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Abstract

Tuberculosis (TB), one of the deadliest threats to human health, is mainly caused by 2 highly

related and human-adapted bacteria broadly known as Mycobacterium tuberculosis and

Mycobacterium africanum. Whereas M. tuberculosis is widely spread, M. africanum is

restricted to West Africa, where it remains a significant cause of tuberculosis. Although sev-

eral differences have been identified between these 2 pathogens, M. africanum remains a

lot less studied than M. tuberculosis. Here, we discuss the genetic, phenotypic, and clinical

similarities and differences between strains of M. tuberculosis and M. africanum. We also

discuss our current knowledge on the immune response to M. africanum and how it possibly

articulates with distinct disease progression and with the geographical restriction attributed

to this pathogen. Understanding the functional impact of the diversity existing in TB-causing

bacteria, as well as incorporating this diversity in TB research, will contribute to the develop-

ment of better, more specific approaches to tackle TB.

Tuberculosis and tuberculosis-causing bacteria

Tuberculosis (TB) is one of the oldest, deadliest, and more devastating infectious diseases

affecting humankind [1]. Despite the efforts made through the years and the progresses in

diagnosis, treatment, and prevention of TB, this disease remains a public health threat. In

2020, around 10 million people fell ill with TB and an estimated 1.5 million died of TB [2]. For

the first time in several years, and as a consequence of the Coronavirus Disease 2019 (COVID-

19) pandemic, the notification of new TB cases decreased and the number of TB deaths

increased [2]. Thus, an aggravation of the TB burden is expected in the next years [3]. Further

hampering the goal of TB elimination are the enormous reservoir of latent TB-infected indi-

viduals, coinfections with the human immunodeficiency virus (HIV), and the emergence of
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drug-resistant strains [4,5]. Although TB affects all continents, over two-thirds of the reported

cases are concentrated in Africa and Asia.

Since Robert Koch’s initial identification of TB as an infectious disease, and of Mycobacte-
rium tuberculosis as its causative agent, our understanding of the pathogen has greatly evolved.

M. tuberculosis belongs to the Mycobacterium tuberculosis complex (MTBC), which comprises

phylogenetically related TB-causing bacteria that differ in their host specificity [6]. Nine

human-adapted lineages (L) belong to the MTBC: L1, 2, 3, 4, 7, and 8 are composed of strains

classified as M. tuberculosis sensu stricto; strains belonging to L5, 6, and to the newly discovered

L9 are classified as Mycobacterium africanum also known as M. tuberculosis var africanum [7–

9]. Several sublineages have also been identified [9,10]. Strains belonging to L1 to L9 and the

respective sublineages are considered human adapted because they are obligate pathogens of

humans, without any known environmental or animal reservoir. However, they can still infect

nonhuman hosts. Besides the 9 human-adapted lineages, the MTBC also includes bacteria that

are highly adapted to cattle or several wildlife animals [11]. Among the animal-adapted mem-

bers of the MTBC are Mycobacterium bovis, Mycobacterium caprae, and Mycobacterium suri-
catae. The phylogenetic structure of the MTBC is shown in Fig 1.

Genetic analysis of the human-adapted TB-causing bacteria is suggestive of coevolution

with the human host [6]. The evolution and out-of-Africa migration of early human popula-

tions are thought to have had an important role in the spread and establishment of strains of

different M. tuberculosis lineages across the globe [12,13]. MTBC lineages and sublineages can

be classified as generalists, if their distribution is widespread across the globe, or as specialists,

if presenting a narrow geographic niche [10]. M. tuberculosis lineages are mostly classified as

generalists with the exception of L7 that is restricted to Ethiopia in the horn of Africa [14], and

L8 to the African Great Lakes region [8]. L4 is the most widely spread M. tuberculosis lineage,

being the most prevalent in Europe and America, but also commonly found in all other conti-

nents [10,12]. Although L4 is mostly generalist, some L4 sublineages are considered specialists

due to their restricted geographic distribution [10]. In contrast, all known M. africanum line-

ages (L5, 6, and 9) and sublineages are geographically restricted to specific regions of Africa

(Fig 2A). L5 strains appear mostly in the east side of West Africa, with a high prevalence in

