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Probably a question nobody ever asked. It goes without saying that one takes care of persons for
whom you are responsible especially when those persons totally depend on you. Papers in Frontiers,
like in a recent special issue on “Gravitational Physiology, Aging, and Medicine” (Goswami et
al., 2019) in Integrative Physiology but also in “Environmental, Aviation, and Space Physiology”
identify various issues directly related to the lack of gravity and efforts to define countermeasures
to possibly prevent pathologies. Also the recent papers by Trudel et al. (2019) regarding spaceflight
related anemia or the works by Marshall-Goebel et al. (2019) showing in-flight thrombosis clearly
illustrate our hiatus in the task of taking care when it comes to astronauts’ and cosmonauts’ health.

So, do we really take the best care of our fellow humans on their extraterrestrial travels? Based
on the work mentioned above and the recent review by Stepanek et al. (2019), it is time to raise
such health-ethics’ related questions, in particular with respect to astronauts living and working in
microgravity. Is it ethical to deprive astronauts of gravity?

Yes, astronauts are provided with food and oxygen, they are working in a cozy short-sleeve
environment, they can drink water ad lib and call their loved ones at will. However, especially
since Skylab in the 70s, it became clear that e.g., several bone parameters decreased significantly in
crew members (Bikle and Halloran, 1999), later quantified by DEXA for Shuttle and International
Space Station (ISS) crews to an average rate of 1% or more per space/month (Lang et al.,
2017). And although the crew has a strict in-flight training protocol, bone parameters stay below
pre-flight/pre-microgravity values even 1 year after return to Earth (Vico et al., 2017).

Some 50 to 75% of highly trained astronauts report suffering from the Space Adaptation
Syndrome (SAS) in their first days of flight (Waldrop, 1982). Others experience some combination
of headache, malaise, lethargy, anorexia, nausea, vomiting, and gastric discomfort during the first
few hours or even days inmicrogravity, despite the use of various drugs (Zhang andHargens, 2017).
Most venture capitalists considering commercial space flight should probably think twice before
investing in a business model where there is a high probability that the majority of their potential
clientele might get sick in the first couple of days of their pricy space trip. To address this issue, a
sufficient level of gravity may be provided by a large diameter rotating space hotel.

For some years crew members began reporting vision deficiencies. This phenomenon, first
described by Mader and colleagues as VIIP (Visual Impairment due to Intracranial Pressure)
(Mader et al., 2011) and now termed Spaceflight Associated Neuro-ocular Syndrome (SANS), urged
ISS partners and especially NASA to identify a possible course of action. Recent reports argued
that very significant changes in brain morphology, in particular long duration flights of astronauts
(Roberts et al., 2017) and cosmonauts (Van Ombergen et al., 2018), might be associated to SANS.
Although no clear cause was identified, one of these might be the high level of CO2. The initial
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ppCO2 levels in ISS started at 7.6mm Hg (Law et al., 2014),
some 25 times higher than we have on Earth! It was later
lowered to 5.3, and because of the possible contribution of
this hypercapnia to SANS, again quickly lowered to 4.0. Law
et al. (2014) recommended a ppCO2 level of 1.97mm Hg since
this would keep the risk of headache to below 1%, a standard
threshold used in toxicology and aerospace medicine. Note the
average ppCO2 on Earth at sea level is around 0.3mm Hg. One
wonders why space agencies never reacted like this when it came
to surviving microgravity.

Space agencies are engineering entities, created to develop
and apply space related hardware and technology. Although their
main focus is to keep the crew alive and safe, long duration flight
health issues have not been fully identified and understood. As
is clear from the carbon dioxide problem but also from the less
than effective countermeasures, there is more to human health
than keeping the crew alive.

In the various definitions for Life Support Systems used
by space agencies such as NASA (U.S.A.) or the European
Space Agency (ESA), for either physicochemical or biological
systems, surprisingly there is nomention of gravity as an essential
element for maintaining a healthy environment, while oxygen or
humidity are.

In order to counteract the deleterious effects of gravity
deprivation, astronauts spend hours of valuable crew time
exercising each day. However, exercise is not tantamount to
gravity, nor do we really know how effective it is. We have
never flown an astronaut that did not exercise and therefore do
not know how much worse it would be. Even assuming that
exercise may indeed be partially beneficial, it generates other
problems, such as increased core body temperature while training
in microgravity (Stahn et al., 2017) and possibly increased
intracranial pressure due to high loads during resistive training
(Dickerman et al., 2000; Stenger et al., 2017).

