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1. Introduction
Coronavirus Disease 2019 (COVID-19) is supposed to have emerged in a local seafood

market in Wuhan City, China, in December 2019, resembling an unknown cause viral

pneumonia [1]. Further analysis from the lower respiratory tract pointed out the origin of

the problem: a novel virus from Coronaviridae family, whence named SARS-CoV-2,

supposedly originated from Phinolophus bats [2]. Four months later, the virus has

spread from Wuhan to the whole world, producing a global public health crisis with no

precedented, and reporting a total of 123; 010 deaths and 1; 914; 916 confirmed infections

as of 10:00 CET, April 15, 2020 [3]. Moreover, contingency methods adopted to withhold

the outbreak, most of them based on quarantine and social isolation, are also assembling

a global economic recession, whose results are unpredictable at the moment.

In such an apocalyptic scenario, the scientific community has been working franti-

cally toward the development of vaccines, drugs, and biological resources to ease the

contamination and the spread of the disease. On the other hand, computational and

mathematical tools are being developed to improve the preciseness while predicting the

contamination evolution, as well as defining new methods for detecting the disease.

Regarding the latter, the diagnosis confirmation is performed through reverse tran-

scription of a polymerase chain reaction (RT-PCR), or gene sequencing for respiratory or

blood specimens [4]. However, such processes present some drawbacks related to a

limitation of samples and available material to perform the analysis. The aforemen-

tioned limitations become exceptionally intolerable, once patients not identified in time

and appropriately treated constitute a risk for themselves, as well as for the population in

general since they can infect a large number of people given the highly contagious nature

of the virus.
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A possible alternative for a fast diagnosis may reside over chest X-ray [4,5]. It was

observed that almost all patients with COVID-19 present intrinsic radiographic features

depicting abnormalities in the bilateral involvement [1], including multifocal patchy

consolidation, ground-glass opacities, and interstitial changes with a peripheral

distribution [6]. Such patterns, however, are only moderately characteristic for the

human eye [7], therefore requiring intelligent computer-aided assistance for boosting

the diagnosis for both speed and reliability.

Machine learningebased algorithms have been successfully employed to tackle

virtually any topic related to medicine in the last decades, ranging from Parkinson’s

disease [8] to breast [9,10] and esophagus [11] cancer detection. Moreover, with the

advent of deep models, i.e., artificial neural networks composed of subsequent layers of

simpler models capable of extracting more intrinsic information from the data [12], the

number of works has grown exponentially, most of the times obtaining as good as or

even better results than the ones performed by humans, with an extra advantage of

demanding a small fraction of the time.

In this context, Wang et al. [13] proposed the COVID-Net, an open-source deep

convolutional neural network (CNN) designed to detect COVID-19 cases from chest

radiography, obtaining relevant results over the COVID Chest X-ray Dataset [14]. Despite

their success, the model proposed by the authors still present limited results, even more

considering a relatively high number of parameters to be learned, which implies directly

in the time required for training. Therefore, this work proposes employing an

EfficientNet-B6 [15] inspired neural network empowered with a data normalization

approach to the task of COVID-19 detection on chest X-ray images, resulting in a lighter

and faster CNN, capable of dealing with data scarcity and a highly imbalanced dataset.

Thus, the contributions of this work are twofold: (i) to propose the use of an

EfficientNet-B6-based CNN empowered with a pixel normalization approach to deal with

chest X-ray images in the context of COVID-19 and (ii) to support the scientific com-

munity in the combat of the most astonishing pandemic endured in the modern times.

The remainder of this work is presented as follows. Section 2 provides a brief theoretical

background concerning coronavirus disease 2019, while Section 3 describes the proposed

approach. Furthermore, Sections 4 and 5 state the methodology and the experimental

results, respectively. Finally, Section 6 asserts the conclusions and future work.

2. Coronavirus disease 2019
SARS-CoV-2, the coronavirus causing COVID-19, provides similar damage as the plas-

modium, responsible for malaria, once both desaturates the body by removing iron from

the heme molecule, thus inhibiting the flow of oxygen through the body, which is

performed by the hemoglobin. The process is carried out while the lungs are still entirely

operating, so there is no necessity of intubation or similar precautions. However, the

problems concerning the respiratory process occur because the iron is then deposited in

the lungs, which provides the frosted glass stains in X-ray exams. Once the lungs are
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impregnated with iron, the patient starts the severe acute respiratory syndrome (SARS).

