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Abstract

Background: Hepatocellular carcinoma (HCC) is among the deadliest cancers due to its heterogeneity, contributing
to chemoresistance and recurrence. Cancer stem-like cells (CSCs) are suggested to play an important role in HCC
tumorigenesis. This study investigates the role of Wnt/B3-catenin pathway in CSC enrichment and the capabilities of
these CSCs in tumor initiation in orthotopic immunocompetent mouse model.

Methods: HCC-CSCs were enriched using established serum-free culture method. Wnt/3-catenin pathway activation
and its components were analyzed by western blot and gRT-PCR. The role of 3-catenin in enrichment of CSC spheroids
was confirmed using siRNA interference. Tumorigenic capabilities were confirmed using orthotopic immunocompetent
mouse model by injecting 2 x 10° Hepal-6 CSC spheroids or control cells in upper left liver lobe.

Results: The serum-free cultured Hepa1-6 cells demonstrated self-renewal, spheroid formation, higher EpCAM
expression, increased Hoechst-33342 efflux, and upregulated Wnt/3-catenin signaling. Wnt/3-catenin pathway
upregulation was implicated with the downstream targets, i.e, c-MYC, Cyclin-D1, and LEF1. Also, we found that GSK-3(3
serine-9 phosphorylation increased in Hepal-6 spheroids. Silencing 3-catenin by siRNA reversed spheroid formation
phenotype. Mice injected with Hepal-6 CSC spheroids showed aggressive tumor initiation and growth compared with
mice injected with control cells.

Conclusions: Successfully induced Hepal-6 spheroids were identified with CSC-like properties. Aberrant 3-catenin
upregulation mediated by GSK-33 was observed in the Hepal-6 spheroids. The 3-catenin mediated CSC enrichment in
the induced spheroids possesses the capability of tumor initiation in immunocompetent mice. Our study suggests
plausible cell dedifferentiation mediated by 3-catenin contributes to CSC-initiated HCC tumor growth in vivo.

Keywords: Hepatocellular carcinoma, Wnt/3-catenin signaling, Cancer stem cells, Epithelial cell adhesion molecule
(EpCAM), Tumor initiating cells

Background

Hepatocellular carcinoma (HCC) is the fifth most common
cancer in men and the seventh in women worldwide, and is
the third major cause of cancer-related deaths [1, 2]. HCC
is often diagnosed at advanced stage when patients cannot
be qualified for potentially curative treatment modalities,
such as liver resection and liver transplantation. These pa-
tients are only left with options for palliative treatments
such as chemotherapy, radiotherapy, drug-loaded beads,
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ablation, and Sorafenib. Most HCC patients’ 5-year relative
survival rate is 7% and they show disease recurrence with
advance-stage intrahepatic metastases [3, 4]. Evidence sug-
gests that cancer stem cells (CSCs), a poorly differentiated
subpopulation of cancer cells within the tumor microenvir-
onment, contribute to aggressive tumor progression, che-
moresistance, and recurrence in HCC patients [5].

The CSC model proposes a hierarchical population in
the tumor microenvironment, where apex CSCs are the
least-differentiated subpopulation retaining self-renewal
capability with asymmetric division and having the high-
est tumorigenic potential. Subsequently differentiated
cancer cells in the hierarchy lose tumorigenic potential
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in decremental order, ending with terminal cancer cells
with little to no tumorigenic potential [6, 7]. The CSC
tumor model has been proven to demonstrate clinical rele-
vance in primary HCC, chemoresistance and recurrent
HCC [5, 8, 9]. Based on tumorigenic potential and stemness
characteristics, many studies have identified CSCs from hu-
man HCC tissues and HCC cell lines expressing different
stem cell markers: EpCAM+, CD90+, CD44+, CD133+,
AFP+, OV6+, and ALDHI1+ [5, 9-12]. These diverse
markers of CSCs have been thought to be a result of hetero-
geneity of CSCs, and no single marker can define the CSCs
exclusively [13]. In HCC, EpCAM emerged as an important
CSC surface marker and EpCAM+ cells correlate with
worse prognosis and possess CSC-like properties showing
tumor-initiating capabilities with as few as 200 cells in a
nude mouse model [11, 14—17]. EpCAM is a target of Wnt/
[-catenin signaling, and inhibiting Wnt/(-catenin signaling
has been shown to destroy EpCAM+ cells [16, 18].

