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Simple Summary: While cows usually give birth to singletons, the incidence of twin births has
increased considerably during the past few decades alongside milk production. In most cases,
multiple pregnancies arise from the simultaneous formation of two or more ovulatory follicles in
either the same ovary or both ovaries. Twin pregnancies have devastating effects on cow welfare
and the economy of dairy herds. To prevent them, strategies proposed have been the transfer
of a single female beef cow embryo produced in vitro to a cow that is not suitable for producing
replacements, or the drainage of co-dominant follicles at insemination to prevent twin pregnancies in
cows with genetic merit. Developing strategies to reduce the incidence of multiple ovulations and
twin pregnancies should be a main focus of clinicians responsible for reproduction in dairy herds.
The two procedures mentioned could be components of a weekly reproductive control program and
applied to synchronized cows. As a result, embryo survival should improve, avoiding economic
losses associated with twin pregnancies, and beef output from the herd will accordingly increase.
Last but not least, if twin pregnancies are prevented, the cow’s general health and welfare state will
certainly improve.

Abstract: Clinical problems associated with twin pregnancies have been well established, and twin
births are now considered undesirable or even disastrous for the dairy cattle industry and the
individual cow. The high incidence of early fetal loss, abortion during the mid-lactation period,
dystocia, stillbirth, and placenta retention should be considered a preventable consequence of
management, as these disorders greatly compromise the welfare and productive lifespan of a cow
carrying or delivering twins. The use of sexed semen generates herd replacements and additional
heifers, so a proposed strategy for twin pregnancy prevention is the transfer of a single in vitro-
produced female beef cow embryo to cows not suitable for producing replacements. Another
proposed strategy is drainage at insemination of co-dominant follicles to prevent twin pregnancies in
cows with genetic merit. As a result, embryo survival should improve, economic losses associated
with twin pregnancies will be prevented, beef output from the herd will be increased, and the health
and welfare of the cow will certainly benefit. In this review, the clinical prospects of preventing or
avoiding twin pregnancies using both procedures are discussed.
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1. Introduction

Twin pregnancies and subsequent twinning are considered highly undesirable in
the dairy cattle industry and also from the perspective of the cow. The high incidence
of early fetal loss [1,2], abortion during the middle period of lactation [3,4], dystocia,
stillbirth, and placenta retention [5–8] could be considered a preventable consequence of
management, as these disorders greatly compromise the welfare and productive lifespan
of a cow carrying or delivering twins [8,9]. In some herds, the twinning rate may exceed
12% [10], and 10% of cows deliver twins at least once during their life [8]. An example of
the economic impact of twin pregnancies is an annual cost estimate in the United States of
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96 million USD [11]. Although hormone treatment or induced twin reduction at pregnancy
diagnosis may mitigate the negative effects of twin pregnancies [2,12], the adage “prevent
is better than cure” [13] is entirely appropriate for this problem.

Over the past three decades, multiple ovulation rates and thus the incidence of twin
pregnancies and twinning have increased together with milk production [2]. The incidence
of multiple ovulations increases with age and with genetic, nutrition, and management
improvements related to increased milk production [2,8]. In addition, this is because
of synchronization protocols for fixed-time artificial insemination (FTAI), which have
become an essential component of the management of dairy cow reproduction. Some of
these FTAI protocols increase the twin pregnancy rate [14]. Therefore, a goal of such
protocols should be to avoid or prevent multiple ovulations. For example, it has been
shown that by shortening the time of treatment [15,16] and increasing progesterone before
FTAI [17,18], twin pregnancies can be significantly reduced. However, although these
results are encouraging for the development of protocols to reduce twins, the causal
mechanisms of multiple ovulations are not well understood [19]. Recently, two strategies,
the transfer of a single embryo produced in vitro and follicular drainage of co-dominant
follicles at insemination, have been proposed to prevent twin pregnancies [20,21]. In this
review, the clinical prospects and weaknesses of both procedures along with possible
improvements are discussed.