In theory, COVID-19 is a hematological disease, targeting the cells of the blood, causing

the pulmonary problems a severe secondary effect of the oxidative iron released in the

lungs [16].

In general, the clinical manifestations resemble viral pneumonia, whose approxi-

mately 80% of cases are mild and present self-limiting symptoms that demand 2 weeks

for recovery [17]. Considering the remaining 20% cases, patients present severe

conditions with acute respiratory distress syndrome and septic shock, eventually ended

in multiple organ failure [18].

Regarding the pathology, histological lung examinations revealed proteinaceous

exudate, edema, and focal hyperplasia of pneumocytes with only inconsistent

inflammatory cellular infiltration on COVID-19 early-stage patients [18]. Patients in a

later stage are prone to present bilateral diffuse alveolar damage with exudative lesions

in the lung, interstitial inflammatory cells, multinucleated syncytial cells with atypical

enlarged pneumocytes, as well as a substantial decrease on CD4þ and CD8þ T cells,

which implies on severe immune injuries [19].

Finally, considering COVID-19 treatment, there is no specific antiviral therapies or

vaccine to date. Therefore, researches toward the development of new drugs, as well as

randomized controlled tests over existing ones, are of paramount importance at the

moment. In this context, medical interventions are divided into four [18] groups:

(i) general treatment, (ii), coronavirus-specific treatments, (iii) antiviral treatments, and

(iv) other.

The general treatment includes nutritional interventions to boost the immune system

and Chinese medicine, such as Chloroquine, successfully employed to treat malaria.

Experiments considering the latter presented good results over COVID-19 in vitro [20], as

well as patients by promoting a virus negative conversion, shortening the disease course,

and reducing exacerbation of pneumonia [21]. Coronavirus-specific treatments focus on

vaccines and therapies related to the S-protein [22], successfully employed in the

treatment of virus SARS-CoV and MERS-CoV [23]. Concerning antiviral treatments, no

candidate solution provided satisfactory results for COVID-19 to date [24]. On the other

hand, the “remdesivir,” an antiviral being developed to treat Ebola virus infection [25],

has revealed itself as effective and secure to treat COVID-19 [20]. Finally, concerning

other methods, Le et al. [26] employed the IL-6 inhibitor Tocilizumab to combat the

surplus of cytokine produced by the immune system. At the same time, Chen et al. [27]

recommend influenza and Streptococcus pneumoniae vaccination, thus avoiding

confusion concerning similar symptoms or even a combination infection of both

COVID-19 and one of them.

3. Proposed approach
EfficientNets are a family of CNN architecture designed over a baseline network, which is

scaled to obtain several models with distinct characteristics [15]. Among such models,
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EfficientNet-B6 obtained notorious influence in the scientific community due to its

efficiency and accuracy while dealing with image classification, confirming its robust-

ness over several different data sets [28e30]. A schema of the network blocks is detailed

in Table 3.1.

The core of the network resides on a stack of layers built upon a structure called

MBConvBlock. Each of these structures is composed of a set of operations. The DWConv,

for instance, acts as a depth-wise convolution operation. The BatchNorm and Activation

block execute the batch normalization and the Swish [31] activation function, respec-

tively. Furthermore, the Squeeze block performs a global average pooling, while the

Reduce block performs a convolution over a reduced number of kernels (usually 1= 4),

followed by a Swish activation. Furthermore, the Expand block denotes a convolution

layer with sigmoid activation, while the Excite layer stands for an element-wise

multiplication between the Activation and Expand blocks. Moreover, the Projection

and the Dropout blocks perform a convolution with a kernel size of one and a dropout

procedure, respectively. Finally, the Add block executes the addition between the

original input and the Dropout block output. Fig. 3.1 depicts the structure.

Finally, two approaches were considered to improve the model efficiency.1 The first

comprises the computational burden and stands for a change in the architecture input

size from 528� 528 to 224 � 224. Such a change provided competitive results with about

a third of the baseline model [13] parameters. The second regards a data normalization

in the range ½ �1; 1�, which provided considerable improvements in the classification

results.

Table 3.1 EfficientNet-B6 composition. Notice that Conv, BN, and Activation denote
the operations of convolution, batch normalization, and the activation using the
Swish [31] function, respectively. Besides, MBConvBlock stands for the network's main
blocks.

