by a full description of the GW-BSE-DIPRO
methodology. In section 3, the results of applications to pyrene
and DCV5T-Me3 are presented and discussed, devising an
optimal strategy for application to large-scale morphologies. A
brief summary concludes the paper.

2. METHODOLOGY

2.1. Essentials of GW-BSE. Here the essentials of the GW-
BSE method with relevance for the subsequent derivation of
excitonic coupling are briefly summarized. For more extensive
discussions, the reader is referred to the reviews in refs 8,28.
In a first step quasi-particle (QP) states representing

independent electron and hole excitations are constructed
based on information obtained from the Kohn−Sham (KS)
energy levels of DFT:

Figure 1. Illustration of the different pathways for exciton transfer
between chromophores A and B. (i) Förster type energy transfer via
exchange of a virtual photon. (ii) Dexter (charge) transfer via
simultaneous hop of the electron−hole pair. (iii) CT mediated Dexter
transfer via sequential hop of electron and hole.

Figure 2. Chemical structures of (a) pyrene and (b) DCV5T-Me3.
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In eq 2, Vext is the external potential (either of bare nuclei or
pseudo atoms), VH the Hartree potential, and Vxc the exchange-
correlation potential.
Within the GW approximation of many-body Green’s

functions theory, as introduced by Hedin,7 excitation energies
are obtained as solutions of the quasi-particle equations:

∫
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which contain the energy-dependent self-energy operator
∑(r,r′,E) in place of the exchange-correlation potential in eq
3. The self-energy operator is evaluated as

∫π
ω ω ω∑ ′ = ′ − ′ω− +

E
i

G E Wr r r r r r( , , )
2

e ( , , ) ( , , ) di 0

(4)

where

∑ω
ψ ψ

ω μ
′ =

* ′
− + −+G

E i E
r r

r r
( , , )

( ) ( )

0 sgn( )n

n n

n n (5)

is the one-body Green’s function in quasi-particle approx-
imation and W the dynamically screened Coulomb interaction.
The latter is evaluated by first calculating the polarization P
within the random-phase approximation (RPA):29−31

∑ ∑ω
ψ ψ ψ ψ

ω η
′ = −

* ′ * ′

− − +
P f f

E E i
r r

r r r r
( , , ) ( )

( ) ( ) ( ) ( )

( )i j
i j

i j j i

j i

occ emp

(6)

Convolution of the polarization with the bare Coulomb
interaction v yields the microscopic dielectric function ϵ = 1
− vP. After determination of the inverse dielectric function ϵ−1,
the result is again convoluted with the Coulomb interaction to
obtain W = ϵ−1 v. Because of the time-consuming evaluation of
the RPA as in eq 6, it is only performed for ω = 0 (static
polarization) and a generalized plasmon-pole model32 is used to
extend the associated static dielectric function to the dynamic
one.
In practical calculations, both G and W are determined using

the ground state Kohn−Sham wave functions and energies. As
DFT typically underestimates the fundamental gap Eg

KS, the self-
energy and the resulting QP energies may typically deviate from
self-consistent results by up to several 0.1 eV. Instead, an
iterative procedure is employed in which a scissor shift Δn is
applied to the Kohn−Sham spectrum before calculatingW. The
resulting quasi-particle gap Eg

QP,n is determined, and from its
difference to the Kohn−Sham gap, a new shift Δn+1=Eg

QP,n−EgKS
is defined. This procedure is repeated until convergence is
reached. The QP energy levels are iterated in each step,
implying according to eq 5 updates to the Green’s function and
thus the self-energy. Note that this (limited) self-consistency
treatment does not change the QP structure of eq 5 (due to

satellite structures or other consequences of a self-consistent
spectral shape of G(ω)).
The energetics of single-particle excitations are described

with a high degree of accuracy by the quasi-particle
energies.9,14,21 Optical excitations, however, cannot be treated
in such an effective one-particle picture. Instead, the coupled
electron−hole excitation S can be expressed as a linear
combination of products of occupied (v) and empty (c)
quasi-particle functions

∑ ∑ ψ ψΦ = *Ar r r r( , ) ( ) ( )S e h
v c

vc
S

c e v h

occ emp

(7)

Avc
S is the electron−hole amplitude and can in case of singlet-to-

singlet excitations be obtained by solving the generalized
Bethe−Salpeter equation8,33,34 within the Tamm−Dancoff
approximation28,35 (TDA)

̂ Φ = + + Φ

= Ω Φ

H D K Kr r r r

r r

( , ) ( 2 ) ( , )

( , )
e h

x d
e h

e h

exc
S S

S S (8)

D = Evirt
QP − Eocc

QP is defined via free interlevel transition energies,
while Kx and Kd are the bare exchange and screened direct
terms of the electron−hole interaction kernel, respectively.
Finally, Ω is the transition energy of the optical excitation. For
the case of triplet excitations, Kx vanishes and Ĥexc = D + Kd.
For the practical calculations in this paper, single-point