The canonical Wnt/p-catenin signaling is considered as
fundamental pathway in stem-cell biology which regulates
several cellular events including cell proliferation [19]. In the
absence of Wnt ligand, B-catenin forms a complex with
APC, Axin, and GSK-3( (destruction complex), and is phos-
phorylated at S33/S37/T41 positions and causes cytoplasmic
[-catenin to undergo ubiquitin-mediated proteaosomal deg-
radation. Upon binding of Wnt ligand to frizzled receptor
(Fz) and a member of the LDL receptor family Lrp5/6 on
cell membrane, active non-phosphorylated GSK-3( gets
phosphorylated at the ser9 position and turned inactive; this
leads to uncoupling of -catenin from the destruction com-
plex. The stabilized p-catenin translocates into the nucleus,
where it activates target genes by binding to TCF/LET tran-
scription factors [20]. Two of the most reported CSC
markers in HCC, EpCAM and CD44, have been identified
as the transcription targets of the canonical Wnt/p-catenin
pathway [17, 21, 22]. Although studies have reported the
role of Wnt/B-catenin signaling in the self-renewal and
maintenance of CSCs in HCC [23, 24], the role of Wnt/
[-catenin signaling in HCC-CSCs is largely unknown. Also,
tumorigenic potential of these HCC-CSCs in immunocom-
petent orthotopic mouse model was not studied.

In this study, we investigated the role of Wnt/[-catenin
in HCC-CSCs spheroids generation and maintenance.
Our study for the first time successfully induced spheroids
in regular tissue-culture plates with an adherence environ-
ment, providing a spontaneous spheroid formation which
is closely related to the in vivo condition. The function of
HCC-CSCs spheroids in tumor formation was further
studied in an immunocompetent orthotopic HCC mouse
model, for the very first time.

Methods
Routine methods, antibody catalog numbers (Add-
itional file 1: Tables S1 and S2), and additional regent
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details (Additional file 1: Table S3) are provided in
Additional file 1.

Cell lines used, cell culture, and CSCs enrichment in
serum-free condition

Hepatoma cell lines, Hepal-6 (CRL-1830), Hep3B
(HB-8064) and HepG2 (HB-8065), were obtained from
American type culture collection (Manassas, USA). All
cell lines are validated every 6 months or obtained a new
ATCC stock every 6 months. All experiments were per-
formed between 5th and 20th passage. Hepal-6 cells
were grown in DMEM with 4.5% Glucose, supplemented
with 10% FBS and 1x antibiotic-antimycotic. HepG2 and
Hep3B cells were grown in MEM, supplemented with
10% FBS, 1x non-essential amino acids, 1x sodium pyru-
vate, and 1x antibiotic-antimycotic.

For in vitro enrichment of CSCs, cells were grown in a
serum-free condition (SF) in DMEM/F12 (D6434,
SIGMA), supplemented with 2 mM L-Glutamine, 20 ng/
mL EGF (E9644, Sigma), and 10 ng/mL bEGE (E0291,
Sigma), 1x antibiotic-antimycotic and 1% B-27 supple-
ment (17504044, Life technologies).

Self-renewal assay

Hepal-6 cells were seeded in SF media at a density of
20,000 cells/well in a 6-well plate, and incubated for 4 days
to allow the development of spheroids. After confirming
formation of spheroids under the microscope, these spher-
oid were collected, treated with trypsin-EDTA for 4 min,
and prepared in single-cell suspension with 500 cells/mL
density with SF media. Seed single-cell suspension was
placed at 2 pL/well in 96-well plate. The wells were
marked with one or two cells. Additional 150 pL. SF media
was added in each marked well and monitor for 20 days.
Images were taken daily to track and record progress.