Level Operation Kernel size Channels Repetitions

0 Conv, BN, activation 3 56 1
1 MBConvBlock 3 56 3
2 MBConvBlock 3 240 6
3 MBConvBlock 5 432 6
4 MBConvBlock 3 864 8
5 MBConvBlock 5 1200 8
6 MBConvBlock 5 2064 11
7 MBConvBlock 3 3456 3
8 Conv, BN, activation 1 2304 1

1Available at https://github.com/cfsantos/EffNet-B6-COVID19.
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4. Methodology
This section provides a detailed description of the dataset and the experimental setup

employed in this work.

4.1 Datasets

The experiments performed in this chapter were conducted over a combination of chest

X-ray images from two public datasets: the COVID-19 image data collection [14] and the

Kaggle RSNA Pneumonia Detection Challenge.2 The combination comprises four classes

of images, i.e., Bacterial Pneumonia (Bacterial), Viral Pneumonia (Viral), and COVID-19

patients (COVID-19), as well as healthy people (Health). Fig. 3.2 provides a sample

example from each class.

Finally, the combination of datasets comprises a total of 6; 042 chest X-ray image

samples, being 1; 583 from class “Health,” 2; 792 from “Bacterial Pneumonia,” 1; 515

from “Viral Pneumonia,” and 152 images from “COVID-19” patients. Besides, the dataset

was split into 5; 394 randomly selected samples for training and 648 samples for testing

purposes. Such a splitting methodology is the same employed by Ref. [13], whose results

are considered as a baseline for comparison purposes.

4.2 Experimental setup

The experiments conducted in this work rely on a model pretrained during 50 epochs

over the training set, with no transfer learning. Furthermore, the weights that accomplish

the best results, i.e., the state of the network at the epoch the model performed best,

are reloaded. Then the model is trained for more 50 epochs using artificial data

FIGURE 3.1 The MBConvBlock structure, in which the arrows stand for the skip connections.

2Available at https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/.
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augmentation, provided by the Keras Image Augmentation API [35], which performs

transformations such as random rotation, shifts, shear, and flips over the original

training dataset.

For comparison purposes, the work considers the COVID-Net [13], a tailored-made

deep neural network to detect X-rays with or without COVID-19, as the baseline.

Besides, the performance of the model is also compared against the standard version of

the EfficientNet-B6 with naive data normalization. Finally, the model employs the

RMSProp [36] algorithm as the optimization algorithm and a batch of size 4.

Furthermore, the data augmentation procedure considers a rotation range between

0 and 30�, width and height random shift of 20%, random zoom between 0 and 15%, and

a random horizontal flip. The model is developed using Keras [35] and TensorFlow [37].

5. Experimental results
This section presents the experimental results considering the EfficientNet-B6 based

approach for COVID-19 detection on chest X-ray images. Furthermore, it also provides a

brief discussion about such results and model’s performance.

)b()a(

)d()c(
FIGURE 3.2 Examples of images X-ray images from: (A) health [32], (B) bacterial [33], (C) viral [34], and (D)
COVID-19 [33]3.

3Under licence: (a) and (c) https://creativecommons.org/licenses/by-nc-nd/4.0/, and (b) and (d)

https://creativecommons.org/licenses/by/3.0/.
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5.1 Results

Table 3.2 presents an overall comparison between the proposed approach and the

COVID-Net. The baseline approach outperformed the proposed method in 5% consid-

ering the accuracy value; however, at the cost of almost three times the number of

parameters to be learned. Concerning the computational burden, the method proposed

in this work required around 17 h to perform the complete training step, as well as less

than 0.02 s for inference considering an NVIDIA Tesla P4 with 8 Gb of RAM machine.4

The COVID-Net authors did not provide the elapsed time for training and inference, but

the number of multiply-accumulation operations instead.

Table 3.3 presents the results of the proposed method against two baselines: the

COVID-Net and the standard version of the EfficientNet. Results are compared

considering three distinct metrics: (i) the sensitivity, also known as recall, (ii) the positive

predictive value (PPV), also known as precision, and (iii) f1-score, which is the average of

precision and recall over in each class, i.e., health, bacterial pneumonia, virus pneu-

monia, and COVID-19. The best results are in bold.

Fig. 3.3 depicts the confusion matrix concerning the proposed approach.

Table 3.2 Comparison between the proposed model and COVID-Net features.

Model Params(M) MAC Training (H) Inference (s) Accuracy(%)

EfficientNet-B6 40.9 � 17.1 0.0018 86.5
COVID-Net 116.6 2.26 � � 83.5

Table 3.3 Results concerning the Sensitivity, PPV, and F1-Score (in %) for each class
and model. Notice Normalized EfficientNet-B6 stand for the proposed approach.