2. Transferring a Single In Vitro Produced Embryo

The global use of in vitro-produced embryos (IVP) has increased over the past decades,
surpassing the number of in vivo-produced embryos since 2016 [20,22]. While the main
interest of IVP embryos lies in genetic gain, their lower costs and an increased efficiency of
procedures means they are the most effective method to improve fertility during periods
of heat stress [23–25] and for repeat-breeder cows following AI [26–29]. In effect, a single
developing blastocyst transferred into the uterine horn ipsilateral to the corpus luteum
(CL) does away with the risk of the in vivo fertilization of two or more oocytes following
insemination, particularly in older cows. Twin pregnancies are more frequent in multi-
parous cows and may account for 25% of all pregnancies during the early fetal period in
cows in their third lactation or more [3]. Many technicians are skilled at embryo transfer
procedures and could in some circumstances replace AI with the transfer of an IVP embryo.

2.1. Benefits

As the use of sexed semen in heifers offers the benefit of herd replacements and
additional heifers [29], embryo transfer of a single beef cow embryo to cows not appro-
priate for replacements should increase herd profitability. Sexed semen is also used in
IVP procedures [30,31] so that by transferring a female beef cow embryo, the incidence
of male calf-related dystocia will be reduced, and milk production increased. Indeed,
the birth of a female calf has been associated with a milk production increase [32,33]. A fur-
ther benefit of transferring beef cow IVP embryos should be increased beef output from
dairy herds, making land use more efficient than when rearing beef cow herds with the
consequence of reducing greenhouse gas emissions [34]. However, the efficiency of the
in vitro production of embryos leaves much scope for improvement. Only 27% of cattle
receiving IVP embryos produce a live calf [35] and these calves are more susceptible to
experiencing large offspring syndrome compared with in vivo-generated newborns [36–39].
Fetal overgrowth syndrome induced by assisted reproduction has also been described in
humans [39]. Further, a series of abnormalities such as reduced preimplantation energy
metabolism [40] and chromosome aberrations [41,42] and embryo development defects,
or young fetuses and placentas [43–45] can explain both individually and collectively the
extremely high risk of such pregnancies [46,47]. Failure of a pregnancy with an IVP embryo
ranges from 59% to 85% and seems to increase using sexed semen [35]. While the literature
regarding the use of sexed semen in IVP is limited [22], a high pregnancy loss rate would be
expected using sexed IVP embryos, as this has been described in heifers after AI with sexed
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semen [48]. In a recent study on 1562 heifers receiving a fresh embryo in vitro produced
using conventional semen, GnRH treatment on Day five post-estrus (one to three days
before embryo transfer) increased the formation of additional corpora lutea and reduced
the pregnancy loss rate recorded on day 60 of gestation [49].

2.2. Risks

Regardless of the production of high genetic index calves, a main target of the IVP
embryo industry is the use of IVP embryos under heat stress conditions [23–25] or in
repeat-breeder cows [26–29]. In this context, preventing twin pregnancies through the
transfer of a single embryo could be an important therapeutic approach. However, specific
studies have yet to be carried out. After the transfer of an in-vivo-produced bovine embryo,
the occurrence of monozygotic twins has been described [50,51], with an incidence of 1.6%
after the transfer of a single in vitro-produced equine embryo [52], and extensive reports
existing in humans. Assisted reproductive technologies have increased the incidence of
multiple pregnancies in women, with rates of 1.4% to 13.2% reported for monozygotic
twins [53–55], and of 0.04% to 0.3% for triplets [56,57]. Even a monozygotic quadruplet
has been observed [57]. The first issues that need to be investigated are the incidence
of twins after the transfer of a single IVP embryo and possible risk factors related to
monozygotic twins.

