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Abstract
Skeletal muscle plays a pivotal role in the maintenance of physical and
metabolic health and, critically, mobility. Accordingly, strategies focused on
increasing the quality and quantity of skeletal muscle are relevant, and
resistance exercise is foundational to the process of functional hypertrophy.
Much of our current understanding of skeletal muscle hypertrophy can be
attributed to the development and utilization of stable isotopically labeled
tracers. We know that resistance exercise and sufficient protein intake act
synergistically and provide the most effective stimuli to enhance skeletal
muscle mass; however, the molecular intricacies that underpin the
tremendous response variability to resistance exercise-induced
hypertrophy are complex. The purpose of this review is to discuss recent
studies with the aim of shedding light on key regulatory mechanisms that
dictate hypertrophic gains in skeletal muscle mass. We also aim to provide
a brief up-to-date summary of the recent advances in our understanding of
skeletal muscle hypertrophy in response to resistance training in humans.

Keywords
resistance exercise, muscle, protein, hypertrophy

   Reviewer Status

  Invited Reviewers

 version 1
24 Feb 2020

 1 2

, Auburn University, Auburn,Michael Roberts

USA
1

, University of Kentucky,John J McCarthy

Lexington, USA
2

 24 Feb 2020,  (F1000 Faculty Rev):141 (First published: 9
)https://doi.org/10.12688/f1000research.21588.1

 24 Feb 2020,  (F1000 Faculty Rev):141 (Latest published: 9
)https://doi.org/10.12688/f1000research.21588.1

v1

Page 1 of 12

F1000Research 2020, 9(F1000 Faculty Rev):141 Last updated: 25 FEB 2020

https://f1000research.com/browse/f1000-faculty-reviews
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/9-141/v1
https://f1000research.com/articles/9-141/v1
https://orcid.org/0000-0002-1956-4098
https://f1000research.com/articles/9-141/v1
https://doi.org/10.12688/f1000research.21588.1
https://doi.org/10.12688/f1000research.21588.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.21588.1&domain=pdf&date_stamp=2020-02-24


 

 Stuart M. Phillips ( )Corresponding author: phillis@mcmaster.ca
  : Conceptualization, Project Administration, Writing – Original Draft Preparation, Writing – Review & Editing;  :Author roles: Joanisse S Lim C

Conceptualization, Project Administration, Writing – Original Draft Preparation, Writing – Review & Editing;  : Conceptualization,McKendry J
Project Administration, Writing – Original Draft Preparation, Writing – Review & Editing;  : Conceptualization, Project Administration,Mcleod JC
Writing – Original Draft Preparation, Writing – Review & Editing;  : Conceptualization, Project Administration, Writing – Original DraftStokes T
Preparation, Writing – Review & Editing;  : Conceptualization, Supervision, Writing – Original Draft Preparation, Writing – Review &Phillips SM
Editing

 No competing interests were disclosed.Competing interests:
 SMP holds grants from the Canadian Institutes for Health Research and the National Science and Engineering Council ofGrant information:

Canada and thanks the Canada Research Chairs Program for their support.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 © 2020 Joanisse S  . This is an open access article distributed under the terms of the  ,Copyright: et al Creative Commons Attribution License
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Joanisse S, Lim C, McKendry J   How to cite this article: et al. Recent advances in understanding resistance exercise training-induced
 F1000Research 2020,  (F1000 Faculty Rev):141 (skeletal muscle hypertrophy in humans [version 1; peer review: 2 approved] 9

)https://doi.org/10.12688/f1000research.21588.1
 24 Feb 2020,  (F1000 Faculty Rev):141 ( ) First published: 9 https://doi.org/10.12688/f1000research.21588.1

Page 2 of 12

F1000Research 2020, 9(F1000 Faculty Rev):141 Last updated: 25 FEB 2020

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.21588.1
https://doi.org/10.12688/f1000research.21588.1


Introduction
Skeletal muscle is the organ of locomotion but is also a large 
contributor to resting energy expenditure1 and is the larg-
est reservoir for post-prandial insulin-stimulated disposal of 
blood glucose2. Thus, beyond skeletal muscle’s obvious role in 
locomotion and mobility, its maintenance is critical for meta-
bolic health. Indeed, lower-than-predicted norms of skeletal  
muscle mass and function are associated with a variety of nega-
tive health outcomes such as cardiovascular disease, cancer, 
and increased risk for disability3. Therefore, concerted efforts 
to maintain, increase, or regain lost skeletal muscle mass (for  
example, due to muscle disuse) are of relevance to human health4.

