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Abstract
Background  Hepatocellular carcinoma (HCC) is the sixth most common cancer, and the third leading cause of cancer death 
worldwide. Studies have shown that increased angiopoietin-2 (Ang-2) expression relative to Ang-1 expression in tumors is 
associated with a poor prognosis.The purpose of this study was to investigate the efficacy of predicting Ang-2 expression in 
HCC by preoperative dynamic contrast‐enhanced magnetic resonance imaging (DCE-MRI)-based radiomics.
Methods  The data of 52 patients with HCC who underwent surgical resection in our hospital were retrospectively analyzed. 
Ang-2 expression in HCC was analyzed by immunohistochemistry. All patients underwent preoperative upper abdominal 
DCE-MRI and intravoxel incoherent motion diffusion-weighted imaging scans. Radiomics features were extracted from the 
early and late arterial and portal phases of axial DCE-MRI. Univariate analysis and least absolute shrinkage and selection 
operator (LASSO) was performed to select the optimal radiomics features for analysis. A logistic regression analysis was 
performed to establish a DCE-MRI radiomics model, clinic-radiologic (CR) model and combined model integrating the 
radiomics score with CR factors. The stability of each model was verified by 10-fold cross-validation. Receiver operating 
characteristic (ROC) curve analysis, calibration curve analysis and decision curve analysis (DCA) were employed to evalu-
ate these models.
Results  Among the 52 HCC patients, high Ang-2 expression was found in 30, and low Ang-2 expression was found in 22. 
The areas under the ROC curve (AUCs) for the radiomics model, CR model and combined model for predicting Ang-2 
expression were 0.800, 0.874, and 0.933, respectively. The DeLong test showed that there was no significant difference in the 
AUC between the radiomics model and the CR model (p > 0.05) but that the AUC for the combined model was significantly 
greater than those for the other 2 models (p < 0.05). The DCA results showed that the combined model outperformed the 
other 2 models and had the highest net benefit.
Conclusion  The DCE-MRI-based radiomics model has the potential to predict Ang-2 expression in HCC patients; the com-
bined model integrating the radiomics score with CR factors can further improve the prediction performance.
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Abbreviations
HCC	� Hepatocellular carcinoma
Ang-2	� Angiopoietin-2
DCE-MRI	� Dynamic contrast‐enhanced magnetic reso-

nance imaging
LASSO	� Least absolute shrinkage and selection
IVIM-DWI	� Intravoxel incoherent motion diffusion-

weighted imaging
ICC	� Intraclass correlation coefficient
OS	� Overall survival
DFS	� Disease-free survival

Introduction

Hepatocellular carcinoma (HCC) is the sixth most common 
cancer, and the third leading cause of cancer death world-
wide [1]. Tumor biological behavior is increasingly rec-
ognized as an important factor affecting prognosis. Tumor 
angiogenesis is the result of the complex interaction among 
various proangiogenic mediators and effector cells [2]. 
The rapid deepening of the understanding of the molecu-
lar mechanisms of angiogenesis has led to the emergence 
of antiangiogenic drugs to treat cancer, with thousands of 
patients benefitting from vascular endothelial growth factor 
(VEGF) and angiopoietin inhibitors [3, 4]. Angiopoietins are 
ligands for the endothelial cell receptor Tie-2 and play an 
important role in tumor angiogenesis. Studies have shown 

that increased angiopoietin-2 (Ang-2) expression relative to 
Ang-1 expression in tumors is associated with a poor prog-
nosis [5]. Ang-2 expression in tumor cells decreases after 
lenvatinib treatment, as anti-VEGF treatment is thought 
to reduce Ang-2 expression in tumor cells by normalizing 
tumor blood vessels and reducing hypoxia in the tumor 
microenvironment [6, 7]. Early changes in Ang-2 levels may 
help predict clinical efficacy and progression-free survival 
(PFS) in HCC patients treated with lenvatinib [8]. Therefore, 
detecting the expression of Ang-2 in HCC tissue could be 
helpful for predicting prognosis and formulating a targeted 
therapy strategy.