Fig 1. The phylogenetic structure of the MTBC. Phylogenetic analysis of 10 MTBC genomes selected to include 1 genome from each of the known

MTBC lineages (accession numbers: SRR1162469, ERR2704812, ERR181314, SRR10828835, ERR1193734, SRR8237291, ERR3470572, ERR3470655,

ERR756344, and ERR015582). A maximum likelihood tree was created with IQ-TREE v2.1.2 using TVM+F+I (the best-fit model of substitution

according to AIC). The tree was coloured using iTOL 6.5.2 with the commonly used colour scheme for the different MTBC lineages: Lineage 1 (L1) in

pink; Lineage 2 (L2) in blue; Lineage 3 (L3) in purple; Lineage 4 (L4) in red; Lineage 5 (L5) in brown; Lineage 6 (L6) in green; Lineage 7 (L7) in yellow;

Lineage 8 (L8) in light brown; Lineage 9 (L9) in light green; and animal-associated lineages (LA) in black. Strains from L1–L4 and L8 are considered M.

tuberculosis sensu stricto and L5, L6, and L9 M. africanum. The scale bar indicates the number of nucleotide substitutions per site. AIC, Akaike

information criterion; MTBC, Mycobacterium tuberculosis complex.

https://doi.org/10.1371/journal.ppat.1010490.g001
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Fig 2. Geographic restriction and prevalence of M. africanum. (A) Geographic distribution of M. africanum lineages 5, 6, and

9 across Africa. Created with https://mapswire.com/africa/political-maps/. (B) Prevalence of lineages 5 and 6, according to the

most recent studies conducted in each represented country [15–19].

https://doi.org/10.1371/journal.ppat.1010490.g002
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countries as Benin and Ghana [15,16], while L6 strains are more prevalent in the west part of

West Africa, affecting countries as Guinea Bissau [17], Sierra Leone [18], and The Gambia

[19]. L9 strains have so far only been isolated in Somalia [9]. M. africanum is an important

cause of TB in West Africa, where it is estimated to cause up to half of all TB cases [20] (Fig

2B). A decline of the incidence of M. africanum has been reported over time for some coun-

tries [21–23], although not for others [17,23]. It will be interesting to monitor the dynamics of

M. africanum by continuous assessment of its prevalence in West Africa. A recent study has

reinforced the importance of M. africanum strains as a cause of TB in the Volta region of

Ghana, particularly in less cosmopolitan areas [24]. TB caused by M. africanum strains outside

West Africa, although very rare, has been described in several countries [25–28]. Importantly,

these cases were mostly found in migrants from endemic areas in Africa, reinforcing the idea

that M. africanum may be restricted to certain host ancestries [29]. However, exceptions to

this have been reported. In a study in California, 2 of 5 patients diagnosed with M. africanum
did not present epidemiologic relation to M. africanum endemic areas [30]. Similarly, in Can-

ada, of the 4 M. africanum TB cases reported between 2004 to 2015 [31], 2 of them were of

Canadian-born patients with no travel history to West Africa [31]. Additionally, in 2020, a

case of M. africanum in a Brazilian woman without association with Africa was reported in

Brazil [32]. Although not all these reports provided whole-genome sequence analysis to assess

the existence of transmission clusters, they do evoke the possibility of local transmission of M.

africanum outside endemic areas. It would be very interesting to dissect the host genetic and

immune characteristics across these different cases, in search for potential susceptibility factors

associated with M. africanum infections.

The identity of M. africanum

M. africanum strains were initially divided into 2 main subtypes based on their geographic ori-

gin: M. africanum subtype I, for strains originating from West Africa and M. africanum sub-

type II for strains from East Africa [33]. Subsequent genetic studies placed strains of M
africanum subtype II, also known as the “Uganda genotype,” as belonging to a sublineage of

L4, thus leaving M. africanum strains restricted to West Africa [33,34]. More recently, compar-

ative genomics approaches established the presence or absence of specific genomic regions

from the common ancestor in M. tuberculosis and M. africanum, allowing M. africanum
strains to be subdivided into 2 genetically distinct lineages: L5 and L6 (previously known as