Hoechst-33342 efflux assay

After 7 days in culture, Hepal—6 control or spheroid cells
were harvested and 10° cells/mL was prepared for each
sample, centrifuged at 200 RCF for 5 min, washed 2 times
and resuspended in 2% FBS/PBS. Hoechst-33342 was
added to 5 pg/mL final concentration in 2% FBS/PBS and
cells were incubated for 90 min at 37 °C, followed by
10 min on ice, followed by a single wash of ice cold 1X
PBS. These cells were immediately mounted on glass
slides and analyzed within 1 h on a fluorescence micro-
scope with UV excitation settings. Cells with dye exclusion
property were identified by overlapping UV filter images
with bright field images.

RNA interference (siRNA) and spheroid reversibility assay

For each siRNA used, we provided sense and antisense se-
quences in Additional file 1: Table S4. Lipofectamin RNAi-
MAX, and validated siRNA oligos targeting [-catenin
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(siCtnnb1: s63417, s63418; and siCTNNBI1: s436, s437) or
scrambled control (Cat # 4390849) were obtained (Life-
technologies, CA, USA) and experiment was performed as
per instructions provided. Knockdown validation of Ctnnb1
(mouse) and CTNNBI1 (human) were confirmed by west-
ern blot (data provided in Additional file 1: Figure S3). We
achieved >70% knockdown efficiency by siRNA mediated
transfection. Cells were seeded and allowed to grow spher-
oids for 3—4 days, transfected on day 4 with siRNAs, and
incubated for 72 h (Hepal-6) or 48 h (HepG2). For calcu-
lating CSCs, differentiated, and single cells, 5 random
fields/well were selected and quantified. Data were nor-
malized to untransfected control, followed by mean and
S.D. calculation. Experiments were performed # = 3 times
independently, and transfection was carried out using
combination of two siRNAs targeting different exons
(Additional file 1: Figure S3, Table S4).

Animal experiments

All experimental procedures were approved by the Insti-
tutional Animal Care and Use Committee (IACUC) at
the University of Louisville (UofL). All mice were housed
in the UofL Research Resources Center (RRC) at 22 °C
with 12-h light/dark cycles with free access to food and
water. In vivo experiments using the Hepal—6 cell line
were performed in 12-week-old male C57L/] mice (Jack-
son laboratory, ME, USA). Each experimental group had
n=6 animals. For orthotopic inoculation, 2 x10°
Hepal-6 non-spheroid control cells or 7-day spheroids
were injected into left liver lobe of an animal. Post injec-
tion, mice were monitored for 2 weeks and then eutha-
nized on day 14 by carbon dioxide chamber procedure.
Animal weight, liver weight, tumor weight, and tumor
size were recorded for each animal.

Statistical analysis

Data are presented as mean * S.D. (n = 3 per group). Com-
parisons were performed using Microsoft Excel-2013 suite
by two-tail student’s t-test with equal variance (Redmond,
USA). Results with p <0.05 were considered statistically
significant.

Results

Hepal-6 was reported as a non-immunogenic murine
cell line with an ability to form tumor in normal im-
munocompetent C57L/] mice, both orthotopically and
subcutaneously [25-27], thus provide more clinically
relevant mouse model to study tumorigenesis in pres-
ence of all confounding immune system components,
contrary to athymic nude or SCID mouse models (lacks
confounding immune system components). HepG2 and
Hep3B secrete 17 major plasma proteins [28], and also
express very high EpCAM levels, a well reported CSC
marker in HCC [17]. To enrich and promote CSCs
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growth in HCC cell lines in vitro, we used serum-free
culture method to maintain the undifferentiated status
of the cells [29], which was widely adapted for CSC
studies in various cancers [30, 31].