Kohn−Sham calculations are performed using a modified36

version of the Gaussian03 package,37 Stuttgart/Dresden
effective core potentials,38 and the associated basis sets that
are augmented by additional polarization functions39 of d
symmetry. For all steps of the actual GW-BSE calculations, the
Gaussian-type orbital based implementation in the VOTCA
package is employed.12,15,40,41 It is specifically optimized for
application to molecular systems by using an auxiliary basis set
to express the quantities occurring in the GW self-energy
operator and the electron−hole interaction in the BSE. We
include orbitals of s, p, and d symmetry with the decay
constants α (in a.u.) 0.20, 0.67, and 3.0 for N and S, 0.25, 0.90,
3.0 for C, and 0.4 and 1.5 for H atoms, yielding converged
excitation energies. Further technical details can be found in
refs 10,42.

2.2. Excitonic Coupling Elements via GW-BSE-DIPRO.
In the following, diabatic states |A⟩ and |B⟩ are approximated by
monomer electron−hole wave functions, |ΦA⟩ and |ΦB⟩, as
defined in eq 7, because an exact diabatization is for most
systems difficult or even impossible.43 With the BSE
Hamiltonian of the dimer formed by the chromophores, ĤD,
one can setup an effective (2 × 2) generalized eigenvalue
problem

̲ = ̲ ϵSH c cD
i i i (9)

with

̲ =
⟨Φ | ̂ |Φ ⟩ ⟨Φ | ̂ |Φ ⟩

⟨Φ | ̂ |Φ ⟩ ⟨Φ | ̂ |Φ ⟩

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

H H

H H
HD

A D A A D B

B D A B D B
(10)

and

̲ =
⟨Φ |Φ ⟩

⟨Φ |Φ ⟩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟S

1

1

A B

B A
(11)

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00935
J. Chem. Theory Comput. 2017, 13, 1584−1594

1586

http://dx.doi.org/10.1021/acs.jctc.6b00935


ci is the ith eigenvector and ϵi the corresponding eigenvalue.
Because the normalized monomer states are only approx-
imations to the diabatic states, they are not necessarily
orthogonal, S ≠ 1, and JAB cannot be directly identified with
the off-diagonal elements of HD. Instead, following the idea
successfully established by Valeev et al. for electronic
coupling,44,45 the generalized eigenvalue problem in eq 9 first
needs to be transformed into a standard eigenvalue problem

̃ = ̃ϵ̃͠ c cHD
i i i (12)

via a Löwdin orthogonalization.46 The choice for this technique
is motivated by the fact that unlike, e.g., the Schmidt
orthogonalization, it treats both wave functions on an equal
footing and the resulting symmetrically orthogonalized
functions are the least distant in the Hilbert space from the
original functions. With the orthonormalized states |Φ̃A(B)⟩, the
diagonal and off-diagonal elements of H̃D can be identified with
the excitation energies ϵA(B) and exciton coupling elements JAB
of eq 1, respectively. It should be noted that this construction of
approximate diabatic dimer states starting from monomer
functions as above can be considered complementary to the
approximate diabatization of adiabatic dimer states via the Boys
or Mulliken−Hush scheme.47−49 While such an approach is
also feasible, it comes at a higher computational cost, in
particular due to the fact that solutions to eq 8 for the dimer
system are required. This time-consuming step for dimers of
larger molecules can be avoided using the approximation
adopted here, as will be outlined in the following.
What remains is to calculate the elements of HD and S. They

can be written as ⟨Φi|Ô|Φj⟩ with i ∈ A,B and Ô ={ĤD,1}. In the
following, |v⟩, |α⟩, |β⟩ (|c⟩, |α′⟩, |β′⟩) are occupied (empty)
single-particle orbitals of the dimer, monomer A, and monomer
B, respectively. With this, the electron−hole wave functions for
the localized monomer excitations (eq 7) can be written as

∑ αα|Φ ⟩ = | ′⟩
αα

αα
′

′AA
(13)

∑ ββ|Φ ⟩ = | ′⟩
ββ

ββ
′

′BB
(14)

By inserting the identity I = ∑vc|vc⟩⟨vc| twice into the
expression for the off-diagonal matrix elements of eq 10, and
using the above definitions of |ΦA⟩ and |ΦB⟩ from eqs 13 and
14, we obtain

∑ ∑ ∑

∑

∑ ∑

αα
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κ κ

⟨Φ | ̂|Φ ⟩ = ⟨ ′| ⟩⟨ | ̂| ′ ′⟩
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′ ′ ′
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′
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′ ′
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v c
B
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In practical calculations, Ô = ĤD is setup directly in terms of
|vc⟩, so ⟨vc|ĤD|v′c′⟩ = Hvc,v′c′

BSE is readily available. For Ô = 1, it
holds that ⟨vc|v′c′⟩ = δvv′δcc′, yielding