Maf1 and Maf2, respectively) [12,35] (Fig 3). M. tuberculosis and M. africanum strains are

readily distinguishable by the deletion of the region of difference (RD) 9 in the genome of M.

africanum strains. The genome of strains within L5 has a further deletion in RD711, while

genomes of strains within L6 are characterized by a deletion of RD702 [35]. Through spoligo-

typing, L5 and L6 can be respectively identified by the loss of spacers 8 to 12 and 37 to 39 (L5),

and 7 to 9 and 39 (L6) in their genomes [19,35]. Together, these genomic deletions can be used

as phylogenetic markers distinguishing M. africanum from M. tuberculosis strains and allow-

ing the genomic identification of L5 and L6 strains (Fig 3). More recently, with the increasing

availability of multilocus and whole-genome sequencing and analyses, several specific SNPs in

the genome of strains belonging to L5 and L6 have been identified, which are the basis of SNP

assays for rapid identification of strains belonging to L5/L6 M. africanum lineages [36,37].

Whole-genome analyses also revealed the existence of genetic diversity within M. africanum
L5 and L6 strains [9,38–40] and allowed the construction of detailed MTBC phylogeny trees. It

is interesting to note that strains of the M. africanum L6 are separated from the other lineages

of human-adapted members of the MTBC and instead placed among the animal lineages of

the MTBC (Fig 1) [41]. Furthermore, several studies support the idea that the dassie bacillus
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shared a common ancestor with M. africanum L6 [41,42]. In all, data are compatible with an

evolutionary scenario in which the ancestor of L6 strains was a generalist pathogen that subse-

quently adapted to different host species, and with the hypothesis that L6 strains may originate

from an animal reservoir, as further discussed below.

The most recently proposed M. africanum lineage, L9, resulted from the analysis of 675 M.

africanum genomes, of which 5 could not be classified into any of the known MTBC lineages

[9]. L9 appears as a sister clade of L6, being placed between L6 and the animal-adapted line-

ages. Genomes of strains belonging to L9 share some genomic deletions with those of strains

belonging to L6, as RD702, but not others also present in genomes of strains of animal-associ-

ated lineages, such as RD1 and RD5. Owing to its distinct geographic location and the still sig-

nificative genetic separation from L5/L6 strains genomes, a new M. africanum lineage was thus

proposed [9]. Of note, phylogenetic markers to identify L9 based on genomic deletions have

yet not been described (Fig 3). Instead, a list of SNPs common to all L9 genomes and absent

from other lineages was proposed as phylogenetic markers for L9 [9]. This can now be used as

a framework for the discovery of other strains within L9, as well as for further functional stud-

ies of this lineage.

Given the close phylogenomic proximity of M. tuberculosis and M. africanum strains these

2 pathogens may be considered as belonging to the same species [43,44], which is still a matter

of debate. Of note, the phylogeographic distribution and the host preference of the different

members of the MTBC suggest that this complex could represent host-adapted ecotypes [45].

Also, there are important molecular and phenotypical differences between M. tuberculosis
sensu stricto and M. africanum (Table 1). Initial studies showed that unlike M. tuberculosis, M.

africanum strains are unable to use glycerol as a sole carbon source, a characteristic similar

to M. bovis, which implies the need to supplement the culture medium with pyruvate in

Fig 3. Genetic identity of M. africanum lineages. Represented are the genetic markers that distinguish M. africanum from M. tuberculosis and

lineages 5, 6, and 9 within M. africanum. Of note, since no robust genetic deletions allowing the classification of L9 have been reported, the

identification of this lineage is based in specific SNPs. L, lineage; MTBC, Mycobacterium tuberculosis complex; RD, region of difference; SNP, single

nucleotide polymorphism.