Skeletal muscle exhibits an extraordinary range of phenotypic 
plasticity in response to changing contractile stimuli. Skel-
etal muscle hypertrophy can be defined as an increase in muscle 
axial cross-sectional area (CSA), assessed via magnetic reso-
nance imaging (MRI), computed tomography, ultrasound, and/or 
biopsies examining muscle fiber CSA (fCSA). Presently, chronic 
resistance exercise (RE) training (RET) and sufficient dietary  
protein feeding provide the most effective non-pharmacological  
strategies to promote skeletal muscle hypertrophy5. Signifi-
cant attention has been directed towards deciphering the mecha-
nistic underpinnings of what gives rise to skeletal muscle 
hypertrophy. The purpose of this review is to provide a brief  
up-to-date narrative on recent advances in our understanding of  
RET-induced skeletal muscle hypertrophy. It is notable 
that similar topical reviews have recently been published  
(see references6–8), and they should be consulted to obtain other 
viewpoints on this topic.

Exogenous versus endogenous variables in 
determining hypertrophy
Muscle hypertrophy is influenced by factors that can be broadly 
grouped into two categories: exogenous and endogenous vari-
ables. Exogenous factors include RE-related variables (load, 
reps, time under tension, volume, etc.), diet-related variables 
such as protein supplementation, energy intake, and consump-
tion of anabolic supplements (i.e. creatine), and administration 
of anabolic hormones. The hypertrophic response to RET can be  
augmented marginally via greater-than-recommended protein 
ingestion, but the response is saturated around self-reported 
intakes of ~1.6 g protein/kg body mass/day5; however, in  
resistance-trained individuals, protein intake may need to be  
greater (~2.0–2.2 g protein/kg body mass/day) to maximize  
whole-body anabolism5,9. Specifically, leucine has been repeat-
edly shown to be the most potent, and possibly exclusively in  
human skeletal muscle10, amino acid agonist that induces  
muscle protein synthesis (MPS)10–12.

Endogenous variables, namely genomic, epigenetic, transcrip-
tomic, and proteomic variables13, are determinants of muscle 
hypertrophy. Importantly, each of these variables can ultimately 
be affected by exogenous variables, such as nutrition and RET 
paradigms, to which they may show differential responses.  
Extant literature demonstrates that manipulation of some RET 
variables has, at best, statistically significant but relatively  
small effects that are for the most part related to greater 

mechanical work (although this too would have a ceiling) and 
are most easily outwardly manifested by high(er) degrees of  
effort14. What is abundantly clear is that transient post-exercise 
rises in systemic concentrations of various anabolic hormones 
(testosterone, growth hormone, and insulin-like growth factor 1  
[IGF-1]) are unrelated to muscle hypertrophy15,16.

Although exogenous variables are important, it is becom-
ing more widely appreciated that the endogenous molecular 
responses to RE are paramount in determining the hypertrophic 
response. Intramuscular mechanosensitive signaling pathways 
and extracellular supporting structures (i.e. extracellular matrix 
and capillaries) appear to play important roles in hypertrophy17.  
While evidence is equivocal18,19, our laboratory has demon-
strated that individuals exhibiting greater hypertrophy in response 
to RET appear to have greater androgen receptor content at 
rest16, and the change in androgen receptor content is positively  
correlated with increased fCSA following RET20. Moreover, 
an enhanced satellite cell (SC) proliferation in response to  
loading21 differentiates higher from lower hypertrophic “respond-
ers” to RET. Furthermore, the aforementioned endogenous  
variables—higher androgen receptor content and augmented 
SC proliferation—have been reported to be greater in “high” 
compared to “low” responders to RET22–24. Stimulation of MPS 
can also occur owing to increased efficiency of translation, with 
more mRNA translated per ribosomal unit25, or to increased  
translational capacity, which occurs by adding more ribos-
omes to translate existing mRNA. Therefore, ribosomal biogen-
esis has also been purported as an endogenous variable related 
to muscle hypertrophy6,26. This concept is discussed in more 
detail further in the review. A schematic of these relationships is  
summarized in Figure 1. A tenet illustrated in this figure is 
that in response to mechanical loading, there are degrees of 
hypertrophic response on which people can, but also cannot, 
improve. Thus, similar to variability in response to any exter-
nal stimulus, there is a response variability in exercise-induced  
hypertrophy that is propelled by external variables but pre-
dominantly translated into muscle growth through endogenous 
variables. Clearly, we do not have a complete picture of the 
loading-induced hypertrophic process, and further research is 
needed to define the relationship between exogenous variables 
and their effect on endogenous variables that directly mediate  
pathways leading to muscle hypertrophy.