Imaging features can serve as molecular surrogates for 
diagnosis and prognosis and the evaluation of possible gene 
expression-related therapeutic responses in various human 
cancers [9]. Le Bihan al. [10, 11] proposed intravoxel inco-
herent motion diffusion-weighted imaging (IVIM-DWI), 
which can be used to noninvasively observe the micro-
structure of human tissue by distinguishing the diffusion of 
water molecules from the perfusion of microvessels through 
a biexponential model. In recent years, Dutch scholars Lam-
bin et al. [12] proposed the concept of radiomics, which 
is the automatic high-throughput extraction of many image 
features based on image analysis. Solid tumors have different 
spatial and temporal heterogeneities at different levels, lim-
iting the use of biopsy-based molecular assays but offering 
enormous opportunities for noninvasive imaging radiomics 
[13].
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To date, there has been no report on predicting Ang-2 
expression in HCC tissue by a dynamic contrast‐enhanced 
magnetic resonance imaging (DCE-MRI)-based model. 
Therefore, this study investigated the efficacy of preopera-
tive DCE-MRI-based radiomics in predicting Ang-2 expres-
sion in HCC.

Materials and methods

Patients

Fifty-two patients with HCC who underwent surgical resec-
tion were enrolled. All patients underwent preoperative 
upper abdominal DCE-MRI scans and IVIM-DWI scans. 
The inclusion criteria were as follows: HCC confirmed by 
pathological examination; no antitumor therapy; liver lesions 
> 1 cm; and MRI scan within one week before surgery. The 
exclusion criteria were as follows: MRI contraindications 
and poor image quality that affects image segmentation. 
Clinical characteristics that may be associated with Ang-2 
expression were collected. Laboratory indicators were clas-
sified into categorical variables based on a threshold value.

Immunohistochemical detection

Ang-2 antibody was obtained from Abcam, UK, and used 
at a dilution of 1:250. Specimens were obtained from his-
topathologically confirmed HCC patients who underwent 
MRI examination and surgical resection in our hospital. S-P 
immunohistochemical staining was performed to score the 
immunohistochemical staining results. A diagnostic evalu-
ation of the same section was performed by 2 physicians. 
When there was a disagreement, a conclusion was made 
after discussion. The degrees of staining under 6 high-power 
fields were recorded for each section. Ang-2 protein expres-
sion intensity was scored as follows: 0 (no staining), 1 (weak 
staining, light yellow), 2 (moderate staining, brown), and 3 
(strong staining, yellowish brown). Scores of 0 and 1 were 
considered low expression, and scores of 2 and 3 were con-
sidered high expression [14].

MRI scan

A Discovery 750 3.0-T superconducting MRI scanner (GE, 
United States) with a 32-channel phased‐array receiver coil 
was used. The sequences were as follows: breath-hold trans-
verse-axis fat-suppression T1 weighted imaging (T1WI) 
scans and breath-triggered transverse-axis fat-suppression 
T2WI and IVIM-DWI scans. The T1WI sequence param-
eters were as follows: repetition time (TR)/echo time (TE), 4 
ms/2 ms; fractional anisotropy (FA), 12; matrix, 260 × 192; 
field of view (FOV), 36  cm × 36 cm–40 cm × 40 cm; 

and slice thickness/interslice gap, 5  mm/0  mm. The 
T2WI sequence parameters were as follows: TR/TE, 
2609  ms/97  ms; FA, 110.0; matrix, 384  ×  384; FOV, 
36 cm × 36 cm–40 cm × 40 cm; and slice thickness/inter-
slice gap, 5 mm/1 mm. The IVIM-DWI sequence param-
eters were as follows: 9 b values (b = 0, 20, 50, 100, 150, 
200, 400, 800, and 1000); TR/TE, 3529 ms/60.8 ms; matrix, 
128 × 160; FOV, 36 cm × 36 cm–40 cm × 40 cm; and slice 
thickness/interslice gap 5 mm/1 mm. For multiphase DCE-
MRI scanning, a high-pressure syringe was used to inject 
the contrast agent Gd-DTPA (15–20 ml) into the dorsal vein 
of the hand; the injection rate was 2–2.5 ml/s. Then, early 
and late arterial and portal phase images were collected. 
Using the Function-MADC model of the GE AW 4.4 work-
station on the measured image data, the best tumor slice of 
the IVIM-DWI sequence was selected, the region of interest 
(ROI) was manually delineated, and the pseudocolor images 
of IVIM-DWI parameters, including the apparent diffusion 
coefficient (ADC), slow apparent diffusion coefficient (D), 
fast apparent diffusion coefficient (D*), and fraction of fast 
apparent diffusion coefficient (f), were generated (Fig. 1), 
thus obtaining the ADC value, D value, D* value, and f 
value. When delineating the ROIs, areas of hemorrhage, 
necrosis, cystic degeneration and fat were avoided as much 
as possible. Each parameter was measured 3 times, and the 
average was taken. Univariate analysis was used to evaluate 
clinic-radiologic (CR) factors that could potentially differen-
tiate high and low Ang-2 expression in the cohort. Important 
variables in the univariate analysis were entered into the 
multivariate logistic regression analysis, and the potential 
predictors for high Ang-2 expression were screened out.

