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Abstract

Background

How effective have lockdowns been at reducing the covid-19 infection and mortality rates?

Lockdowns influence contact among persons within or between populations including

restricting travel, closing schools, prohibiting public gatherings, requiring workplace clo-

sures, all designed to slow the contagion of the virus. The purpose of the present study was

to assess the impact of lockdown measures on the spread of covid-19 and test a theoretical

model of the covid-19 pandemic employing structural equation modelling.

Methods

Lockdown variables, population demographics, mortality rates, infection rates, and health

were obtained for eight countries: Austria, Belgium, France, Germany, Italy, Netherlands,

Spain, and the United Kingdom. The dataset, owid-covid-data.csv, was downloaded on 06/

01/2020 from: https://github.com/owid/covid-19-data/tree/master/public/data. Infection

spread and mortality data were depicted as logistic growth and analyzed with stepwise mul-

tiple regression. The overall structure of the covid-19 data was explored through factor anal-

yses leading to a theoretical model that was tested using latent variable path analysis.

Results

Multiple regression indicated that the time from lockdown had a small but significant effect

(β = 0.112, p< 0.01) on reducing the number of cases per million. The stringency index pro-

duced the most important effect for mortality and infection rates (β = 0.588,β = 0.702, β =

0.518, β = 0.681; p< 0.01). Exploratory and confirmatory analyses resulted in meaningful

and cohesive latent variables: 1) Mortality, 2) Infection Spread, 3) Pop Health Risk, and 4)

Health Vulnerability (Comparative Fit Index = 0.91; Standardized Root Mean Square Resid-

ual = 0.08).
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Discussion

The stringency index had a large impact on the growth of covid-19 infection and mortality

rates as did percentage of population aged over 65, median age, per capita GDP, diabetes

prevalence, cardiovascular death rates, and ICU hospital beds per 100K. The overall Latent

Variable Path Analysis is theoretically meaningful and coherent with acceptable fit indices

as a model of the covid-19 pandemic.

Introduction

How effective have lockdowns been at reducing the covid-19 infection and mortality rates?

Now that many countries have had more than a year under lockdown, it is possible to study

empirically the effectiveness of lockdowns in reducing the spread of covid-19 and the related

mortality [1–5]. These lockdowns are non-pharmaceutical interventions of contact among

persons within or between populations including restricting travel, closing schools, prohibiting

public gatherings, requiring workplace closures, all designed to slow the contagion of the

virus. In a recent (published June 2021) large-scale study employing a spatiotemporal analysis

of human mobility during the COVID-19 epidemic in Switzerland, it was found that a 1%

reduction in human mobility predicted a 0.88 to 1.11% reduction in daily reported COVID-19

cases [1]. But even as the pandemic has abated in some countries with slowing infection and

mortality, it has sped up in some African countries, Columbia, and Brazil [1, 2]. The coronavi-

rus appeared in China and then spread to Europe, first in Italy then Spain and subsequently to

other countries [6].

Most of anti-contagion approaches are primarily informed by epidemiological simulations

[7–9] that can be useful in modeling the impact of policies such as lockdowns, but the actual

effects of these policies on infection rates in the ongoing covid-19 pandemic are not well

understood. Some empirical studies of the spread and rate of infection of the covid-19 have

been done.

An early study of the pandemic by Tobı́as [10] found that from the end of February through

April 2020, the SARS-CoV-2 epidemic in Spain followed the pattern of that in Italy very

closely. Quasi-Poisson regression analyses showed that after the first lockdown, incidence

trends were reduced in both countries for some outcomes (e.g., new cases, total deaths, deaths

per million, etc.) but the infection trends kept rising. During a second lockdown the trend

slopes for both countries in daily incident cases and intensive care unit admissions were

reduced when more restrictive measures for mobility were introduced. The stringency of lock-

down may be effective in slowing the spread. In simulation models using piecewise functions,

results indicated that lockdowns could reduce the spread of covid-19 infection [11].