https://doi.org/10.1371/journal.ppat.1010490.g003
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laboratory cultures [46]. A recent study confirmed the preference of M. africanum L5 and L6

strains for pyruvate over glycerol as a carbon source, even though L5 also grows in media with

glycerol [47]. Furthermore, several studies show that, as compared to M. tuberculosis, M. afri-
canum strains present a slower growth rate in axenic medium, which is particularly visible in

the case of L6 [48–51]. A lower growth rate for both L5 and L6 strains as compared to L4 ones

was also documented in 7H11 solid medium and in 7H9 liquid medium [47]. Also remarkable

is the evidence that M. africanum strains prefer minimal oxygen microenvironments (micro-

aerophilic) and produce dysgonic colonies, contrary to M. tuberculosis strains that exhibit

eugonic colonies [52]. Moreover, M. africanum L6 strains are adapted to growth under hyp-

oxic conditions [53]. Metabolic differences have also been described between M. tuberculosis
and M. africanum strains. The nitrate reductase activity is strong in the case of M. tuberculosis
strains and weak to negative for both L5 and L6 strains [54–56], and M. tuberculosis L4 and M.

africanum L6 strains present a stronger average urease activity, which is directly linked to the

bacteria nitrogen metabolism, than L5 [47]. Therefore, globally, L5 and L6 strains present sev-

eral characteristics that are distinctive of M. tuberculosis. No phenotypic data pertaining L9

strains exist thus far, and so it is as yet not possible to include L9 strains in these comparisons.

Hence, the classification of TB-causing isolates into the different lineages of M. tuberculosis or

M. africanum based in genotypic differences (Fig 3) is more accurate than one based on phe-

notypic assays, also because one cannot exclude phenotypic diversity among isolates of the

same lineage or even sublineage.

At the genetic level, M. africanum strains present important variations in some “classical”

virulence factors of M. tuberculosis. An example are the DosR regulon genes, which have been

linked to virulence in the MTBC strains, and shown to be down-regulated in the sputum of M.

africanum L6-infected patients as compared to infections by M. tuberculosis L4 [53]. M. africa-
num strains accumulate mutations in major DosR regulon genes, and the lower expression of

the DosR regulon may explain why M. africanum strains present microaerobic growth and

associates with extrapulmonary disease [53]. Strains of the M. africanum lineages were also

described to accumulate mutations in genes encoding enzymes of the electron transport chain

Table 1. Main differences discriminating M. africanum and M. tuberculosis.

M. africanum�
L5

M. africanum
L6

M. tuberculosis Ref.

Growth characteristics

Carbon source Glycerol/pyruvate Pyruvate Glycerol [46,47]

Growth rate Slow Slowest Fastest [47–51]

Depth of growth Microaerophilic Microaerophilic Aerophilic [52,53]

Colony morphology Dysgonic Dysgonic Eugonic [52]

Biochemical characteristics

Nitrate reductase Negative/weak Negative/weak Positive [54–56]

Urease activity Positive (high) Positive Positive [47]

Geographical distribution Mainly east side of West Africa Mainly west side of West Africa Widespread [10,15–19]

Clinical characteristics

Sputum conversion Slower�� [61]

Reported associations Elder, HIV+, and malnutrition [60,63,64]

Rates of transmission Reduced�� Similar�� [66,69]

Progression to active TB Slower�� [64,66]

�M. africanum L9 is not included due to lack of data.

��As compared to M. tuberculosis.

https://doi.org/10.1371/journal.ppat.1010490.t001
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and central carbon metabolic pathways, as compared to M. tuberculosis strains, which has

been suggested as another possible adaptation to ecological niches characterized by low oxygen

tension [57]. Furthermore, M. africanum L6 strains were shown to harbor loss-of-function

mutations in the 2-component virulence regulation system phoP/R [58,59]. Because this sys-

tem is involved in several pathogenic processes, as the secretion of the virulence factor ESAT-

6, biosynthesis of acyltrehalose-based lipids, and the modulation of antigen export, such muta-

tions were expected to render the pathogen avirulent. However, M. africanum L6 strains

evolved to compensate the deleterious effects of the phoP/R mutations and so maintain their

pathogenic ability. Indeed, the RD8-specific deletion in both animal-adapted and M. africa-
num L6 strains restores ESAT-6 secretion by a phoP/R-independent mechanism, by ensuring

high levels of expression of the operon espACD, which is required for ESAT-6 secretion

[58,59]. How this occurs is not fully understood, but it is possible that polymorphisms

upstream the espA gene might increase the affinity of PhoP or EspR for this promoter region,

which results in espA expression in the absence of a fully functional phoP/R system [58]. In a

different study, M. africanum L5 isolates were also shown to efficiently secrete and induce

immune responses against ESX-1 substrates [38].