Lesion segmentation and feature extraction

Images in digital imaging and communications in medi-
cine (DICOM) format obtained from DCE-MRI scans were 
exported from the picture archiving and communication sys-
tem (PACS). Image segmentation was performed manually 
[15] (Fig. 2) by two radiologists (Observer 1, T.Y.Y. and 
Observer 2, Z.J., with 4 and 6 years of experience in abdom-
inal MRI imaging interpretation, respectively). Each ROI 
covered the entire tumor, including all areas of hemorrhage 
or necrosis in the tumor and avoiding areas of peritumoral 
edema and obvious large blood vessel invasion [16]. ROIs 
were delineated layer by layer on the three-phase DCE-MRI 
images to obtain the volume of interest (VOI) for radiom-
ics feature extraction. This study extracted 4 types of fea-
tures: shape, intensity histogram, gray level co-occurrence 
matrix (GLCM), and gray level run length matrix (GLRLM) 
features.

The consistency analyses in this study included intraob-
server and interobserver consistency tests. Observer 1 delin-
eated the ROIs of all images layer by layer in accordance 
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with the delineation method described above after 1 week 
and extracted features. The extracted features were compared 
with the results of the first delineation, and the intraclass 
correlation coefficient (ICC) of the intraobserver consistency 
was obtained. Observer 2 independently delineated the ROIs 
in the same way as described above, and the features were 
compared with those extracted by Observer 1 to obtain the 
interclass ICC of interobserver consistency. Intragroup ICC/
intergroup ICC values ≥ 0.75 indicated good agreement.

Model establishment and evaluation

After the consistency test, for the radiomics features with 
ICC values ≥ 0.75, the missing values were filled, and to 
ensure the reproducibility of the results, z score normaliza-
tion was performed on all data as a preprocessing step. For 
feature dimensionality reduction, univariate analysis was 
used to select the features with statistically significant dif-
ferences in Ang-2 expression. Least absolute shrinkage and 

Fig. 1   A 63-year-old male 
with HCC. a Image of T2WI, 
b Image of ADC, c Image of 
D, d Image of D*, e Image of 
f, f Immunohistochemistry 
showed that Ang-2 was highly 
expressed (× 200).

Fig. 2   The region of interest 
(ROI) was delineated layer by 
layer (a–g) on the DCE-MRI 
images to obtain the volume 
of interest (VOI) for radiomics 
feature extraction.
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selection operator (LASSO) regression analysis was used 
to reduce the dimensionality of the features. Binary logistic 
regression analysis was performed to establish a DCE-MRI 
radiomics model, CR model, and combined model using the 
selected radiomics features and CR parameters. The stabil-
ity of the model was verified by 10-fold cross-validation, 
and calibration curves were used to evaluate the 3 models. 
Receiver operating characteristic (ROC) curves were used 
to evaluate the predictive performance of the 3 models. 
The evaluation indicators included the area under the curve 
(AUC), accuracy, sensitivity, and specificity, and calibration 
curve analysis and decision curve analysis (DCA) were used 
to evaluate the models.

Statistical analysis

The statistical software R (Version 4.0.3) was used for sta-
tistical analysis in this study. Continuous variables were 
analyzed using the independent samples t test or Kruskal‒
Wallis nonparametric rank-sum test; categorical variables 
were analyzed using the chi-square test or Fisher's exact test.