Protein turnover and its role in skeletal muscle 
hypertrophy
Skeletal muscle hypertrophy occurs as the result of recur-
rent periods of positive net protein balance (NPB), when the 
rate of MPS exceeds that of muscle protein breakdown (MPB). 
In the post-absorptive (i.e. fasted) state, rates of MPB exceed 
MPS, resulting in a negative NPB27. Importantly, nutrition and 
contractile activity are potent modulators of MPS and, to a  
lesser extent, MPB in both trained28–30 and untrained  
individuals31. Specifically, in the post-absorptive state, RE stimu-
lates increases in both MPS and MPB, and while MPS is stimu-
lated to a greater extent, NPB remains negative30. Ingestion of 
dietary protein containing sufficient essential amino acids30, in 
close temporal proximity to RE, augments MPS and attenuates the  
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Figure 1. Current understanding of the relationship between exogenous and endogenous variables for skeletal muscle hypertrophy. 
Appropriate exogenous stimuli are required to modulate endogenous variables related to muscle protein synthesis and induce skeletal muscle 
hypertrophy. Resistance exercise and nutrition variables such as dietary protein (especially leucine) as well as anabolic supplements are 
considered to be the most reliable exogenous variables for skeletal muscle hypertrophy. However, the red arrow-headed line and red dotted 
line illustrate that exogenous variables do not induce skeletal muscle hypertrophy independently of the endogenous variable modulation. 
Therefore, endogenous variables are affected by exogenous variables, such as modification to histones, transcription factors, satellite cells, 
and/or androgen receptor content, which are key determinants of skeletal muscle hypertrophy. The blue arrow-headed line describes the 
exogenous stimuli that must act through endogenous variables, as represented by thin blue lines, to induce skeletal muscle hypertrophy. 
Furthermore, depending on the extent of the endogenous variables’ response to exogenous stimuli, higher responders may have greater 
skeletal muscle hypertrophy compared to lower responders.

exercise-induced increase in MPB. Therefore, only when 
RE is coupled with protein feeding does NPB become posi-
tive, facilitating small periods of muscle protein accrual with  
RET that sum to yield eventual hypertrophy27.

Changes in post-absorptive MPS are modified with RET (for 
review, see 32). Elevated post-absorptive MPS has been pro-
posed as a primary contributor to muscle hypertrophy with 
RET (>6 weeks)6. Indeed, early observations in humans show 
that post-absorptive MPS is elevated in the trained state30,33,34.  
However, identical to what is seen in untrained individuals, 
NPB in the post-absorptive state is always negative because 
of a concomitant elevation of MPB in trained individuals30,32.  

Thus, the trained state is demarked by an enhanced  
overall rate of protein turnover—elevated rates of MPS and 
MPB—that favors only net protein accretion, as demonstrated  
multiple times26,32,35, in the fed state. The elevation in MPB 
in the trained state is also supported by molecular evidence36. 
Acute intermittent elevations in MPS in response to, and with 
persistent practice of, RE in combination with sufficient pro-
tein feeding are undeniably the major drivers of muscle  
protein accretion and skeletal muscle hypertrophy37. We specu-
late that the overall increased protein turnover (as a result of 
cumulative greater acute periods of positive NPB) observed 
with chronic RET is advantageous and is reflective of a  
general increase in turnover of muscle proteins (i.e. upregulation  
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of MPS and MPB) that favors efficient remodeling of pro-
tein that leads to a gradual muscle protein accrual manifested 
as hypertrophy32; these concepts are depicted schematically  
in Figure 2.