TB caused by M. africanum versus M. tuberculosis

Several studies have been performed with the aim of unveiling associations between clinical

and epidemiologic data and the infecting bacteria, i.e., M. tuberculosis or M. africanum. It is

important to note that these studies have been performed in different countries, at different

times, and using different methodologies. Therefore, multicentric studies are still in need, and

it is somehow not surprising that some discrepant results are seen across different reports, as

further discussed below.

No marked differences were found in the chest X-ray presentation of TB caused by M. afri-
canum or M. tuberculosis [60]. Furthermore, both pathogens were shown to respond similarly

to the standard 4 first-line drugs in TB treatment, although patients diseased with M. tubercu-
losis L4 strains responded faster to TB treatment than those with M. africanum L6 strains [61].

The slow clinical recovery of M. africanum-infected patients as compared to M. tuberculosis-
infected ones may result from a higher content of persister-like M. africanum bacilli in sputum

at diagnosis [62]. Despite the similar clinical presentation of TB, several studies associated

infections with M. africanum strains with more vulnerable hosts. Studies conducted in The

Gambia found M. africanum infections to be more common in HIV-coinfected patients, as

well as in older individuals and individuals presenting severe malnutrition [60]. The associa-

tion between M. africanum infection and elder patients was also reported in Ghana [63] and

with lower body mass index individuals in Mali [64]. However, a clear association between M.

africanum and HIV coinfection is still controversial. A recent study in Ghana showed no sig-

nificant differences between the prevalence of M. tuberculosis or M. africanum infections in

individuals with diabetes, another important comorbidity in TB [65]. Furthermore, it is possi-

ble that M. africanum infections correlate with slower progression to active TB. A study from

The Gambia showed that despite similar rates of transmission, individuals exposed to M.

tuberculosis strains were more likely to progress to active TB disease than those infected with

M. africanum ones [66]. This was supported by another study in Mali associating a longer time

between symptom onset and TB diagnosis in M. africanum infections [64]. In line with these

findings, infection of mouse models with M. africanum strains showed a slower progression of

the disease [51,67,68] with mild lung pathology even in mice lacking IFN-γ, which are highly

susceptible to M. tuberculosis infection [51]. Of note, whether transmission rates are equivalent

between M. tuberculosis and M. africanum is not fully set, as a study in Ghana associated M.
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africanum strains with reduced recent transmission rates [69]. Importantly, whereas in The

Gambia, the prevalent M. africanum lineage is L6 [66], in Ghana, it is L5 [69], and so differ-

ences in transmission rates may reflect the specific characteristics of L5 or L6 strains. Thus, all

in all, M. africanum strains present several differences when compared to M. tuberculosis ones

(Table 1) and is generally viewed as a less virulent pathogen than M. tuberculosis. As men-

tioned before, it is as yet not possible to establish comparisons between the recently identified

L9 strains and those of L5/L6 or M. tuberculosis.

Host immune responses to M. africanum

Innate immune responses

Infection of human monocyte-derived macrophages with distinct strains of the MTBC showed

variation of the induced cytokine responses including between the 2 isolates of M. africanum
tested, with 1 inducing strong cytokine release and another inducing a weak response [70].

Interestingly, in the same study, both M. africanum isolates seemed to grow less inside resting

macrophages than their M. tuberculosis counterparts [70]. Another study, focusing on the

pathogen transcriptional adaptation upon macrophage infection, reported distinct MTBC

lineage signatures, including the failure of M. africanum strains to induce the phthiocerol

dimycocerosate (PDIM) locus, a complex cell wall lipid unique to mycobacteria associated

with its virulence [71]. More recently, an isolate of M. africanum L6 was shown to induce con-

siderably less IFN-β by infected bone marrow–derived macrophages than M. tuberculosis
strains from L2 or L4 [72]. Although the M. africanum isolate also triggered cGAS and STING,

infections of macrophages by this pathogen induced less mitochondrial stress, thus decreased

production of mitochondrial reactive oxygen species that contributed to less type I IFN being

produced [72]. The in vivo effect of IFN-αβ signalling during infection by M. africanum strains

was subsequently studied in mouse models. In agreement with the detrimental role of type I