Ambikapathy and Krishnamurthy [12] assessed the validity of the impact of various lock-

down scenarios (14, 21, 42 days) on covid-19 transmission in India. For high interpersonal

contact (e.g., crowded transit stations) resulting in exposure to infection, the model predicted

an exponential transmission. Hsiang et al [6] employed panel regression models to estimate

how the daily growth rate of infections changes over time within China, South Korea, Italy,

Iran, France, and the United States (US). Interventions such as travel restrictions, social dis-

tancing, quarantines, lockdowns, and closing schools prevented or delayed several million

cases.

There are several major factors such as timeliness, duration and stringency of lockdown

that can affect the spread and mortality of covid-19 infection. The stringency index
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(Government Response Stringency Index) is a composite measure based on 9 response indica-

tors including school closures, workplace closures, and travel bans, rescaled to a value from 0

to 100 (100 = strictest response—Oxford COVID-19 Government Response Tracker, Blavatnik

School of Government) (see S1 Appendix for a full description).

The impact of a full lockdown with very rigorous stringency was demonstrated in Vo’, a

small town of around 3,000 people near Venice in the Veneto region [13]. In response to the

first confirmed covid-19 death in Italy on February 21, 2020, in Vo’ the regional authorities

imposed a lockdown of the whole municipality for 14 days. Lavezzo et al [13] collected infor-

mation on the demographics, clinical presentation, hospitalization, contact network and pres-

ence of SARS-CoV-2 infection in nasopharyngeal swabs for the population at two consecutive

time points. The results indicated that the testing and tracing approach had a huge impact on

the course of the epidemic essentially stopping the transmission of the virus.

The findings from the above empirical studies and simulations may help inform policies

and when they should be deployed, intensified, or lifted. None of this work, however, has pro-

vided an urgently needed systematic theoretical model of how the covid-19 pandemic is behav-

ing. A structural equation modeling approach, using latent variable path analysis (LVPA), may

provide such a model.

Structural Equation Modelling (SEM): Latent variable path analysis

SEM represents major advance in data analysis and theory building and testing in social and

psychological data, but has not been widely used by epidemiologists. LVPA, a specific applica-

tion of SEM, is a method to identify and assess the effects of a set of variables acting on a speci-

fied outcome via multiple causal pathways. With this powerful statistical tool, complex

relationships among observed and latent variables can be analyzed. Additionally, causal rela-

tionships with non-experimental data can be posited and tested. This allows researchers to

explain the development of phenomena such as disease and health behaviors. These statistical

methods include factor analysis and structural equation models. SEM is a significant advance

over conventional epidemiological analytic techniques such as multiple regression, path analy-

ses, exploratory factor analyses, etc., as it examines linear causal relationships among variables,

while simultaneously accounting for measurement error. Therefore, LVPA was applied to the

covid-19 epidemiological data to develop and test a theoretical model of the pandemic.

The major purposes of the present study were to (1) explore the timeliness and severity of

lockdown in eight European countries (Austria, Belgium, France, Germany, Italy, Netherlands,

Spain and United Kingdom) to see how effective the lockdown has been in reducing the spread

of covid-19 and the related mortality; and (2) to employ advanced epidemiological research

methods by exploring the structure of the data to develop and test the fit of a model of the

covid-19 pandemic through LVPA.

Method

Data

The dataset, owid-covid-data.csv, was downloaded on 06/01/2020 from: https://github.com/

owid/covid-19-data/tree/master/public/data (The complete COVID-19 dataset is a collection

of the COVID-19 data maintained by Our World in Data—Statistics and Research and data:

Hannah Ritchie, Esteban Ortiz-Ospina, Diana Beltekian, Edouard Mathieu, Joe Hasell, Bobbie

Macdonald, Charlie Giattino, and Max Roser; Web development: BreckYunits, Ernst van

Woerden, Daniel Gavrilov, MatthieuBergel, Shahid Ahmad, and Jason Crawford). The vari-

ables are summarized in Table 1 (details for data columns and variables are in S2 Appendix).
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Analyses