3. Puncture and Drainage of the Smaller Co-Dominant Follicles

Most twin pregnancies derive from multiple ovulations which result from the simultane-
ous formation of two or more co-dominant follicles either in one or both ovaries [58,59]. The in-
cidence of multiple ovulations in high producers at insemination may exceed 20% [60–63]
and the rate of having two or more co-dominant follicles at the time of AI may be over
50% in cows subjected to a FTAI protocol [64]. Therefore, emptying of all follicles of
pre-ovulatory size except the largest should prevent twin pregnancies. In effect, there is
already evidence that transvaginal puncture and drainage of the smaller follicle at the time
of insemination in cows with two co-dominant (ovulatory) follicles eliminates the risk
of twin pregnancy without reducing fertility [65–68]. Drainage of follicles may be either
ultrasound-guided [65,66], or hand-guided using a steel cannula designed for follicular cyst
puncture [67,68]. This instrument makes the procedure quick and easy for an experienced
technician after the detection of follicles of pre-ovulatory size by rectal palpation (Figure 1).
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be a very strong factor reducing the risk of pregnancy loss during the late embryonic/early 
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Figure 1. Follicular puncture and drainage with no aspiration of the smaller co-dominant (ovulatory)
follicle using a transvaginal hand-guided metallic cannula in a cow with a follicle of pre-ovulatory
size (blue) in each ovary. Drawing by López-Gatius. The color artwork is courtesy of Cris Segú Mora.
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3.1. Benefits

Ablation or removal of the dominant follicle by ultrasound-guided transvaginal
follicle aspiration has been extensively used to enhance the super-ovulatory response in
embryo transfer programs in cattle and buffalo [69–72]. The follicular drainage procedure
referred to here avoids suction of the antral fluid. Drainage with no aspiration leaves a
sufficiently large number of granulosa cells in the follicle for the subsequent formation of
luteal tissue [66]. All drained follicles develop as a CL seven days post-drainage [65–68].
GnRH treatment at this point, seven days post-estrus, reinforces the function of these
induced luteal structures (Figure 2) so that drainage-induced CL and fellow CL are similar
in terms of size and vascularization as determined through Doppler ultrasonography [66].
The drainage-induced additional CL has been shown to favor embryo survival [67] in a
similar way to an additional CL following spontaneous ovulation, and this has proved to
be a very strong factor reducing the risk of pregnancy loss during the late embryonic/early
fetal period [73].
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Figure 2. Puncture and drainage of the smaller co-dominant follicle at the time of insemination in cows with a follicle of
pre-ovulatory size in each ovary (A). GnRH treatment is given seven days post-drainage to reinforce luteal activity of the
drainage-induced luteal tissue (B). Luteal activity determinations are made 21 days post-drainage (C). Both corpora lutea
are not distinguishable at this time point [65]. F: follicles; CL: corpora lutea; O: ovaries; U: uterus.

3.2. Risks

It should be noted that the follicular drainage procedure has an important shortcoming
that needs improving. Although fertility is similar in drained and non-drained cows, a high
percentage of non-drained follicles fail to ovulate. Based on data compiled from our four
latest studies [65–68], in 23.3% (70/300) of follicle-drained cows, the non-drained follicle
never reached the stage of ovulation. Pregnancy was not detected in these cows, whereas
the pregnancy rate was similar for all drained (29.7%: 89/300) and non-drained (31.5:
95/302) cows. Hence, the compromised fertility of the whole sample of drained cows was
offset by a high pregnancy rate of ovulating drained cows (38.7%: 89/230). The incidence
of ovulation failure of the non-drained follicles and the subsequent high pregnancy rate
of the ovulating ones need to be clarified. Treatment at drainage with a strong inducer
of ovulation such as human chorionic gonadotropin (hCG) could probably improve the
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ovulation rate of the non-drained follicles. However, caution is needed with this type
of treatment. Follicles smaller than 10 mm, that is, of pre-ovulatory size [74], are able to
respond to hCG treatment [75] and this may reverse the capacity of follicular drainage to
prevent multiple pregnancies.

4. Conclusions

Follicular puncture and drainage with no aspiration and single embryo transfer may
eliminate the risk of a twin pregnancy with the consequence of improved cow health and
welfare. Following GnRH treatment, five to seven days post-estrus, both procedures pro-
mote the formation of an additional corpus luteum, and so reducing the risk of subsequent
pregnancy loss. As older cows are the main population at risk of multiple ovulations,
cows in their third lactation or more with no genetic merit could receive a single beef cow
female embryo, whereas cows with a high genetic index could be inseminated with sexed
semen following follicular puncture of co-dominant follicles. This strategy should increase
herd profitability. Major concerns that still need to be addressed are the possible risks of
the transfer of embryos produced in vitro using sexed semen and the low ovulation rate of
non-drained follicles following follicular drainage.
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