∑ ∑

∑

κ κ

κ κ
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κ κ
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(16)

The quantities κA(B) are projections of the monomer
electron−hole wave functions, expressed in monomer single-
particles functions, onto dimer single-particle orbitals, e.g.,

∑κ αα= ⟨ ′| ⟩
αα

αα
′

′A vcvc
A

(17)

These projections are evaluated by inserting the expansion of
the respective single-particle orbitals in terms of the atomic
orbital basis. When dimer and monomer calculations share the
same basis set of atomic functions {|χμ⟩}, it holds that

∑ ∑χ χ| ⟩ = | ⟩ | ⟩ = | ⟩
μ

μ μ
μ

μ μv d c dv c, ,
(18)

∑ ∑α χ β χ| ⟩ = | ⟩ | ⟩ = | ⟩
μ

α μ μ
μ

β μ μd d, ,
(19)

Thus, the terms of type ⟨αα′|vc⟩ occurring in eq 17 can be
rewritten as

∑

∑

αα α α χ χ

χ χ

⟨ ′| ⟩ = ⟨ | ⟩⟨ ′| ⟩ = ⟨ | ⟩

⟨ | ⟩
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α α
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′

vc v c d d

d d

d d d d( )( )

v

c

T
v

T
c

, ,

, ,

(20)

where is the overlap matrix of the atomic orbitals.
2.2.1. Influence of Intermolecular CT States. While the

projection technique as presented above captures the coupling
mechanisms depicted in Figure 1i,ii), the charge transfer state
mediated mechanism (iii) is not accounted for. The aim is to
include these effects, which are CT inherent and whose
interactions are contained in the BSE Hamiltonian but which
are not represented by the subspace spanned by |Φ̃A(B)⟩.
Intermolecular CT excitons are approximated as product

states of two single-particle orbitals localized on different
monomers, i.e.,

α β

α β

| ⟩ = | ⟩ = | ′ ⟩| ⟩

| ⟩ = | ⟩ = | ⟩| ′ ⟩

−+ − +
+ −

+− + −
− +

CT A B

CT A B

i j i j i j

i j i j i j

( , ) L H

( , ) H L (21)

where αH (βH) is the highest occupied molecular orbital
(HOMO) and αL (βL) is the lowest unoccupied molecular
orbital (LUMO) of chromophore A(B), respectively, and i,j =
0,...,M. M is the number of additional orbitals belove (above)
the HOMO (LUMO) taken into account.50 In total, a set {|
CTi⟩} comprising NCT = 2(M + 1)2 CT excitations is generated
according to eq 21.
As these approximate CT states are not orthogonal to the

orthonormalized localized states after eq 12, each |CTi⟩ is first
individually orthogonalized with respect to |Φ̃A(B)⟩

| ′⟩ = | ⟩ − ⟨ |Φ̃ ⟩|Φ̃ ⟩ − ⟨ |Φ̃ ⟩|Φ̃ ⟩CT CT CT CTi i i
A A

i
B B

(22)

and then normalized via | ⟩ = | ′⟩ ⟨ ′| ′⟩CT CT / CT CTi i i i .
Eq 12 then turns into a ([2 + NCT] × [2 + NCT]) eigenvalue

problem with block structure of the augmented Hamiltonian:

̲ ̲

̲ ̲
= ϵ

̲
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C

S
C

1 0

0
i i i

FE FE CT
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(23)

where HFE = H̃D. In a final step, the subspace of CT states in eq
23 is diagonalized, i.e., solving
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̲ = Ω ̲H C S Ci i i
CT CT CT CT CT

(24)

The eigenfunctions | ⟩ = ∑ | ⟩͠ CCT CTi j j
i

j
( ) and energies Ωi
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used to transform eq 23 into an ordinary eigenvalue problem:

̃ = ϵ̃ ̃
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−

−

⎛
⎝
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⎞
⎠
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C Ci i i

FE FE CT

CT FE CT
(25)

with H̃CT = diag(Ωi
CT). For the special case of M = 0, i.e.,

construction of two CT like excitations from the respective
HOMO and LUMO single-particle orbitals, this corresponds to
the (2 + 2) × (2 + 2) system

2.2.2. Perturbation Theory. To obtain an effective excitonic
coupling element JAB

eff between |Φ̃A⟩ and |Φ̃B⟩ that includes
effects from coupling via intermediate CT excitations, the
influence of the latter on the localized states has to be
evaluated. Within first-order perturbation theory, the correc-
tions |δΦ̃A(B)⟩ to |Φ̃A(B)⟩ due to the |CT̃i⟩ can be expressed
as26,51
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The modified coupling is then obtained to first-order in
|δΦ̃A(B)⟩ as

∑

δ δ

δ δ
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CT CT
(28)