At the molecular level, RE and protein feeding increase 
MPS through mechanistic target of rapamycin complex 1  
(mTORC1)-dependent38 and -independent38,39 mechanisms. Typi-
cally, mTORC1 phosphorylation activates several downstream 

kinases, augmenting translational efficiency (i.e. an increase 
in the rate of translation of mRNA by a constant pool of ribos-
omes) and, with RET, translational capacity (i.e. total number 
of available ribosomes)26,38. Recently, it has been suggested that 
increased translational capacity is central to changes in post-
absorptive MPS with chronic RET6. Several groups have dem-
onstrated that chronic RET results in increased total RNA19,40–42 
and ribosomal RNA (rRNA) content24,40 in addition to increases 
in regulators of rRNA synthesis24,40–42. In contrast, other groups 

Figure 2. Current understanding of changes in muscle protein turnover with chronic resistance exercise training. Skeletal muscle 
hypertrophy can occur only under periods of positive protein balance: that is, when relative rates of muscle protein synthesis (MPS) (blue line) 
exceed that of muscle protein breakdown (MPB) (red line). In the fasted state, rates of MPB exceed those of MPS, resulting in a negative net 
protein balance (NPB). Compared to untrained individuals (A), trained individuals (B) display higher fasted rates of MPS; however, protein 
balance remains negative because of the concomitant elevation of MPB in the trained state. Regardless of training status, nutritional and 
contractile stimuli are potent regulators of MPS and, to a lesser extent, MPB. Resistance exercise (RE) stimulates increases in both MPS 
and MPB, and NPB remains negative. Ingestion of dietary protein—in particular, essential amino acids—in close temporal proximity to RE 
augments MPS and attenuates the exercise-induced increase in MPB, resulting in a temporary state of positive protein balance. Chronic RE 
training (RET) modulates the time course of the increase in MPS following a bout of RE. Specifically, the initial increase in MPS following a bout 
of RE is less pronounced in the untrained state than in the trained state; however, it is longer lived and peaks later in the untrained than the 
trained state. MPS, MPB, and NPB during periods of (B) RE+Fasted and (C) RE+Fed in the untrained and trained state.
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reported a reduction in biomarkers of ribosomal biogenesis43 
or no change following 12 weeks of RET19. Increases in RNA  
content—following 16 weeks44,45 and 6 weeks18 of RET—were 
similar between individuals showing either no change (i.e. “non/
low responders”) or an extreme increase (i.e. “extreme/high 
responders”) in vastus lateralis muscle fCSA. In contrast, Stec 
and colleagues41 reported that only “extreme” responders to  
4 weeks of RET had increases in total RNA and rRNA  
content. Conflicting results may be attributed to differences in 
participant characteristics, experimental design, and analytical  
techniques26; however, current evidence does not demonstrate 
a clear connection between translational capacity and skeletal  
muscle hypertrophy in humans37. We hypothesize that early on  
in a RET program, ribosomal capacity may be increased as a  
general response to a need for greater rates of global protein 
synthesis46. However, with persistent practice of RET once pro-
tein synthetic responses and transcriptional programs become 
“refined” and more specific to the stimulus of RET34—as well 
as being shorter in duration32—further increasing ribosomal  
capacity is not required and would either stabilize40,42 or  
possibly decline43,47. This thesis would underpin why early  
during a RET bout a very short-term MPS response does not 
align well with eventual hypertrophy48, but this is not the case 
with further RET where MPS shares common variance with  
hypertrophy46. It should also be noted that the stabilization of  
ribosomal capacity following chronic RET40,42 does not indicate 
a loss of muscle ribosomes per se; instead, this likely reflects 
a dilution of the ribosomal capacity by larger, hypertrophied  
myofibers.

Understanding changes in translational capacity with RET 
is limited owing to a number of methodological constraints.  
Specifically, the study of ribosomal biogenesis relies heavily on 
static measures (i.e. immunoblotting and quantifying total RNA 
content and assuming rRNA content is responsible), and tradi-
tional stable isotope tracer investigations provide insight into 
only acute (i.e. hours) metabolic fluctuations49. Recent advances 
in mass spectrometry techniques have led to the reintroduc-
tion of deuterium oxide (D

2
O)50,51, which enables the assess-

ment of metabolic flux in response to a variety of stimuli, such as  
skeletal muscle loading11,12,42,46, unloading52–54, and feeding28,42,46 
under longer-term, “free-living” conditions (i.e. integrated over 
days to weeks). Brook and colleagues50 recently validated the 
use of D

2
O in monitoring the synthesis of ribonucleotides, pro-

viding the first dynamic measure of RNA synthesis in human 
skeletal muscle in response to RET. Of particular note in this 
study, RNA synthesis was increased above basal rates over the  
0–6-week period with continuous RET50. Importantly, myofi-
brillar MPS in these individuals was not significantly increased 
above basal levels during this period42, showing a discord-
ance between translational capacity and MPS with long-term 
muscle adaptations. Future studies incorporating dynamic  
measures of RNA synthesis and integrated rates of MPS 
in concert with omic-level measurements should provide a  
platform to elucidate the relative contribution, and time-course, 
of translational efficiency and capacity to changes in MPS and  
hypertrophy in response to chronic RET.