IFN in TB [73], lack of type I IFN receptor signaling led to reduced lung bacterial burdens and

less severe histopathological findings upon M. africanum infection [67]. These results highlight

that even the lowest levels of IFN-αβ induced during chronic M. africanum infection are

potentially pathogenic [67]. Collectively, these studies and others [51] demonstrate that M.

africanum strains infect macrophages, inducing a cytokine response, while adapting to the

host cell. The molecular mechanisms underlying these responses, such as the recognition of M.

africanum strains by pattern recognition receptors, remain however elusive. M. africanum
strains were shown to bind recombinant human mannose-binding lectin (MBL), a plasma

opsonin, more efficiently than M. tuberculosis strains and a protective association between TB

and the human MBL2 G57E variant, associated with lower MBL levels, was described, only in

TB caused by M. africanum [74]. It is possible that the stronger binding of M. africanum
strains to MBL may favour the bacteria uptake by macrophages, promoting the establishment

of infection in vivo, and thus the protective MBL deficiency may have been selected in the

human population in regions endemic for M. africanum. Another study has identified

increased levels of TLR9 expression in unstimulated blood of patients infected with M. africa-
num isolates as compared to other MTBC strains infections [75], which may suggest a role for

TLR9 in innate immune responses to M. africanum strains. Of note, the levels of IL-12p70 and

IL12A were also significantly higher in M. africanum-infected patients, while those of IL-15,

IL8, and MIP-1α were higher in M. tuberculosis-infected patients [75]. A broader study com-

paring peripheral blood gene expression profiles between M. africanum- and M. tuberculosis-
infected patients showed no differences at diagnosis, although there were distinct signatures

associated with each infection posttreatment, predominantly associated with immune

responses and metabolic diseases [76].
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Adaptive immune responses

Comparison of T cell responses from M. tuberculosis- or M. africanum-infected TB patients

before chemotherapy and following overnight stimulation of whole blood with ESAT-6/CFP-

10 or with purified protein derivative (PPD) showed higher single-TNF-α-producing CD4 and

CD8 T cells and lower single-IL-2-producing T cells in the case of M. africanum infections

[77]. Additionally, a persistently high proportion of activated T cells was reported in M. africa-
num-infected individuals posttreatment [77]. However, the frequencies of PPD-specific poly-

functional CD4 T cells did not differ between the 2 infections [77], both before and after

treatment, suggesting an overall uniform immune response triggered by either pathogen. This

is in line with the abovementioned studies on peripheral blood transcriptomic and metabolic

profiles obtained at diagnosis [76]. Interestingly, stimulation of whole blood with ESAT-6/

CFP-10 stimulation after treatment induced significantly higher production of pro-inflamma-

tory markers, such as IFN-γ, in the case of M. tuberculosis-infected TB patients [75,76]. In the

mouse model of infection, a modest immune response has been reported upon infection with

a M. africanum isolate, also associated with restricted lung pathology [51]. Taken all this

together, it is possible that a lower immune response takes place upon M. africanum infection,

which although precluding the clearance of the pathogen, may protect the host from tissue

immune pathology. This hypothesis is compatible with a slower progressing infection and may

be explained by pathogen-associated factors. Pathogens belonging to the MTBC are known to

have remarkably hyperconserved T cell epitopes, suggesting that ensuring T cell responses is

more important to these agents than evading them [78]. Interestingly, a study showed that

the L6 strains of M. africanum were significantly more genetically diverse than the L5 ones,

including in predicted T cell epitopes [79]. Additionally, even though the majority of the T cell

epitopes were conserved between the 2 lineages, a higher ratio of nonsynonymous to synony-

mous single nucleotide variation was detected in the epitopes from L6 strains relatively to L5

ones [39]. Thus, it is tempting to speculate that the evolutive pressure to hyperconserve T cell

epitopes may be weaker in the case of L6 strains, leading to lower T cell responses and favour-

ing the persistence of the pathogen in its host population. Further studies are required to

address these hypotheses and investigate the contribution of T cell responses to TB caused by

M. africanum strains.

Geographic restriction of M. africanum: A case of immune

adaptation?