The total sample from December 31, 2019 to June 1, 2020 consisted of 1,231 cases. This sample

was randomly separated into two sub-samples. This dual sampling procedure has been recom-

mended when employing structural equation modeling to allow both exploratory and confir-

matory techniques [14, 15]. The first random sample (n = 616) was used to conduct

hierarchical logistic analyses and stepwise multiple regression (SMR) analyses. Additionally,

exploratory factor analysis (EFA) with principal components as the extraction method and

oblique (oblimin) rotations were run. SPSS 24.0 was used for these analyses employing two-

tailed tests with p < .05.

A latent variable path analysis (LVPA) was conducted on the second random sample

(n = 615). The structural equation computer program lavaan from Comprehensive R Archive

Network (CRAN - http://CRAN.R-project.org/package=lavaan and supported by the website

http://lavaan.org/.) was used for the LVPA as it is a specialized and more flexible program for

these type of analyses than is SPSS. Several fit indices were selected in order to test the model:

comparative fit index (CFI), Tucker Lewis Index (TLI), and standardized root mean square

residual (SRMR) [14, 15]. Typically, good fitting models have an SRMR at or less than 0.08,

CFI greater than 0.90 and TLI greater than 0.85 [16].

In summary, three types of analyses were conducted to (1) assess the influence of the lock-

down measures (hierarchical logistic models) of the covid-19 infection of the mortality data

for eight countries (Austria, Belgium, France, Germany, Italy, Netherlands, Spain, and the

United Kingdom), (2) determine the best predictors of mortality and infection spread (SMR),

and (3) explore (EFA) and test the fit of a theoretically comprehensive model of the latent

structure of the covid-19 data (LVPA).

Results

Descriptive statistics and logistic models of the mortality data for the eight

countries

Table 1 contains summary data for the 8 countries. The highest total cases was in Spain

(239,429) with Italy closely behind (233,019). The fewest total case was in Austria (16,642).

When comparing the prevalence rates the highest rate of cases / million was Spain (1,910.65)

Table 1. Descriptive statistics for each country through to June 1, 2020.

Variable Austria Belgium France Germany Italy Netherlands Spain UK

Total Cases 16642 58381 151753 181815 233019 46442 239429 274762

Total cases / mil 780.62 1673.45 792.78 743.39 1591.85 960.93 1910.65 1063.84

New cases / mil 17.61 24.02 18.36 30.88 29.05 17.61 24.02 18.36

Total deaths 668 9467 28802 8511 33415 5956 27127 38489

Total deaths/ mil 74 251.27 136.62 26.13 214.11 115.01 204.88 154.33

New deaths / mil .40 4.72 3.28 .70 3.62 2.22 3.81 4.15

Stringency index 39.77 44.04 49.15 38.29 56.10 38.90 46.22 37.13

Median age 44.40 41.80 42.00 46.60 47.90 43.20 45.50 40.80

% aged 65 or older 19.20 18.57 19.72 21.45 23.02 18.78 19.44 18.52

CV death rate 145.18 114.90 86.06 156.14 113.15 109.36 99.40 122.14

ICU hospital beds/100k 7.37 5.64 5.98 8.00 3.18 3.32 2.97 2.54

Days since lockdown 76 74 75 69 83 69 78 68

gdp per capita 45436 42658 38605 45229 35220 48472 34272 39753

Diabetes prevalence 6.25 4.29 4.77 8.31 4.78 5.29 7.17 4.28

https://doi.org/10.1371/journal.pone.0258205.t001
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with Belgium (1,673.45) a close second; Germany had the lowest prevalence (743.39). The

stringency index is the composite measure. A number of other variables (median age of the

population, % aged 65 or older, cardiovascular death rate, diabetes prevalence, etc.) are sum-

marized in Table 1.

Fig 1 contains the logistic growth data for the eight countries from February 29 to June 1,

2020. Additionally, the lockdown dates are summarized in the figure. The supposition is that

early lockdown helps to “flatten the curve” or reduce the rate of deaths per million. The earliest

lockdown was Italy (March 9) and the latest was the United Kingdom (March 24).