Omic-based science and skeletal muscle 
hypertrophy
Our present mechanistic understanding of muscle hypertrophy 
has largely been informed by the use of “targeted” analytical 
approaches providing static snapshots (i.e. qPCR and immu-
noblotting). However, the increased usage of “omic” tech-
nologies can offer an unbiased and integrative understanding 
of the processes regulating muscle hypertrophy. Proteomic  
profiling has tremendous potential to advance our understand-
ing of muscle growth; however, it is currently constrained by a 
relatively limited coverage of highly abundant proteins in the 
proteome versus a far larger coverage of RNA: <500 proteins  
reliably detected55,56 versus ~30,000 RNA species55. This low  
protein:RNA ratio results in an incomplete understanding 
of downstream ontology/pathway analyses57 but could also 
mask the important role of less-abundant regulatory proteins 
in muscle hypertrophy (i.e. signaling molecules57 or integrin  
receptors58). It is possible to circumvent these limitations 
by studying the expressed RNA complement of the cell (via  
transcriptomics) or translatome of the cell (via polysomal 
RNA and transcriptomics), given the close association between 
mRNA and protein abundance under most conditions59,60 and, in  
particular, the global translatome in skeletal muscle61,62.

Early applications of transcriptomics have shown that older 
adults, and lower hypertrophic responders in general63, express 
a pro-inflammatory gene profile at rest and respond to an acute 
bout of RE with an exaggerated inflammatory response64, link-
ing inflammation with an attenuated muscle growth response to 
RET. Elderly adults also have an elevated expression of p2165,  
a cell cycle inhibitor that affects SC proliferation66 and may 
therefore impair muscle growth following RET21. In contrast, 
higher hypertrophy responders to RET express higher levels 
of several well-known growth and remodeling genes prior to 
training compared to lower responders, which is suggestive 
of a “primed” basal state of protein turnover63. Higher RET  
responders also express greater levels of oxidative, angiogenic, 
and extracellular matrix remodeling genes after RET65,67. Two 
noteworthy yet ill-characterized genes that are also upregulated in 
high responders in the basal state include NAP1L1 and DGKZ63, 
which encode a nucleosome-associated protein and diacylg-
lycerol kinase zeta (DGKζ), respectively. The protein encoded 
by NAP1L1 controls chromatin compaction but has also been 
shown to bind to and regulate the nuclear-cytoplasmic shuttling  
of DGKζ68. Importantly, DGKζ was shown recently to play 
a pivotal role in mechanical overload-induced muscle hyper-
trophy in rodents, but only if the nuclear localization signal  
of DGKζ was intact69. While the nature of this interaction in 
humans warrants further investigation, the example attests to  
the hypothesis-generating power of transcriptome profiling and  
its inherent potential for biological discovery.

An ongoing challenge in transcriptomics is the use of gene ontol-
ogy (i.e. DAVID70) and network analytical tools (ingenuity 
pathway analysis [IPA]71), which are commonly used to uncover 
functional relationships from large lists of RET-regulated 
genes. These tools rely on the function(s) of a gene product  
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being known56. However, data-driven networks (DDNs) are 
networks constructed on the basis of experimentally derived 
gene co-expression similarities, without a priori knowledge of  
gene function. Clarke and colleagues72 used a DDN approach 
to construct gene networks from pre- and post-muscle tran-
scriptome samples obtained from the HERITAGE study73  
(endurance-based training) and identified EIF6 as an exer-
cise-responsive highly interconnected “hub” gene. EIF6 was 
therefore predicted, on the basis of being highly connected to  
other regulated genes, to play an important role in the adapta-
tion to endurance training. Indeed, subsequent development  
of a mutant EIF6 murine model was shown to affect many of 
the same signaling pathways predicted by the HERITAGE  
study72,73 that affect phenotype. Greater use of DDNs and network 
modeling could be applied to the study of muscle hypertrophy  
with RET with, we propose, great potential.