A specific adaptation of M. africanum to the host population, particularly to the host immune

response, is a conceivable hypothesis to explain the geographic restriction of this pathogen.

Previous studies provide compelling evidence towards this hypothesis in the case of M. africa-
num L5 strains. In a study in Ghana, M. africanum was significantly more common in TB

patients belonging to the Ewe ethnic group an association that was mainly driven by L5 strains

[80]. Possible interactions between M. africanum infection and human genetic diversity were

also described in other studies. A polymorphism in the exonic allele (g.760A) of the ALOX5

gene (which encodes for 5-lipoxygenase, an important regulator of the immune response in

TB [81,82]) was associated with higher risk of TB in Ghana, an association that was stronger in

infections caused by M. africanum L6 strains [83]. Furthermore, another study identified a

highly frequent variant of the human immunity–related GTPase M (IGRM), a regulator of the

autophagic process, in the Ghanaian population and associated it with protection against M.

tuberculosis L4 strains, but not against M. africanum isolates [84]. Thus, higher frequencies of

genetic variants conferring increased susceptibility to M. africanum strains in West African

individuals may at least partially explain the geographical restriction of this pathogen to this
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region. Still, more studies linking human and pathogen genetic diversities are needed to vali-

date this hypothesis. In this line, specific HLA genetic associations may be of potential interest

to explain the geographic distribution of M. africanum versus M. tuberculosis infections. A

study conducted in Mali identified various class I HLA-A and HLA-B alleles associated with

active TB disease caused by either pathogen. However, several class II HLA-DR variants were

found to be associated with M. tuberculosis but not M. africanum strains, with only the variant

DRB1�03:01 being associated with both groups [85]. It is tempting to speculate that specific

associations between HLA variants and M. africanum strains may reflect variations affecting T

cell epitopes in M. africanum, which as described above are not as hyperconserved as in M.

tuberculosis.
More recently, the hypothesis that differences in the intestinal microbiota of patients

infected with M. africanum isolates could contribute to the high susceptibility of West African

individuals to infections with this pathogen has been proposed [86]. Patients infected with M.

africanum strains presented less microbiome diversity than individuals infected with M. tuber-
culosis isolates or healthy controls and were enriched in bacteria from the Enterobacteriaceae

phylum Proteobacteria as compared to healthy controls [86]. Since a positive correlation

between the abundance of Enterobacteriaceae and an inflammatory gene expression profile

was reported, differences in the intestinal microbiome may contribute as host-associated fac-

tors predisposing to infections by M. africanum.

Other 2 hypotheses may explain the geographic restriction of M. africanum infections,

which are less related to the host immune response. It is possible that M. africanum is an atten-

uated member of the human-adapted TB-causing bacteria, being therefore outcompeted by M.

tuberculosis. This hypothesis is supported by the reduction of TB cases caused by M. africanum
strains over time for some countries [21–23], although it is not observed in other countries

[17,23] as discussed above. Finally, M. africanum L6 strains share a common ancestor with ani-

mal (nonhuman) adapted strains (Fig 1). Animal-adapted lineages are composed of Mycobac-

teria that infect different species of animals as preferential hosts, including nonhuman

primates and other mammals. The ancestry of M. africanum L6 allows raising the hypothesis

that, despite having become a human pathogen, strains of this lineage may still be adapted to

an animal that could function as a reservoir in West Africa. Although M. africanum strains

have been isolated from several animal species, including pigs and cows [87], an animal reser-

voir has never been identified. Of note, the animal reservoir hypothesis is less likely to prove

valid in the case of L5 strains since this lineage is phylogenetically less related to animal

adapted members of MTBC [41] (Fig 1).