All terms required to evaluate eq 28 can be identified with
elements of the Hamiltonian in eq 25: ⟨Φ̃A|Ĥ|Φ̃B⟩ is the off-
diagonal element of H̃FE (i.e., the unperturbed excitonic
coupling), ⟨Φ̃A|Ĥ|CT̃i⟩ are elements of H̃FE−CT, and the
energies occurring in the denominator are the diagonal
elements of H̃FE and H̃CT, respectively. For the example of
the M = 0 case as in eq 26, the expression for the effective
excitonic coupling element explicitly reads:

∑= +
Ω − ϵ

+
Ω − ϵ=

⎡
⎣⎢

⎤
⎦⎥J J J J

1
2

1 1
AB AB

i
A i i B

i A i B

eff

1,2
, ,

(29)

2.2.3. Reduction Method. From the structure of eq 28, it is
apparent that the perturbative approach to account for the
influence of CT excitations on excitonic coupling is not readily
applicable to situations in which a CT excitation is energetically
in, or close to, resonance with the localized excitations. Instead
of going to even higher orders of perturbation theory, an
alternative technique that starts from the augmented
Hamiltonian of eq 25 is proposed.

The main idea is to reduce the augmented (2 + NCT) × (2 +
NCT) system to an effective (2 × 2) system. In spirit similar to
perturbation theory, the states forming this reduced system are
expected to be close to the original states |Φ̃A(B)⟩, and
consequently the effects of the intermediate CT states is
mapped onto a coupling between those states. To achieve this,
first eq 25 is diagonalized, yielding the eigenenergies ϵĩ and the
set of corresponding eigenvectors C̃i.
From this, two elements C̃a(b) are chosen according to having

the maxmium overlap with the states Φ̃A and Φ̃B, respectively.
Projecting C̃a(b) onto the subspace spanned by Φ̃A and Φ̃B,
followed by a Löwdin transformation, yields new orthonor-
malized vectors Ca(b)* .
The diagonal (2 × 2) matrix ϵ* formed with the energies ϵ̃a/b

can be transformed to its nondiagonal form using the
transformation matrix U = (Ca* Cb*). Resulting is a reduced,
effective system

ϵ̲ = ̲ · *· ̲H U UT
eff (30)

which allows to read off the effective excitonic coupling JAB
eff as

its diagonal elements.
To illustrate the differences and similarities between

obtaining the effective coupling according to this reduction
method (RM) and the perturbation theory (PT), it is
convenient to consider a simplified model of the minimal
system introduced in eq 26. Specifically, a symmetric system is
assumed with ϵA = ϵB = ϵ, Ω1 = Ω1 = Ω, and JA(B),1(2)=JCT.
Using perturbation theory, the effective coupling reads with Δϵ
= Ω − ϵ

= +
Δϵ

J J
J2

AB AB
eff,PT CT

2

(31)

with the obvious resonance for Δϵ = 0. Using the reduction
method yields an analytical solution

= − Δϵ + + Δϵ +J J J J
1
4

[3 ( ) 16 ]AB AB AB
eff,RM 2

CT
2

(32)

In the limit of Δϵ → 0, JAB
eff,RM remains finite. Away from the

energetic resonance, i.e. Δϵ ≫JAB,JCT, it holds that
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For more complex systems with less symmetry or M > 0, no
closed form analytical expressions for JAB

eff,RM can be obtained.
Therefore, the method is in the following employed and
assessed in practical application to realistic molecular systems.

3. RESULTS
To assess the quality of the procedures outlined in the previous
section, model configurations of pyrene dimers at various
distances and orientations are considered. Within the TDA of
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GW-BSE, pyrene exhibits energetically well separated optically
inactive (S1) and active (S2) singlet as well as triplet (T1)
excitations. Analysis of the excitonic couplings for these
different type of excitations allows scrutinization of how well
the different pathways, see Figure 1, are accounted for. The
convergence of the results with respect to the number of
included CT excitations, the differences between the
perturbation and reduction techniques, basisset dependence,
as well as the influence of the choice of the exchange-
correlation functional in the density-functional theory (DFT)
calculations that underly the GW-BSE steps are evaluated.
Later, optimizations of computational parameters are devised
using DCV5T, defining a benchmark for the application of GW-
BSE-DIPRO to large-scale morphologies of technologically
relevant materials.
3.1. Model Pyrene Dimers. The geometry of a single

pyrene molecule was optimized on DFT level using the PBE
functional52 with the 6-311G(d,p) basis set. From the this
geometry, ideal π-stacked dimers with intermolecular distances
ranging from 2.7 to 7 Å are constructed. GW-BSE calculations
are performed for the monomers, as well as the dimer
configuration (only setup of HBSE), and coupling elements
determined according to the projection method.
In this configuration in which the molecules forming the

dimer are related by a symmetry transformation and the
energetic states of the monomers are well separated, it is also
possible to obtain the effective excitonic coupling via 2Jeff =
ΔΩD, where ΔΩD is the Davydov splitting of the respective
monomer excitation in the dimer. To facilitate this comparison,
we also perform a full GW-BSE calculation for the dimer
configuration and extract the splitting from the resulting
spectrum.
Figure 3 shows the distance dependence of |J| for (a) S1, (b)