The mean incubation period (the time from exposure to symptom onset) for COVID-19 is

approximately 5 (2–7) days [17, 18]. Approximately 98% of individuals who develop symp-

toms will do so within 11.5 days of infection. The median interval from symptom onset to

Fig 1. Cases over time. Lockdown dates: Austria = 2020-03-16, Belgium = 2020-03-18, France = 2020-03-17,

Germany = 2020-03-23, Italy = 2020-03-09, Netherlands = 2020-03-23, Spain = 2020-03-14, United Kingdom = 2020-

03-24.

https://doi.org/10.1371/journal.pone.0258205.g001
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hospital admission is 7 (3–9) days. The onset of symptoms that result in death is 6 to 41 days

with a median = 14 days [18]. Therefore, in Fig 1 when the first deaths from covid-19 were

detected in these European countries in late February and early March, the infection was well

underway. The first cases were identified in early March in Italy and mid-March in Spain (Fig

1). Logistic growth of cases continued in both of these countries until mid-April and began to

slow after that.

Prevalence

Prevalence is the number of cases of covid-19 that are present in a particular population (e.g.,

country) at a given time. The death rates per million over time are summarized in Fig 2.

France’s deaths began around mid-March but the rate was slower than for Italy and Spain.

France’s curve started to flatten in mid-May. The total growth of number of cases was slower

for Belgium, Netherlands, Germany and Austria (except for Germany, all relatively small pop-

ulations, Belgium = 11.5 million; Netherlands = 17 million; Austria = 9 million). In the United

Kingdom (population = 68 million) the number of deaths did not start to grow rapidly until

early April but then increased sharply and continued to June.

Incidence

Incidence is the number of new deaths of covid-19 that develop in a given period of time, in

Fig 2, the new deaths per million. The incidence rates are highly variable by country with

Spain and Italy showing high incidence in the earlier part of the year, France later and the

remaining countries later still.

Flattening the curve

Given the incubation period to hospitalization of roughly 14 days of Covid-19 and 14 days beyond

that for death to occur, a “flattening of the curve” should be observed within about 28 days to one

month of lockdown. In Fig 1 (Total cases), we do see such a phenomenon for Austria and Ger-

many but not for Italy, France, Spain and Belgium. The Netherlands appears to be intermediate in

this. The total deaths per million (Fig 1) follow a logistic growth for Italy, France, the UK, and

Spain but flatter curves for Austria, Germany, Netherlands and Belgium. The rate of new deaths

per million is highly variable across countries after lockdown. Lockdown timing does not seem to

have a straightforward effect of “flattening the curve” or slowing the mortality rate.

Belgium is an anomaly when comparing Fig 1 (Total cases per million) and Fig 2 (Total

deaths per million), the growth curves for cases and deaths are rapid (Figs 1 and 2). The infec-

tion rate resulting in deaths per capita in Belgium appears unusually high compared to the

other European countries.

A summary of the above observations indicates that early lockdown has only a minor effect

on the rate of growth of deaths per million and total cases per million. A possible major factor

to be explored for reducing the rate of growth for deaths is the stringency index. Both the UK

and Germany had among the lowest stringency indices (37.13 and 38.29 respectively—

Table 1) perhaps accounting for the rapid growth of deaths per million and new deaths per

million for the UK but not for Germany.

Stepwise multiple regression analyses

In order to determine the impact of several variables simultaneously on mortality data and

infection rate, four SMR analyses were conducted for three important mortality variables

(total deaths per million, total cases per million, and total deaths) and the infection rate (new
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cases per million)—Table 2. The stepwise criteria were Probability-of-F-to-enter � 0.05, Prob-

ability-of-F-to-remove � 0.10 for all the beginning independent variables: stringency index,

ICU hospital beds per100k, gdp per capita, diabetes prevalence, days since lockdown, aged 65

or older, median age, and cvd death rate.