Unlike the previous studies in which CSC spheroids
were enriched in low-attachment plates or mechanically
induced [32], we used regular tissue culture-treated
plates. All three cell lines (Hepal-6, HepG2, and
Hep3B) could successfully form spheroids in serum-free
conditions (Additional file 1: Figure S1). Hepal—6 and
HepG2 cells could start losing adherence and form
spheroids as little as 3—5 days, while the Hep3B cell, a
p53 null cell line with mesenchymal phenotype and re-
ported lung metastasis in nude mouse [28], took more
than 25 days to develop spheroids. Numbers of spher-
oids generated in Hep3B cells were far less than Hepal—
6 and HepG2 cells.

Identifying CSC like properties in Hepa1-6 HCC cells

In the first step, we had examined CSC like properties in
HCC cells in vitro using established serum-free culture
method [32]. Self-renewal capability is the fundamental
characteristic of CSCs and the primary mechanism respon-
sible for maintaining undifferentiated cells with CSC-like
properties in tumors [33]. As shown in Fig. 1a, Hepal-6
spheroids were induced in adherent tissue-culture treated
plates using serum-free medium. These Hepal—6 spheroids
can serially pass for more than 10 generations in serum-free
medium (data not shown, # =2 times), an important prop-
erty of self-renewal. We have confirmed and quantitated the
self-renewal capacity of Hepal—6 spheroids by minimal di-
lution assay using a 96-well plate and found that 24% of
Hepal—6 cells acquired self-renewal capability and form
spheroids, while the rest were either in quiescence (51%) or
non-spheroid differentiated stage (25%) (Fig. 2).

Since EpCAM is a well-accepted HCC-CSC marker, we
first tested EpCAM expression in Hepal—6 spheroids. The
EpCAM expression was significantly increased in Hepal-6
spheroids (74%, MFI 2660 + 420) than non-sphere Hepal—
6 cell control (36%, MFI 723 + 375; p < 0.001, n = 4) by flow
cytometry (Fig. 1b), and was further confirmed by ICC
staining (Fig. 1c). In addition, two more CSC surface
markers, CD44 and CD90, were tested and both CD44
(15%; p <0.05, n=3) and CD90 (2%; p < 0.05, n =3) were
upregulated in the Hepal-6 spheroids compared with
non-sphere Hepal—6 cell control (Fig. 1d). The increased
CSC surface markers suggested that HCC-CSCs were
enriched in the Hepal—6 spheroids. To further confirm,
the functional marker ABCG2 (an ATP-dependent,
multidrug-resistant transporter) was investigated. Higher
ABCG2 activity leads to higher drug efflux function, which
can be indirectly measured by lower Hoechst-33342 stain-
ing. As showed in Fig. le, Hepal-6 spheroids showed sig-
nificantly higher ABCG2 protein expression, consistent
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with the lower Hoechst-33342 staining (higher ABCG2
efflux activity).

Taken together, spontaneously induced Hepal—6 spher-
oids by serum-free culture exhibited CSC properties. Pre-
vious reports showed that both EpCAM and CD44 are
targets of the Wnt/p-catenin pathway [17, 21]. Therefore,
the components in Wnt/B-catenin signaling were further
evaluated.

Canonical Wnt/B-catenin pathway is upregulated in
Hepa1-6 CSC spheroids

The Wnt/p-catenin pathway is reported as a cardinal path-
way for maintaining stem cells and highly implicated in
HCC and CSCs [19, 34]. We investigated canonical Wnt/
[-catenin signaling components by western blot and
qRT-PCR. Our results indicated that Hepal—6 spheroids
showed increased [-catenin levels both in the cytoplasma
(1.53 £ 0.21 fold; p<0.05, n=3) and nucleus (1.54+0.15
fold; p <0.001, n=3) compared to control Hepal-6 cells
by western blot anlysis (Fig. 3a). We have also confirmed
increased [B-catenin levels in human HCC cell line - HepG2
spheroids (Additional file 1: Figure S2) which is consistent
with findings in Hepal—6 cells. Total RNA analysis by