S2, and (c) T1 excitations obtained via GW-BSE-DIPRO with
the reduction method. For all excitations, large deviations from
the Davydov splitting are found when no intermediate CT
states (NCT = 0) are included. At the typical π−π stacking
distance of 3.5 Å, these deviations can be on the order of 1−2
orders of magnitude. For the two singlet states, the observed
underestimation decreases exponentially with distance, typical
for an exchange based coupling mechanism as the one mediated
by charge transfer. Inclusion of CT excitations ameliorates this
situation. For S2 and T1, taking only two CT excitations
between the respective HOMO and LUMO states (M = 0, NCT
= 2) into account practically recovers the split results. In
contrast, no effect can be registered for S1. Here, an agreement
with the Davydov split estimate can only be achieved for M = 1,
i.e., by construction of additional CT excitations based on
HOMO−1 and LUMO+1, respectively. This is due to the fact
that, unlike S2 and T1, which have the main contribution from a
HOMO → LUMO transition, the first singlet excitation in
single pyrene is formed by a linear combination of HOMO−1
→ LUMO and HOMO → LUMO+1, and the choice of M in
the reduction method needs to reflect the composition of the
various localized excited states. In all cases, converged exciton
couplings are achieved including NCT = 50 CT excitations (M =
4). Note that for distances ≥6 Å, the coupling in S1 and T1
becomes so small that the split estimate becomes numerically
inaccurate.
From the converged results and the Davydov splittings, it can

be seen that the excitonic couplings based on GW-BSE
simultaneously exhibit characteristics of short-range exchange
and long-range Coulomb coupling depending on the type of

excitation. For S1 (with a negligibly small transition dipole) and
T1, |J| decays proportional to exp(−αd) with α(S1) ≈ 3.2 Å−1

and α(T1) ≈ 3.4 Å−1, respectively. In contrast, the optically
active S2 shows an exponential decay for distances in the range
of 3−4.5 Å (α(S2) ≈ 1.7 Å−1), before the effective coupling is
dominated by slowly decaying Coulomb contributions.
To ascertain the quality of excitonic coupling elements

obtained from GW-BSE, they are in the following compared to
ones obtained from standard methods of similar complexity:
time-dependent Hartree−Fock (TDHF), TDDFT/B3LYP, and
configuration-interaction singles (CIS). Because the projection
technique as used in GW-BSE-DIPRO is not available for those,
the comparison is performed for the Davydov splittings in the
ideally π-stacked dimer configurations, using the same ECP and

Figure 3. Distance dependence of excitonic couplings for (a) S1, (b)
S2, and (c) T1 excitations in an ideally π-stacked pyrene dimer. Results
obtained via GW-BSE-DIPRO with the reduction method for
increasing numbers of included CT excitations are compared to the
reference determined from the Davydov splitting in a full super-
molecular calculation.
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basis set. The respective results are listed in Table 1 for dimer
separations of d = 3.0−6.0 Å. At all separations, GW-BSE,

TDHF, and CIS agree well for the dark S1 state. Same holds for
the optically active S2. In fact, here, the data from all four
methods practically agree at short and long distances, while in
the intermediate region TDDFT appears to decay slightly
faster. All in all, a good agreement between all four methods
can be noted for singlets. For the T1 state all methods show
approximately the same decay of the coupling with separation.
Note, however, that TDHF calculations suffered from triplet
instabilities, yielding negative excitation energies, which led to
the results being discarded.53,54

In many realistic molecular aggregates, chromophores do not
arrange in an ideal π-stack as assumed in the previous section.
Instead, they assume relative positions and orientations
characterized by shifts and rotations which are not compatible
with the basic symmetry operations. Because of the asymmetry
in the geometry, an estimation of coupling elements from
Davydov splits is inaccurate and the use of techniques such as
GW-BSE-DIPRO is indispensable. To assess the procedure for
such a case, starting from the ideal π-stacking configuration
with an intermolecular distance of 6.5 Å, one molecule is
rotated along its long axis from 0° to 90° (see, cf., inset in
Figure 4b). As for the distance dependence, the convergence of
the excitonic coupling elements with respect to the number of
included CT states is investigated for S1, S2, and T1. The results
shown in Figure 4 generally exhibit more structure compared to
the distance dependence in Figure 3 as a consequence of
intricate interactions between the two π systems upon rotation.
It is also evident that for rotation angles of up to approximately
50°, converged results are obtained for NCT = 50 for all
excitations. At larger rotations, strong couplings are found for
S1 and T1 in particular. In this region, the convergence is much
slower and up to 2450 (M = 34) intermediate CT states are
required. This is probably a result of the stronger and
asymmetric polarization of the dimer states with respect to
the monomer calculations. It should be emphasized, however,
that the two chromophores approach each other very closely

for those angles. At the perpendicular configuration, the
minimal distance is reduced to only 3.1 Å and concomitantly
strong effects and mixing of single-particle functions can be
expected.
To highlight the differences and similarities, distance and

rotational dependence of singlet and triplet excitonic transfer
integrals as obtained by the reduction method presented in this
work and the perturbation theory are compared for the model
pyrene configurations. In all cases, 50 CT states are included in
the distance dependence and 2450 in the rotational depend-
ence. As is apparent from Figure 5a, the distance dependence of
the coupling constants for S1 and T1 shows good agreement
between the approaches. Only at distances smaller than 3.5 Å
perturbation theory slightly overestimates the RM results,