Part A, B and C of Table 2 contain prevalence information. The stepwise regression models

in Part A has total deaths per million as the dependent variable. The optimal results is model 4

with stringency index (β = 0.588, p< 0.01), ICU hospital beds per100k (β = -0.107, p< 0.01),

gdp per capita (β = -0.119, p< 0.01), diabetes prevalence (β = -0.112, p< 0.01) with a Multiple

R = 0.661 and R2 = 0.437 (i.e., 43.7% of the variance).

Fig 2. Deaths over time.

https://doi.org/10.1371/journal.pone.0258205.g002
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Table 2, Part B has total cases per million with 5 independent variables: stringency index

(β = 0.702, p< .01), ICU hospital beds per100k (β = -0.124, p< .01), days since lockdown (β =

0.112, p< .01), aged 65 or older (β = 0.243, p< .01), and median age (β = -0.203, p< .01).

This model results in a multiple R = 0.736 and R2 = 0.542 (54.1% of the variance). The regres-

sion analysis for total deaths (independent variable) is summarized in Part C of Table 2. The

optimal model consists of stringency index (β = 0.518, p< .01), gdp per capita (β = -0.239, p<

.01), ICU hospital beds per100k (β = -0.172, p< .01), and aged 65 or older (β = 0.215, p< .01).

This model results in a Multiple R = 0.679 and R2 = 0.461 (i.e., 46.1% of the variance).

Incidence (Part D of Table 2) contains the dependent variable, new cases per million, and

five independent variables resulting in multiple R = 0.696 and R2 = 0.484 (48.4% of the vari-

ance): stringency index (β = 0.681p< .01), ICU hospital beds per100k (β = - 0.144, p< .01),

cardiovascular death rate [CVD] (β = 0.161, p< .01), aged 65 or older (β = -0.137, p< .01),

gdp per capita (β = -0.117, p< .01) and known to have an impact on mortality rates for covid-

19 infections [19, 20].

Table 2. Stepwise� multiple regression for covid-19 cases and deaths.

Part A–Dependent variable: total deaths per million

Model: Independent variables R£ R2 β€

1. stringency index .609 .370 .588a

2. stringency index, ICU hospital beds per100k .646 .418 -.107

3. stringency index, ICU hospital beds per100k,, diabetes prevalence .654 .427 -.119

4. stringency index, ICU hospital beds per100k, diabetes prevalence, gdp per capita .661 .437 -.112

Part B–Dependent variable: total cases per million

Model: Independent variables R£ R2 β€

1. stringency index .707 .500 .702 a

2. stringency index, ICU hospital beds per100k .721 .520 -.124

3. stringency index, ICU hospital beds per100k, days since lockdown .726 .528 .112

4. stringency index, ICU hospital beds per100k, days since lockdown, aged 65 or older .730 .532 -.243

5. stringency index, ICU hospital beds per100k, days since lockdown, aged 65 or older, median

age

.736 .542 -.203

Part C–Dependent variable: total deaths

Model: Independent variables R£ R2 β€

1. stringency index .558 .312 .518 a

2. stringency index, gdp per capita .664 .441 -.239

3. stringency index, gdp per capita, ICU hospital beds per100k .676 .457 -.172

4. stringency index, gdp per capita, ICU hospital beds per100k, aged 65 older .679 .461 .215

Part D–Dependent variable: new cases per million

Model: Independent variables R£ R2 β€

1. stringency index .673 .453 .681 a

2. stringency index, ICU hospital beds per100k .683 .467 -.144

3. stringency index, ICU hospital beds per100k, cvd death rate .687 .472 .161

4. stringency index, ICU hospital beds per100k, cvd death rate, aged 65 or older .691 .478 -.137

5. stringency index, ICU hospital beds per100k, cvd death rate, aged 65 or older, gdp per capita .696 .484 -.117

�Stepwise Criteria: Probability-of-F-to-enter � 0.05, Probability-of-F-to-remove� 0.10).
£ Multiple correlation coefficient
€ Standardized beta weight (ranges: +1.0 to -1.0)
aBeta for Stringency Index.