Conclusions

Up to 50% of the TB cases in West Africa have been attributed to M. africanum strains. A strik-

ing feature characterizing these TB-causing bacteria is its geographical restriction, which

contrasts with the widespread distribution of M. tuberculosis strains and remains largely unex-

plained. Adaptation of M. africanum strains to the West African population, perhaps mediated

through differential modulation of the immune response, is a likely hypothesis. Importantly,

infections of humans and experimental models with strains of M. africanum are generally

more attenuated than those with M. tuberculosis strains. This offers an opportunity to learn

from M. africanum and its interactions with the host, with the aim of better controlling M.

tuberculosis. There are several outstanding questions that would advance our knowledge in

this field towards better strategies to tackle TB:

1. What is the actual origin of M. africanum? Are there nonhuman reservoirs relevant in sup-

porting human transmission? This would provide important information on the evolution

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010490 May 26, 2022 10 / 16

https://doi.org/10.1371/journal.ppat.1010490


of specific members of the MTBC, as well as potentially guide measures to mitigate M. afri-
canum infections.

2. Are M. tuberculosis and M. africanum distinct entities? This remains a matter of debate, as

although recent studies suggest that both pathogens belong to the same species, phenotypic

differences between M. tuberculosis and M. africanum strains are well documented. Addi-

tional studies are required to fill this knowledge gap further informing similarities and par-

ticularities of different MTBC members of relevance for TB management.

3. Are there coinfections caused by M. africanum and M. tuberculosis strains? The fact that

both pathogens are endemic in the same geographic area would suggest a scenario where

coinfections are possible. Clarifying this question would be interesting to understand which

pathogen would impact more disease presentation or if different clinical/immune response

characteristics would prevail.

4. What are the differences between TB and the immune response during infection with L5,

L6, and L9 strains? How does this correlate with M. tuberculosis infections? Does M. africa-
num modulate innate or T cell responses in specific populations? Is this associated with

increased susceptibility of the population or decreased virulence of the pathogen? Disclos-

ing the immune signatures of M. africanum infections and correlating those with the

disease manifestation will provide valuable knowledge to develop potential immune inter-

ventions in TB, including vaccines.

5. Are there differences in latency establishment, duration, or reactivation between M. tuber-
culosis and M. africanum strains? Elucidating this question is hampered by our inability to

categorize the pathogen species in latent cases. However, by revealing immune signatures

of M. africanum infections, it may be possible to then look at latent and progressing cohorts

in an attempt to establish latent signatures specific of the different MTBC members. This

will further our knowledge on the natural history of TB, again potentially offering novel tar-

gets to control TB.

Answering these questions to understand the differences between M. africanum and M.

tuberculosis strains will provide valuable knowledge towards identifying the cellular and

molecular determinants allowing the widespread of the M. tuberculosis strain lineages, which

are a global threat. This knowledge will also advance our understanding on the biology of M.

africanum and its interactions with the human host, which is highly relevant considering the

TB burden in West Africa. Furthermore, consistently stratifying for the type of infecting bacte-

ria in human-based studies will contribute to a better interpretation of novel TB intervention

tools, including diagnosis and vaccines. All this will in turn inform the development of better,

more specific approaches to tackle TB.
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51. Cá B, Fonseca KL, Sousa J, Maceiras AR, Machado D, Sanca L, et al. Experimental Evidence for Lim-

ited in vivo Virulence of Mycobacterium africanum. Front Microbiol. 2019; 10:1–9.

52. Castets M, Boisvert H, Grumbach F, Brunel M, Rist N. Tuberculosis bacilli of the African type: prelimi-

nary note. Rev Tuberc Pneumol (Paris). 1968; 32:179–84. PMID: 4985104

53. Ofori-Anyinam B, Dolganov G, Van T, Davis JL, Walter ND, Garcia BJ, et al. Significant under expres-

sion of the DosR regulon in M. tuberculosis complex lineage 6 in sputum. Tuberculosis. 2017; 104:58–

64. https://doi.org/10.1016/j.tube.2017.03.001 PMID: 28454650

54. Goh KS, Rastogi N. Simple and rapid method for detection of nitrate reductase activity of Mycobacte-

rium tuberculosis and Mycobacterium canettii grown in the Bactec MGIT960 system. J Microbiol Meth-

ods. 2010:208–10. https://doi.org/10.1016/j.mimet.2010.03.005 PMID: 20298726

55. Haas WH, Bretzel G, Amthor B, Schilke K, Krommes G, Rüsch-Gerdes S, et al. Comparison of DNA fin-
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