Table 1. Excitonic Coupling Elements |J| from Davydov
Splitting (in eV) for S1, S2, and T1 Excitations in an Ideally
π-Stacked Pyrene Dimer with Varying Distance d, as
Obtained by GW-BSE, TDHF, TDDFT/B3LYP, and CIS,
Respectivelya

type d = 3.0 Å d = 4.0 Å d = 5.0 Å d = 6.0 Å

Davydov Split S1
GW-BSE 6.13 × 10−1 3.70 × 10−2 1.53 × 10−3

TDHF 6.24 × 10−1 4.94 × 10−2 2.50 × 10−3

TDDFT 6.81 × 10−1 1.08 × 10−1 8.35 × 10−3

CIS 6.41 × 10−1 4.77 × 10−2 2.50 × 10−3

Davydov Split S2
GW-BSE 9.57 × 10−1 1.71 × 10−1 4.80 × 10−2 2.18 × 10−2

TDHF 8.38 × 10−1 1.40 × 10−1 5.11 × 10−2 3.22 × 10−2

TDDFT 6.74 × 10−1 7.36 × 10−2 3.45 × 10−2 2.87 × 10−2

CIS 8.87 × 10−1 1.55 × 10−1 5.60 × 10−2 3.56 × 10−2

Davydov Split T1

GW-BSE 5.12 × 10−1 2.54 × 10−2 8.51 × 10−4

TDDFT 5.26 × 10−1 3.83 × 10−2 1.55 × 10−3

CIS 3.97 × 10−1 2.33 × 10−2 1.70 × 10−3

aFor d = 6.0 Å, the coupling in S1 and T1 becomes so small that the
split estimate becomes numerically inaccurate and is therefore omitted.

Figure 4. Rotational dependence of excitonic couplings for (a) S1, (b)
S2, and (c) T1 excitations in a pyrene dimer. The configuration at ϕ =
0° corresponds to and ideal π-stacking at a distance of 6.5 Å. Results
obtained via GW-BSE-DIPRO with the reduction method for
increasing numbers of included CT excitations. Molecules have been
rendered with VMD.55
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which agree with the Davydov split estimates, cf. Figure 3. For
the optically active S2 state, however, significant deviations can
be observed. For an intermolecular separation of 3.5 Å, a
characteristic resonance structure is found, representing a
massive overestimation of the transfer integral by nearly 2
orders of magnitude. Deviations are noticeable around this
typical π-stacking distance in many molecular semiconductors
up to a distance of 4.5 Å. For the rotated systems, see Figure
5b; both approaches yield qualitatively similar behavior with
some quantitative deviations up to a factor of 2 for the close
contact structures at large rotation angles. All in all, the
reduction method compares favorably with the perturbation
theory approach.
As mentioned in section 2, the basis set used in this work is

the based on the one optimized for the use with the effective
core potentials,38 which will be referred to as bsECP in the
following. All results presented to this point have been obtained
from calculations, in which (d,p) polarization functions of the
6-311G basis set39 have been added to form the basis
bsECP(d,p). To further gauge the convergence of the reported
values for the singlet and triplet exciton coupling elements with
respect to the basis set choice, two basis sets with diffuse
functions (bsECP(d,p)+, s shells, decay constant 0.0438 au for
C, and 0.102741 au for H) and (bsECP(d,p)++, additional p
shell, decay constant 0.0691 au for C) have been prepared as
well. Three representative configurations of the pyrene dimers
have been chosen: ideal π-stack geometries with distances 3.5
and 7.0 Å, respectively, and one at d = 5.5 Å with an additional
rotation by 45°. For the latter, no results could be obtained
using the bsECP(d,p)++ because of convergence issues in the
underlying DFT calculation. The obtained couplings for S1, S2,
and T1 excitons for these configurations are listed in Table 2. It
is clear that the results are fairly independent of the choice of
the basis set. Even the use of the standard bsECP without
additional polarization or diffuse functions yields excitonic
transfer integrals in reasonable agreement with the ones
obtained by extended basis sets. This is of great significance
in terms of the computational costs listed at the bottom of
Table 2, from which it is obvious that the addition of diffuse
functions in particular increases the calculation times
dramatically. It should also be noted that this scaling of the
computation time depending on the choice of basis set is
exacerbated for molecules bigger than pyrene and is an