qRT-PCR further confirmed the increased [B-catenin and
stemness in Hepal—6 spheroids — significant increase in
both EpCAM and Lin28B (Fig. 3a). Downstream targets of
canonical Wnt/(-catenin signaling, i.e., C-MYC, Cyclin-D1,
LEF1, were proportionately upregulated with the increased
[-catenin levels (Fig. 3b), suggesting that higher [-catenin
levels in Hepal-6 spheroids could affect downstream
events. Hepal—6 spheroids showed an increase in inactive
GSK-3p levels (phosphorylated at Ser9) compared to con-
trol non-sphere Hepal—6 cells (Fig. 3b), suggesting that
GSK-3p activity at least partially contributed to increased
B-catenin levels by protecting it from ubiquitin mediated
degradation in Hepal—-6 spheroids where the Hepal-6
CSCs could be maintained.

Silencing B-catenin reverses spheroid phenotype of CSCs
in EpCAM positive HCC cell lines

The upregulation of P-catenin led us to investigate the
role of B-catenin in spontaneous CSC spheroid gener-
ation, and we knocked down Ctnnbl (B-catenin gene)
using siRNA to further study implication of loss of func-
tion of P-catenin in spontaneous spheroid formation.
After 48-72 h of Ctnnb1l knockdown (n = 3 independent
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experiments), Hepal—6 cells lost the spheroid phenotype
and shifted to the differentiated phenotype, similar to
their parent cells growing in the medium with serum
(Fig. 4a). This shifted phenotype of HCC spheroid was
further confirmed in HepG2, a human EpCAM positive
cell line. Upon CTNNBI1 knockdown by siRNA, HepG2
spheroids showed close to 98% reversal to differentiated
phenotype in serum-free media (Fig. 4b). Loss of spher-
oid phenotype was far more effective in HepG2 com-
pared with Hepal-6 upon the siRNA-mediated
knockdown of (3-catenin.

The induced HCC spheroids are more tumorigenic in vivo
We used an orthotopic C57L/] mouse model to further
test tumorigenic potential of Hepal—6 spheroids where
CSCs being enriched [27]. Hepal—6 cell line possesses
tumorigenic property in immunocompetent C57L/] mice
[25, 26]. Seven-day cultured 2 x 10° cells from Hepal—6
spheroids as well as non-spheroid control cells were in-
oculated into upper left lobe of livers of 12-week-old im-
munocompetent C57L/] mice (n=6 mice/group) and
monitored for 2 weeks. Mice injected with Hepal—6
spheroids developed more aggressive tumors with overall
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higher tumor volume (6593 + 2615 mm?®) compared with
mice injected with control cells (1388 + 968 mm?; p < 0.05,
n=6) (Fig. 5¢). Also, Hepal—6 spheroids developed more
aggressive tumors with significant higher tumor weight
(31+1 g) compared with mice injected with control cells
(1.1+£0.5 g p<0.05, n=6) (Fig. 5c). The aggressive growth
pattern of CSC tumors was also witnessed by multiple
HCC nodules found at different lobe sites within the liver
compared to control, suggesting that CSC spheroids pos-
sess increased tumor initiation and hepatic invasive capabil-
ities (Fig. 5a). These findings were confirmed by H&E
staining (Fig. 5b). Increased liver weight was also observed
in the spheroid group (3.26 + 1.2 g) compared with the con-
trol group (1.77 £0.9 g, NS, n=6), which is likely due to
aggressive growth and higher tumor mass in the spheroid
injected group. This justifies the increased overall body

Page 7 of 10

weight by about 3 g in the spheroid group (25.68 +3.2 g)
compared to control (22.35 + 2.6 g; NS, n = 6) (Fig. 5¢).

Discussion

In this study, for the first time we showed that HCC
CSC spheroids were induced using only serum-free
media and adherent tissue-culture treated plates. These
HCC spheroids showed significant increased expression
of CSC surface markers and functional markers, indi-
cating that CSCs were enriched in the HCC spheroids.
Increased Wnt/p-catenin components were found in
the HCC spheroids compared with control cells grown
in the presence of serum. We also showed that
B-catenin upregulation, at least partly, was GSK-3f
dependent, caused transcription activities of the down-
stream targets including Cyc-D1, ¢-MYC, and LEF-1.
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Upon silencing B-catenin by siRNA, CSCs lost spheroid
phenotype and shifted to differentiated phenotype even
in serum-free media. The HCC orthotopic mouse model
confirmed the higher in vivo tumorigenic potential of
Hepal-6 CSCs in immunocompetent liver microenvir-
onment, for the first time.