Metric(%) Method

Class

Health Bacterian Viral COVID19

Sensitivity COVID-Net 73.9 93.1 81.9 100.0
Standard EfficientNet-B6 81.6 94.3 79.3 94.4
Normalized EfficientNet-B6 84.1 93.9 78.6 94.4

PPV COVID-Net 95.1 87.1 67.0 80.0
Standard EfficientNet-B6 93.6 88.5 77.2 60.7
Normalized EfficientNet-B6 92.9 86.8 78.6 85.0

F1-score COVID-NET 84.5 90.1 74.4 90.0
Standard EfficientNet-B6 87.2 91.3 78.2 73.9
Normalized EfficientNet-B6 88.3 90.2 78.6 89.4

4Notice the experiments may have been conducted on a computer with different settings.
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5.2 Discussion

According to the results, COVID-Net and EfficientNet performed very similarly at some

points. Nevertheless, it is valid to discuss each class according to its numbers.

� “Health” class performed very well for detecting positive instances for all the three

neural networks, reaching values over 90%. The proposed approach obtained the best

Sensitivity and F1-score values, which figures the more complicated scenarios due to

the elevated number of “Viral” wrongly predicted as “Health,” as shown in Fig. 3.3.

� ‘Bacterial” images obtained the highest values considering all metrics, in general,

and performed well overall three techniques, being the Standard EfficientNet-B6

the most accurate. COVID-Net performed somewhat more competent for discard-

ing negative cases while Normalized EfficientNet-B6 performed slightly better for

predicting positive instances.

� “Viral” pneumonia presented the worst results considering the three networks in

general. Concerning the Standard EfficientNet-B6, approximately 25% of its

validation images were predicted as “Health.” Notwithstanding, the Normalized

EfficientNet-B6 performed better than COVID-Net and standard EfficientNet-B6

considering the PPV and F1 metrics.

� “COVID-19” presented an appropriate classification rate over the three networks.

In this context, the proposed method was the most effective while predicting

positive values, obtaining a PPV rate of 85%. The major drawback in this context

concerns the number of available instances for validation purposes, being eight

images deemed for COVID-Net and 18 for EfficientNet-B6.

The Normalized EfficientNet-B6 performs better than the standard version of the

network in the overall result, except for “Bacterian” class. In addition, it also provided

competitive results when compared to COVID-Net, with the advantage of a considerably

reduced number of parameters. It shows the normalization values between � 1 and 1, in

this specific case, arranges the data in a geometric space that facilitates and improves the

training of the neural network.

FIGURE 3.3 Normalized EfficientNet-B6 confusion matrix. The X-axis represents the predicted value, while the
Y-axis stands for the true labels.
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An additional test-time augmentation experiment was conducted to analyze COVID-

19 sensitiveness regarding pneumonia cases. In this context, for each testing sample, 50

artificial instances were created by using random width and height shifts of 5%, and then

the model performed the prediction. Furthermore, the final result of a given instance is

provided by the votation over 50 predictions. Fig. 3.4 presents the confusion matrix

considering such a scenario. Notice the overall result remains similar to the original,

despite the sensitivity regarding “COVID-19” class. In such a case, some “Health” images

were erroneously predicted as “COVID-19,” thus dropping the PPV in almost 15%. The

reason for such behavior probably lies in the lack of “COVID-19” images available for

training purposes.

The lack of available images expresses an even worse situation when considering

medical issues due to the patient’s privacy, the unavailability of specialists to evaluate

the data, as well as other problems. Such an absence is especially problematic for deep

learning models since they demand an extensive amount of data for a proper general-

ization over real-world scenarios. Moreover, the dataset provides another challenging

drawback related to data imbalance, since it comprises, for instance, 1; 515 bacterial

pneumonia X-ray images, while, on the other hand, it bears only 152 images charac-

terizing COVID-19 exams.

6. Conclusions and future works
This study demonstrates the possibility of improving results toward COVID-19 chest

X-ray image detection through deep learning-based approaches by normalizing the

input images’ pixel values between ½ �1; 1� instead of the traditional ½0; 1� approach. Such
conditions allow smaller neural networks to perform better than bigger and more

complex networks, under some circumstances.