important aspect to control in application to large-scale
morphologies, as will be further discussed below.
Until this point, the discussion of the GW-BSE-DIPRO

approach has been limited to results obtained via GW-BSE
based on DFT calculations using the semilocal PBE functional.
It is known from literature that this technique can be marred by
a starting point dependence, i.e., that the computed excited
states depend on the quality of the underlying ground-state
calculation.56 In particular, one-shot G0W0 techniques are
affected by this. As a result of the iterative procedures regarding
the refinement of quasi-particle energies as described in section
2 for the GW-BSE implementation used here, this problem is
alleviated. To confirm this, the distance dependence of the
exciton transfer integrals has been recalculated using DFT with
the B3LYP hybrid functional57,58 for the pyrene dimer. The
comparison to the results based on PBE as shown in Figure 6a
reveals practical independence on the DFT starting point for all
three types of excitations considered.

3.2. Optimizations for Application to Large Scale
Morphologies. In the following, the focus shifts to the
evaluation of GW-BSE-DIPRO to chromophores of sizes
typical and relevant for application in organic devices. To this
end, exciton transfer integrals in an ideal stack of DCV5T

Figure 5. Comparison of the (a) distance and (b) rotation dependence of effective excitonic couplings in the pyrene model dimers, obtained with
reduction method (RM) and via perturbation theory (PT), respectively. The distance dependence of both approaches as seen in (a) is nearly
identical for S1 and T1 with the exception of short intermolecular distances. For the S2 couplings, large deviations are observed due to energetic
resonance of localized and intermediate CT excitons. For the rotated structures (b) both approaches show similar qualitative behavior.

Table 2. Basis Set Dependence of the Calculated Transfer
Integrals |J| (in eV) for S1, S2, and T1 States in
Representative Configurations of Pyrene Dimersa

type bsECP bsECP(d,p) bsECP(d,p)+ bsECP(d,p)++

Ideal π-Stack, d = 3.5 Å
S1 1.90 × 10−1 1.85 × 10−1 1.87 × 10−1 1.95 × 10−1

S2 4.59 × 10−1 4.20 × 10−1 4.31 × 10−1 4.53 × 10−1

T1 1.42 × 10−1 1.37 × 10−1 1.39 × 10−1 1.46 × 10−1

Ideal π-Stack, d = 7.0 Å
S1 1.86 × 10−5 1.35 × 10−5 1.33 × 10−5 1.32 × 10−5

S2 2.52 × 10−2 2.16 × 10−2 2.19 × 10−2 2.29 × 10−2

T1 4.18 × 10−7 3.08 × 10−7 2.47 × 10−7 1.62 × 10−7

d = 5.5 Å, Rotation ϕ = 45°
S1 3.44 × 10−4 4.18 × 10−4 4.31 × 10−4

S2 5.91 × 10−2 4.88 × 10−2 5.06 × 10−2

T1 3.97 × 10−5 5.04 × 10−5 6.63 × 10−5

timings 1.00 1.26 1.50 2.20
aThe average timings for the different calculations relative to the one
with the smallest bsECP set are given at the bottom.
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molecules are investigated for the lowest energy singlet (S1,
optically active) and triplet excitons (T1), respectively.
The obtained distance dependence is shown in Figure 6b,

with the GW-BSE calculations being based on PBE and B3LYP
DFT ground states. As for the pyrene dimer, different behavior
is observed for the two excitations. The coupling of the
optically active singlet states is dominated by long-range
Coulomb interactions, representing Förster type coupling. In
contrast, T1 shows an exponential distance dependence, as
expected for a Dexter type exchange coupling. Results for the
two functionals are practically identical, with a shift to slightly
larger S1 couplings noticeable for PBE compared to B3LYP.
This is a consequence of an approximately 9% bigger transition
dipole moment resulting from the former.
The above confirms that the GW-BSE-DIPRO method used

in this work is well applicable to complex molecular systems of
relevant size. However, the investigation of, e.g., exciton
diffusion in realistic large-scale morphologies requires the
calculation of tens of thousands excitonic transfer integrals. It is
therefore highly desirable to devise optimizations of the
involved computational procedures. To this end, approxima-
tions on DFT, GW-BSE, and GW-BSE-DIPRO levels to
decrease computation times are evaluated.
On the DFT level, it has been shown for the calculation of

charge transfer integrals that it is computationally advantageous
to use an initial guess for the dimer calculation formed by
merging the involved densities of the monomer fragments.45

This also allows to perform only a single SCF step on the dimer
instead of obtaining a fully self-consistent solution.
A possible simplification of the GW-BSE run concerns the

iterative procedure used to scissor shift the Kohn−Sham
spectrum before calculating W. Instead of iterating this shift for
each dimer configuration, a fixed value can be predetermined,
e.g., from a single representative configuration or averaging over
a couple.
In Table 3, the run times and exciton transfer integrals for S1

and T1 in a DCV5T dimer separated by 3.5 Å are compared for
different combinations of computational procedures. Using a
fixed shift in GW-BSE saves on average 3−4 iterations, which
for this system translates to reducing the runtime by
approximately 4 min. The effect on the exciton couplings is
negligible. Similarly, using the noSCF procedure in the DFT
part has a slightly bigger effect decreasing the singlet coupling
by about 1.5%. Combining both approximations cuts
computation time by about 25%.