https://doi.org/10.1371/journal.pone.0258205.t002
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The stringency index is the single most important independent variable in all four of the

SMRs (i.e., Parts A, B, C, D of Table 2). Days since lockdown also figures as a significant IV in

the total cases per million (Part B) regression analysis. (The full regression equations for raw

data and un-standardized beta weights that allow for predictions of outcomes are reported in

S3 Appendix). The predicted results for total deaths per million, total cases per million, and

total deaths are linear functions correlated with actual outcomes at r = .83, r = .78, and r = .83

respectively. For new cases per million, there is also a linear function resulting in r = .34 of pre-

dicted to actual outcomes. The predictive efficiency of these regression equations is summa-

rized in S4 Appendix.

Exploratory factor analysis and latent variable path analysis

Exploratory factor analysis. Exploratory factor analysis (EFA) was employed to study the

structure of the covid-19 data, particularly demographic, social and epidemiological variables

to explain correlations among multiple variables as underlying factors. Principal component

analysis (PCA) was employed as the extraction method. Direct oblimin rotation with Kaiser

Normalization was employed to achieve a simple factor structure and to explore the correla-

tions among factors (see S5 Appendix for full matrix).

An optimal solution resulted in four cohesive, theoretically meaningful factors that

accounted for 84.6% of the total variance: 1) Infection Spread, 2) Health Vulnerability, 3) Pop
Health Risk, and 4) Mortality. These factors represent underlying concepts that cannot be ade-

quately measured by a single variable. For example, various measures of Infection Spread may

be influenced by one or more underlying factors (new cases, new deaths, new deaths per mil-

lion, stringency index).

Infection Spread accounted for the largest percentage of the variance (35.8%). Health Vul-
nerability with loadings from median age, aged 65 years or older, and days since lockdown

accounted for 21.6% of the variance. The major loadings on Pop Health Risk were cardiovascu-

lar death rate, ICU hospital beds per 100k, with minor contributions (split loading) from days

since lockdown for 15.01% of the variance. Mortality had loadings from total deaths per mil-

lion, total cases per million and a split loading from the stringency index, accounting for

12.3% of the variance. Both of the lockdown variables (days since lockdown; and how strin-

gently society was locked down) loaded as theoretically expected. The stringency index loaded

on both Infection Spread and Mortality, which were correlated r = .41 (p< .01). Health Vulner-
ability was correlated with Pop Health Risk, r = .14 (p< .05.

Latent variable path analysis

The next stage of the analysis employed LVPA to investigate the construct validity of the

covid-19 data structure. Based on the measurement model derived in the EFA, we devel-

oped the full latent variable model (Fig 3) and tested it on the second random sample of

data (n = 615) with maximum likelihood (ML) estimation with the lavaan program in R

(the R code and raw results for these analyses are summarized in S6 Appendix). The LVPA

model showed an acceptable fit (CFI = 0.91; TLI = .85; SRMR = .08). Standardized path

coefficients for the model are displayed in Fig 3. Four latent variables were identified and

confirmed in the model: 1) Infection Spread, 2) Health Vulnerability, 3) Pop Health Risk,

and 4) Mortality.

As theoretically expected, Infection Spread was identified with large loadings by new cases

(.90), new deaths (.92), new deaths per million (.81) and the stringency index (.56). Mortality
was identified by total cases per million, total deaths per million and the stringency index.

Infection Spread and Mortality were inter-correlated as expected, r = 0.30 (p< .01). Health
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Vulnerability was identified by percent of population aged 65 years or older, median age of the

population and days since lockdown (negative path coefficient = -.76). Pop Health Risk was

identified by cardiovascular death rate, ICU hospital beds per 100K, and days since lockdown.

The two latent variables Health Vulnerability and Pop Health Risk were inter-correlated, r =

.15 (p< .05). Overall, the latent variable path model fit the data well with the expected theoret-

ical path coefficients and inter-correlations among the latent variables.