SCs and their role in RET-induced hypertrophy
In humans, increases in muscle fiber size are commonly 
reported with a concomitant increase in the number of myo-
nuclei74, an observation that lends credence to the myonuclear 
domain theory of muscle growth75. This theory suggests that 
each myonucleus governs a set volume within the muscle fiber 
and, when the ceiling of the muscle fiber volume is reached,  
the transcriptional capacity of an existing myonucleus is 
reached and new myonuclei must be added to maintain (or re-
establish) transcriptional control over a defined myonuclear 
domain. Skeletal muscle is a post-mitotic tissue; therefore, 
the addition of new myonuclei must come from a new source, 
which occurs via donation from skeletal muscle stem cells,  
i.e. SCs.

Activation of SCs occurs following various stimuli such as 
injury, damage, and exercise. Once activated, SCs progress from 
proliferation to terminal differentiation, eventually fusing and 
donating their nuclei to existing myofibers, a process termed 
the myogenic program. Although common dogma had long 
associated SCs with skeletal muscle hypertrophy76,77, this con-
cept has recently been challenged. McCarthy and colleagues78  
were the first to use the Pax7-DTA mouse strain that results in 
conditional SC ablation to demonstrate that significant over-
load-induced hypertrophy, via synergist ablation, can occur 
in SC-depleted rodent skeletal muscle. The same group rein-
forced these findings using hind-limb suspension, to induce  
atrophy, followed by reloading and regrowth of muscle which 
was not affected by SC depletion, in the Pax7-DTA mouse79. 
Importantly, while interesting, these results highlight that 
SCs are not necessary for hypertrophy in short-term extreme 
models of hypertrophy but do not address the question of  
whether SCs are involved in a more physiologically relevant 
hypertrophic situation (i.e. following RET). This notion was 
further challenged by a study from Egner and colleagues80, in 
which they describe impaired hypertrophy with 2 weeks of 
overload, via synergist ablation, using the same Pax7-DTA  
mouse strain78,79. Further to this, work by Murach and col-
leagues81 demonstrated that myonuclear accretion via the SC is 
necessary to support overload-induced hypertrophy in younger 
growing mice, highlighting that the requirement of SCs to  

support hypertrophy is affected by age. Notably, the extent of  
hypertrophy is attenuated following 8 (versus 2) weeks of over-
load-induced hypertrophy in Pax7-DTA mice82, suggesting that 
SCs are involved in muscle growth. Importantly, the research-
ers described an accumulation of the extracellular matrix  
in SC-depleted mice following 8 weeks of overload, which 
resulted in the impaired hypertrophic response82. These data 
suggest that SCs are able to support muscle growth not only by 
fusing to existing fibers resulting in myonuclear accretion but 
also by their interaction with other cell types to regulate the  
extracellular matrix deposition83. Although work in rodent 
models has been essential in providing insight into the basic 
cellular and molecular mechanisms that result in muscle  
hypertrophy, these results cannot always easily be translated  
to humans. For example, cerebral palsy, a developmental motor 
disorder characterized by a reduction in muscle fiber size, is 
also associated with a reduction in SC content84,85, and it is  
postulated that the reduction in SC content may contribute to 
the impairment in muscle growth86. For obvious reasons, it 
isn’t possible to study the effects of SC depletion in humans,  
and the observation of SCs in a human model with a reduced 
(although not ablated) SC content is often confounded by  
the presence of chronic disease, where factors other than SC  
content may contribute to the inability of muscle to hypertrophy.

Importantly, the majority of evidence stemming from human 
studies has implicated a role for SCs in contributing to increases 
in muscle fiber size. Several studies have described a positive 
relationship between muscle fiber size and number of myonu-
clei in human muscle19,21,47,87–92. In addition, studies have also 
described an increase in myonuclear number with training-
induced fiber hypertrophy concomitant with an increase in SC  
content80,87–90. It is, however, important to note that several 
groups have reported an increase in fCSA without an increase 
in SC/myonuclear content92–94. This may be due to several  
factors, one of which is the ability of existing myonuclei to 
increase their transcriptional capacity to support the increase in  
muscle fiber size95.