Additionally, the distance dependence of triplet and singlet
couplings in DCV5T has been calculated for all four options
given in Table 3. The results shown in Figure 7 underline that
the choice of noSCF and fixed shift does not lead to larger
deviations even at greater intermolecular separations. Even
though this choice reduces the computational time by 25%
compared to using fully self-consistent procedures on all levels,
the remaining absolute time is still substantial. In particular, the
slow distance decay of couplings for optically active singlets
implies the necessity to determine transfer integrals for a
number of chromophore dimers that is intractable for any first-
principles based technique such as GW-BSE-DIPRO.
The setup of the dimer GW-BSE Hamiltonian matrix takes

up a significant amount of the total computer time when
applied to larger molecules. As stated in section 2, we have so
far considered all nocc occupied and as many virtual single-
particle levels in the construction of the product basis for the
dimer. With nocc = 186 for DCV5T, this corresponds to a
matrix of dimension 34569. Naturally, calculations can be
accelerated by reducing the number of single particle states
taken into account in this step. Using several values of the
factor f to set the range single particle states considered to
[nocc(1 − f):nocc(1 + f)], the relative reduction in computational
time and relative deviation of singlet couplings is evaluated. As
depicted in Figure 8, reducing f to 0.5 approximately halves the
computational cost, while only a 8% decrease in accuracy is
observed.
Furthermore, it can be assumed that beyond some distance,

the long-ranged couplings are given as classical Coulomb
interactions of transitions densities of the constituent
chromophores. It is convenient to map the full transition

Figure 6. Comparison of the distance dependence of exciton transfer integrals in ideally π-stacked dimers of (a) pyrene and (b) DCV5T, obtained
starting from DFT calculations using PBE and B3LYP functionals, respectively. Fifty CT states have been taken into account using the reduction
method.

Table 3. Effect of Different Computational Parameters for
DFT and GW-BSE Calculations on Run Times and Exciton
Transfer Integrals for S1 and T1 in a DCV5T Dimer
Separated by 3.5 Åa

DFT@PBE GW-BSE time [min:s] |J|S1 [eV] |J|T1 [eV]

SCF iterate 44:50 0.5354 0.1709
SCF fixed 40:28 0.5355 0.1710
noSCF iterate 37:51 0.5277 0.1721
noSCF fixed 33:40 0.5278 0.1721

aCalculations were performed using four threads on a i5-4690 CPU @
3.50 GHz. The value of 0.22 Ryd for the fixed shift runs was taken
from the result of the iterative procedure at 3 Å.
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density to a set of atomic partial charges that reproduces its
electrostatic potential.59,60 Such a classical model allows the
computation of many thousands excitonic transfer integrals per
minute. As can be seen in Figure 7b, the results from this
TrESP approach agree well with the GW-BSE-DIPRO
couplings beyond a separation of 5 Å, a typical distance at
which intermolecular exchange effects can be expected to be
negligible relative to the Coulomb interactions of large
transition densities. The inset shows a comparison between
classical interactions of transition charges with those of
transition dipoles (TrDip), a coarser and often employed
representation of transition densities. At a distance of 5 Å, the
dipole coupling overestimates the TrESP and GW-BSE-DIPRO
results by 1 order of magnitude. Practical agreement can only
be observed for separations larger than 60 Å, casting doubts
about the use of the TrDip approximation for intermediate
distances.

4. SUMMARY
In this paper, a general approach to determine orientation and
distance-dependent effective intermolecular exciton transfer
integrals from many-body Green’s functions theory within the
GW approximation and the Bethe−Salpeter equation (BSE)
has been derived. A projection technique is employed to obtain
the excitonic coupling by forming the expectation value of a
supramolecular BSE Hamiltonian with electron−hole wave
functions for excitations localized on two separated chromo-

phores. Within this approach effects of coupling mediated by
intermolecular charge transfer (CT) excitations are accounted
for via a reduction technique that proves to be applicable to
situation in which conventional perturbative approaches break
down.
Application to model dimers reveals an accurate description

of short-range exchange and long-range Coulomb interactions
for the coupling of singlet and triplet excitons by this GW-BSE-
DIPRO technique. An optimal strategy for simulations of full
large-scale morphologies includes a combination of loosening
of self-consistency parameters, reduction of the active space in
GW-BSE, and, for optically active singlets, a change to classical
transition density-based interaction models at larger distances.
All developed methods are available within VOTCA software
package.41
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