Muscular and cardiovascular deconditioning are believed to
bemostly addressed by exercise countermeasures. The alternative
countermeasure of Lower Body Negative Pressure (LBNP) was
found to be only 55% effective in the case of venous blood
flow stasis (Marshall-Goebel et al., 2019). Yet, other issues
remain unsolved such as impaired cognitive performance, renal
stones, SANS, reduced immune sensitivity, loss of quality and
duration of sleep, low back pain and osteopenia, as well as post-
flight balance and coordination issues, orthostatic intolerance
or spinal compression with intervertebral disk damage (Barger
et al., 2014; Yaqub, 2015; Stepanek et al., 2019). These
are believed to be due to inadequate body gravity loading
in space.

When it comes to meeting the necessary gravity requirements
for the health and safety of astronauts, space agencies should
go beyond arguments of flight complexity and costs. What is
the price of health and safety? Systems for large radius chronic
centrifugation should form a serious part of their implementation
plans for space exploration. It is technically feasible to have large
rotating spacecraft (Joosten, 2007; Paloski and Charles, 2014;
Hall, 2016; Martin et al., 2016). Ground based devices could
be used to develop specific requirements, such as identifying
minimum gravity and radius thresholds, while, as an add-
on, treating contemporary diseases on Earth such as obesity

and aging (van Loon et al., 2012). The resources required for
an in-flight infrastructure are an investment in crew health
and well-being and as shown by Joosten (2007) the additional
cost in particular for configurations would only be around
5% supplementary structural or propellant mass. Physiological,
psychological and social well-being should be an integral part of
space station designs. It is unethical, life and mission threatening
to withhold gravity from human beings just as the denial of
oxygen would be.

As such, gravity should be regarded an integral part of a space
station Life-Support System, just as regulated oxygen, humidity,
carbon dioxide or temperature is. The exact requirements
for the minimal g-profile for adequate to optimal Earth-like
physiology in space are unknown and must be established
(National Research Council, 2018). The preferred solution is a
very large diameter rotating system, with a diameter of some
150m (van Loon et al., 2012) or smaller at 50 to 110m (Globus
and Hall, 2017). Though one could start with a short arm on-
board centrifuges but such systems would have problems of their
own like large body g-gradients, not exposing the whole body
including the vestibular system (Fuller et al., 2002; Levasseur
et al., 2004; Ogoh et al., 2018) to functional gravity. it is to
be expected that short-arm centrifuges will not generate the
foreseen optimal treatment. A short arm system would also not
decrease the valuable crew time spend on exercise. On the other
hand, besides providing a 1 g countermeasure, a large rotating
spacecraft could also be used to discover the long term effects
of partial gravity in a relatively safe Lower Earth Orbit (LEO)
in preparation for Moon and Mars explorations before being
confronted with the unknown effects of chronic partial Mars and
Lunar gravity.

Space agencies, as employers, carry an obligation to provide
a safe and healthy working environment for their employees.
Consequently, from a labor-legal point of view astronauts should
be provided with the necessary means to work in a healthy
environment, including the multi-system countermeasure of
chronic artificial gravity which eliminates the occupational
hazards of microgravity. A European Commission directive on
this subject states: “Within the context of his responsibilities, the
employer shall take the measures necessary for the safety and health
protection of workers, including prevention of occupational risks
and provision of information and training, as well as provision
of the necessary organization and means”(EEC_Council, 1989).
Similar wording to guide national policies is used in Convention
155 of the International Labor Organization (ILO) (International
Labor Organization, 1983).

There is also the other occupational hazard especially
prominent when going outside the protective Earth magnetic
field of the van Allen belt, i.e., solar flares and high charge and
the very energetic particles from galactic cosmic rays. For the
latter there are strong indications that such radiation is prone
to induce e.g. malignancies or retard brain functions (Delcourt
et al., 2018; Raber et al., 2019). In contrast to providing gravity to
astronauts in case of the micro-gravity hazard, it is much more
difficult to mitigate the impact of especially the galactic radiation.
Similarly, attention to a suitable station architecture, procedures
and nutritional provisions are needed as well (Bergouignan et al.,
2016).
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Very few papers address the ethics with respect to spaceflight.
The very high-tech and heroic nature of human spaceflight
would appear to be exempt from addressing labor-related, safe
and healthy working environments. The one example we could
find where spaceflight is related to ethical issues was actually
more linked to future commercial spaceflight and possible legal
issues for tourist customers (Marsh, 2006). However, the issue
of ethical conduct in the working environment is very current
and actually started already at the time we became aware of
the deleterious effects of long duration microgravity, quite some
decades ago.

Is it ethical to withhold gravity? No it is not! Career space
workers as well as future space tourists should be provided with
adequate levels of gravity in order to mitigate or completely
abolish the microgravity-related pathologies we currently see. It
is technologically feasible and financially achievable but most of
all unethical not to do so.
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