Interestingly, individuals classified as “extreme” (hypertrophy) 
responders to RET had greater basal SC content compared 
to “lower” and “moderate” responders, which translated to 
a greater expansion of the SC pool with training and was  
accompanied by an increase in myonuclear content; however, 
the myonuclear domain also increased21. Thus, similar to tran-
scriptional observations, the basal characteristics of skeletal 
muscle (i.e. SC content) may play a role in response plasticity to  
hypertrophic stimulus. Congruent with previous work21, 
we demonstrated that the acute SC response to a bout of  
unaccustomed RE is related to the increase in quadriceps  
volume observed following training87. Although SCs likely  
contribute to hypertrophic adaptation via myonuclear accre-
tion, it is important to recognize the ability of resident myo-
nuclei to respond to varying stimuli such as RET and their  
inherent ability to support growth. The concept of muscle 
“memory”, manifested through possible epigenetic changes, 
is also likely an important contributor to the ability of skeletal  
muscle to hypertrophy. Seaborne and colleagues96 demonstrated 
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that prior RE-induced hypertrophy enhanced the subsequent  
response to a bout of resistance training, following a period 
of detraining, which may be a consequence of the wide-
spread hypomethylation incurred during the first adap-
tive response. Together, the evidence in humans reporting an 
increase in muscle fiber size with a concomitant increase in  
myonuclei19,21,47,87–92 highlights that SCs likely play a role in 
mediating skeletal muscle hypertrophy. However, as shown 
by Kirby and colleagues95, using a time-course experiment  
following synergist ablation in the Pax7-DTA mouse model, the  
ability of existing resident myonuclei to support periods of fiber 
growth cannot be disregarded.

Conclusion and future directions
Skeletal muscle plays an indispensable role in an array of 
mechanical and metabolic functions97. Typically, as we age, 
the quantity and quality of skeletal muscle deteriorates owing 
to the infiltration of non-muscle tissue including adipose and  
connective tissue98. Therefore, concerted efforts to increase  
and maintain skeletal muscle mass should be made by a range 
of individuals spanning from those striving to improve ath-
letic performance to those focused on extending the healthspan.  
RE and dietary protein act synergistically and, at present, provide 
the most effective strategy to augment skeletal muscle mass37. 
Skeletal muscle hypertrophy is a complex process with mul-
tiple regulatory gene/protein hubs that have recently received 
significant attention in helping to decipher the mechanis-
tic underpinnings that dictate the skeletal muscle adaptive  
response. As a result, a number of exogenous factors that  
influence endogenous pathways have been identified to play an  
important role in skeletal muscle hypertrophy.

MPS is the principal locus of control that influences muscle 
protein accretion in response to anabolic stimuli, as opposed 
to MPB28–31. However, the relative contribution of increased 

translational efficiency and translational capacity in affecting  
hypertrophy remains unclear. Intermittent elevations in rates 
of MPS in response to exogenous stimuli (i.e. RE and protein 
nutrition) drive muscle hypertrophy28–31. Nevertheless, research 
focused on translational capacity is in its infancy, and the proposed  
importance6 of ribosomal biogenesis has yet to be confirmed.

What is clearly evident is that muscle hypertrophy is a multi-
faceted process. However, targeted approaches that probe spe-
cific genes and proteins will provide only an incomplete picture 
of muscle growth. Unbiased, global “omic” technologies have 
the potential to provide a more comprehensive understanding  
of the underlying prerequisites for muscle growth but have  
inherent limitations that need to be considered.

Myonuclear accretion, due to a loading stimulus, is a means 
by which the transcriptional capacity of the skeletal muscle 
may be increased. The addition of new myonuclei is due 
to the activation and subsequent fusion of SCs to muscle  
fibers, and substantial evidence shows a role for SCs in muscle  
hypertrophy in humans. Although this is speculative, we 
hypothesize that resident myonuclei likely possess the ability, 
possibly through epigenetic modification, to increase tran-
scriptional capacity to a certain extent, ultimately supporting  
muscle growth.

Although significant progress has been made, considerable 
work remains to be done in order to deepen our understanding 
of the processes that govern RET-induced muscle hypertrophy. 
Future studies incorporating dynamic measures of RNA syn-
thesis, integrated rates of MPS, and SC/myonuclei assessments  
in concert with “omic” technologies and DDNs will provide a 
platform to elucidate the relative contribution, and time-course, of 
translational efficiency and capacity to changes in MPS and hyper-
trophy in response to chronic RET.
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