Fig 3. Latent variable path analysis of covid-19 impact using Maximum Likelihood (ML) estimation. (Comparative Fit Index = 0.91;

Tucker-Lewis Index = 0.85; Standardized Root Mean Square Residual = 0.08.

https://doi.org/10.1371/journal.pone.0258205.g003

PLOS ONE A theoretical model of a pandemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0258205 October 5, 2021 10 / 14

https://doi.org/10.1371/journal.pone.0258205.g003
https://doi.org/10.1371/journal.pone.0258205


Discussion

The major results are (1) a LVPA theoretical model of the covid-19 pandemic, and (2) a deter-

mination of the influence of the lockdown measures. The date of the lockdown for the mortal-

ity data for eight countries was minor but the stringency of the lockdown had a major impact.

Similar results were obtained by Maier and Brockmann [21] in covid-19 data from China

showing non-exponential spread that occurs when the supply of susceptible individuals is

depleted on a time scale comparable to the infectious period of the virus.

Logistic growth

The logistic growth data for the eight European countries in the present study revealed that the

earliest lockdown was Italy (March 9) and the latest was the United Kingdom (March 24).

Both the UK and Belgium had among the lowest stringency indices (33.56 and 35.84 respec-

tively) thus accounting for the rapid exponential growth of deaths per million and new deaths

per million due to poor containment [11, 12, 21].

Stepwise multiple regressions

The most important effect was from the stringency index. Based on the regression equations,

there was relatively high predictive efficiency for total deaths per million, total cases per mil-

lion, total deaths, and new cases per million.

Besides the stringency index, other important variables that had an impact on outcomes

were ICU hospital beds per100k, diabetes prevalence, gdp per capita, cardiovascular death

rate, percentage of the population aged 65 or older, median age of the population, which are all

suspected to have an impact on infection and mortality rates for covid-19 infections [22–24].

A recent British study, found that increasing age, male sex, population density, more deprived

areas, and black ethnicity were associated with an increased risk of a positive SARS-CoV-2 test

as well as chronic kidney disease and obesity [25].

LVPA and a theoretical model

A theoretical model was tested in a confirmatory LVPA analysis (Fig 3); the four latent vari-

ables were confirmed. Both of the lockdown variables (days since lockdown and stringency

index) behaved as theoretically expected s did the stringency index loading on both Infection

Spread and Mortality The days since lock down loaded on Health Vulnerability.

The Health Vulnerability latent variable was identified by an aging population. There is also

the large negative (-0.76; an inverse relationship) path coefficient to days since lockdown, as is

theoretically expected. The Pop Health Risk latent variable was identified by the cardiovascular

death rate and the available ICU hospital beds per 100K, and a medium path coefficient from

days since lockdown (0.41), all theoretically coherent for this latent variable. Health Vulnera-
bility and Pop Health Risk have a small but significant inter-correlation (r = 0.15, p< .05). The

overall LVPA model is theoretically meaningful and coherent with acceptable fit indices and

root mean square residual.

Strengths and limitations

The present study has several strengths: (1) data from several countries, (2) precise indicators

of containment, (3) multivariate statistical approach to the data, and (4) the development and

fitting of a LVPA theoretical model of the covid-19 pandemic.

Limitations include: (1) these eight European countries are somewhat homogeneous com-

pared to the variability of the rest of the world, (2) the lockdown dates were also quite similar
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varying only by days or weeks at most, and (3) other high risk health variables were not

included (e.g., kidney disease, obesity).

Conclusions

The results converged to indicate there was a larger effect from the stringency index on the

growth of covid-19 infection and mortality rates. Notwithstanding the limitations of the rela-

tively homogeneous European countries, it is evident that lockdown particularly the strin-

gency, has a large impact on the spread of covid-19 virus and its mortality rate. Future

research should incorporate data from other countries (e.g. USA, Brazil, Hong Kong, etc.)

with much more variable lockdown dates and stringency indices.
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