Serum-free conditions plus growth factors allow cells to
grow in an anchorage-independent manner, and is a
well-documented standard method for maintaining undif-
ferentiated cells [29, 35-37]. Spheroids formed in
serum-free culture have been suggested to mimic not only
the phenotype but also the genotype of the primary tumor
[31]. In fact, serum-free culture has been widely accepted
and used for in vitro enrichment of CSCs [32]. A recent
study reported that simply generating multicellular
spheres followed by reversal to attached cell line can sig-
nificantly change the cell phenotype, which can be used as
in vitro metastatic model [35]. Therefore, spheroid cul-
tures provide a useful approach to enrich CSCs and to
study CSC-like cells present in primary tumors with the
added advantage of reproducibility and validity of findings.
One study previously reported that not all cell lines can
enrich CSC-like cells in spheroid culture, and each cancer
cell line should be evaluated carefully and subjectively
[38]. We successfully induced HCC spheroids in both hu-
man and mouse cell lines in vitro and these induced HCC
spheroids have shown the characteristics of CSCs. Our
current study further advocates the use of a serum-free
technique to enrich HCC-CSCs. For the first time, without
using ultra-low attachment plates, we showed that HCC
cells could generate spheroids in an adherent culture
environment in normal tissue culture plates, and these
CSCs spheroids showed upregulated [-catenin, the key
component of canonical Wnt pathway. Upon silencing
[-catenin, the HCC spheroids switch back to a differenti-
ated phenotype in serum-free culture environment, sug-
gesting an important role of the canonical Wnt pathway
in HCC-CSC activation and in the “differentiation to de-
differentiation” switch. Further study is needed in this dir-
ection to elucidate detailed mechanism.

The existence CSCs is no longer debatable area since de-
finitive evidence recently identified CSCs by three inde-
pendent lineage tracking studies [39-41]. However, the
origin of CSCs is not yet elucidated and is still an active
area of investigation [42, 43]. Primarily two arguments
exist:(1) CSCs originate by dedifferentiation from either
cancer cells or normal cells, and (2) CSCs originate by mu-
tations and biochemical changes in a tissue-specific pool of
normal progenitor or stem-cell compartment [44—48]. A
study by Yamanaka et al. showed that terminally differenti-
ated fibroblast cells possess reprogramming capability to
go back to the pluripotent stem cell niche [49]. Consider-
ing unpredictable tumor cell fate and the poorly under-
stood tumor microenvironment, the origin of CSCs from

Page 8 of 10

differentiated cancer cells is a likely possibility [50, 51]. The
data we provide in this study show that -catenin plays a
strategic role in switching from a differentiated cancer cell
phenotype to a CSC phenotype. This observation strongly
implies that the heterogeneous cancer cells in a tumor
mass could be an important pool of cancer-cell progeni-
tors. Our speculation is supported by the evident increase
in both surface and functional markers, as well as the
tumor-initiating ability of HCC cell spheroids in immuno-
competent liver microenvironment of mouse model. Fur-
ther study is encouraged to investigate specific biomarkers
in order to identify human HCC-CSCs, which could then
be used in patients to evaluate potential treatment, re-
sponse and prognosis.

Conclusion

In conclusion, successfully induced Hepal—6 spheroids were
identified with CSC-like properties. Aberrant 3-catenin up-
regulation mediated by GSK-3p was observed in the
Hepal—6 spheroids. The [-catenin mediated CSC enrich-
ment in the induced spheroids possesses the capability of
tumor initiation in immunocompetent mice. Without
genetic manipulation, our study suggests plausible cell
dedifferentiation mediated by [-catenin contributes to
CSC-initiated tumor growth in vivo in HCC.
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