Although the EfficientNet family of networks is among the most powerful known

classifiers, such models still present an open room for some improvements toward more

trustful classifiers for evaluating the health conditions of patients in real-world prob-

lems. On the other hand, a more considerable amount of data available for training is

FIGURE 3.4 Confusion matrix of the model using test-time augmentation. X-axis shows the predicted value while
the Y-axis shows the true labels.
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also capable of providing secure predictions in the context. One can assume, from now

on, that the number of samples concerning COVID-19 patients tends to grow propor-

tionally to the number of infected people, thus providing more accurate results.

Regarding future work, our goal is to continually search for methods to improve the

EfficientNet family of models, as well as several other machine learningebased

approaches for COVID-19 or other disease detection. Furthermore, we also intend to

perform similar experiments considering a more significative number of COVID-19

samples and distinct architectures for the tasks of feature extraction and classification.
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Herrler, N.H. Wu, A. Nitsche, et al., Sars-cov-2 cell entry depends on ace2 and tmprss2 and is
blocked by a clinically proven protease inhibitor, Cell 181 (2) (2020) 271e280. https://doi.org/10.
1016/j.cell.2020.02.052.

[23] J. Sui, W. Li, A. Murakami, A. Tamin, L.J. Matthews, S.K. Wong, M.J. Moore, A.S.C. Tallarico, M.
Olurinde, H. Choe, et al., Potent neutralization of severe acute respiratory syndrome (sars) coro-
navirus by a human mab to s1 protein that blocks receptor association, Proc. Natl. Acad. Sci. U.S.A.
101 (8) (2004) 2536e2541.

[24] J. Chen, Y. Ling, X. Xi, P. Liu, F. Li, T. Li, Z. Shang, M. Wang, Y. Shen, H. Lu, Efficacies of lopinavir/
ritonavir and abidol in the treatment of novel coronavirus pneumonia, Chin. J. Infect. Dis. 38 (0)
(2020) E008.

[25] S. Mulangu, L.E. Dodd, R.T. Davey Jr., O. Tshiani Mbaya, M. Proschan, D. Mukadi, M. Lusakibanza
Manzo, D. Nzolo, A. Tshomba Oloma, A. Ibanda, et al., A randomized, controlled trial of ebola virus
disease therapeutics, N. Engl. J. Med. 381 (24) (2019) 2293e2303.

[26] R.Q. Le, L. Li, W. Yuan, S.S. Shord, L. Nie, B.A. Habtemariam, D. Przepiorka, A.T. Farrell, R. Pazdur,
Fda approval summary: tocilizumab for treatment of chimeric antigen receptor t cell-induced se-
vere or life-threatening cytokine release syndrome, Oncology 23 (8) (2018) 943.

[27] Q. Chen, L. Wang, M. Xie, X. Li, Recommendations for influenza and streptococcus pneumoniae
vaccination in elderly people in China, Aging Med. 3 (1) (2020) 1e11. https://doi.org/10.1002/agm2.
12102.

[28] A. Krizhevsky, G. Hinton, et al., Learning Multiple Layers of Features from Tiny Images, 2009.

Chapter 3 � Normalizing images is good to improve computer-assisted 61

https://doi.org/10.1001/jama.2020.2648
https://doi.org/10.1001/jama.2020.2648
https://doi.org/10.1016/j.ijid.2020.03.071
https://doi.org/10.1016/j.ijid.2020.03.071
https://doi.org/10.5582/bst.2020.01047
https://doi.org/10.1016/j.cell.2020.02.052
https://doi.org/10.1016/j.cell.2020.02.052
https://doi.org/10.1002/agm2.12102
https://doi.org/10.1002/agm2.12102


[29] T. Berg, J. Liu, S. Woo Lee, M.L. Alexander, D.W. Jacobs, P.N. Belhumeur, Birdsnap: large-scale fine-
grained visual categorization of birds, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2014, pp. 2011e2018.

[30] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, A. Vedaldi, Fine-grained Visual Classification of Aircraft,
2013 arXiv preprint arXiv:1306.5151.

[31] P. Ramachandran, B. Zoph, Q.V. Le, Searching for Activation Functions, CoRR abs/1710.05941,
2017. URL, http://arxiv.org/abs/1710.05941.

[32] E. Ebrille, M.T. Lucciola, C. Amellone, F. Ballocca, F. Orlando, M. Giammaria, Syncope as the
presenting symptom of covid-19 infection, HeartRhythm Case Rep. (2020).

[33] H.B. Winther, H. Laser, S. Gerbel, S.K. Maschke, J.B. Hinrichs, J. Vogel-Claussen, F.K. Wacker, M.M.
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