3. Results

The 52 patients in this study included 46 males and 6 
females aged 29 to 70 years; the average age was 50.8 ± 10.9 
years. Among the 52 HCC patients, high Ang-2 expression 
was found in 30 patients, and low Ang-2 expression was 
found in 22 patients. For each patient, 352 image features 
were extracted from the early arterial phase, late arterial 
phase, and portal venous phase, and 4 features (Table 1) 
were screened out after the intergroup consistency test 
(Fig. 3), univariate analysis, and LASSO dimensionality 
reduction (Fig. 4). Univariate and multivariate analyses 
indicated that D* and f (Table 2) were independent radio-
logic predictors of Ang-2 expression. Logistic regression 
models were established using the screened features. Tenfold 
cross-validation was used for validation (Fig. 5). Calibra-
tion curves were used to evaluate the model fit (Fig. 6). The 
AUCs for the radiomics model, the CR model and the com-
bined model for the identification of Ang-2 expression were 
0.800 (95% confidence interval (CI) 0.662–0.938), 0.874 
(95% CI 0.781–0.968), and 0.933 (95% CI 0.868–0.998), 
respectively. The results of the DeLong test indicated that 

there was no significant difference in the AUC between the 
radiomics model and the CR model (p > 0.05) and that the 
AUC of the combined model was significantly greater than 
those of the other 2 models (p < 0.05). The results of DCA 
showed that the combined model outperformed the other 2 
models and had the highest net benefit (Fig. 7).

Discussion

The present study investigated the efficacy of predicting 
Ang-2 expression in HCC by preoperative DCE-MRI-based 
radiomics. In the whole cohort, high Ang-2 expression was 
found in 30 (57.7%) patients, which is consistent with the 
results (68.7%) of Chen et al. [14]. D* and f were independ-
ent radiologic predictors of Ang-2 expression. The AUCs for 
the radiomics model, the CR model and the combined model 
for the identification of Ang-2 expression were 0.800, 0.874 
and 0.933, respectively. The combined model outperformed 
the other 2 models and had the highest net benefit.

Angiogenesis is a key mechanism affecting the progres-
sion of neoplastic diseases. Ang-2 is an important protein 
capable of supporting angiogenesis under pathological con-
ditions [17, 18]. Studies have shown [19] that Ang-2 may 
be a potential protein target for the nested metastasis of ves-
sels encapsulated by tumor cluster (VETC)-positive HCC. 
Choi et al. [20] explored the potential of Ang-1, Ang-2, and 
VEGF levels in plasma as prognostic biomarkers from early 
to advanced stages of HCC. The results showed that Ang-2 
levels had the highest predictive ability for overall survival 
(OS) in HCC patients, Ang-2 and alpha-fetoprotein (AFP) 
levels were independent factors for PFS, and Ang-2 was 
better than Ang-1 or VEGF as a prognostic biomarker for 
HCC, especially after local therapy. These findings suggest 
that detecting Ang-2 expression in HCC tissue can assist in 
providing personalized treatment for HCC patients.

The clinical application of IVIM-DWI allows the evalu-
ation of HCC tumors at the microscopic level. Lee et al. 
[21] studied the relationship between IVIM-DWI param-
eters and microvessel density (MVD) in mouse colorectal 
cancer tissue, and the results showed that D* and f values 
were significantly correlated with MVD. Ang-2 can pro-
mote angiogenesis in HCC tissue and is positively correlated 
with MVD [22]. Zheng et al. [23] investigated the correla-
tions between IVIM-DWI parameters and Ang-2 in HCC 

Table 1   Selected radiomics 
features with descriptions

Feature type Feature name Coefficient

Arterial phase GrayLevelCooccurenceMatrix25AutoCorrelation 0.35641360
GrayLevelCooccurenceMatrix25ClusterShade − 0.01175025

GrayLevelCooccurenceMatrix25Entropy 0.96428990
Portal phase GrayLevelCooccurenceMatrix25ClusterShade − 0.10744972
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and showed that D* and f were significantly correlated with 
Ang-2 expression. In the present study, univariate and mul-
tivariate logistic regression analyses indicated that D* and 
f were independent radiologic factors for predicting Ang-2 
expression.

Radiogenomics is an advanced research topic in the 
fields of radiology and precision medicine. Radiogenomics 
is the study of the correlation of radiomic data with gene 
features and gene expression profiles [24]. Recent studies 
have shown that radiomics features can reflect biological 
processes that occur at the genetic and molecular levels 
[25]. Because there may be heterogeneity among HCC 
patients at the same disease stage, the choice of treatments 
for each HCC patient requires individualization [26]. HCC 
patients may benefit more from the prediction of treatment 
responses by radiomics. Combining traditional qualita-
tive imaging and clinical data, quantitative imaging can 
be used to help identify many biomarkers to build predic-
tive models to optimize the diagnosis, treatment selection, 
and treatment response monitoring of HCC [27]. Stefanie 
et al. [28] showed that radiomics features were correlated 
with the protein expression of the immunotherapy target 
programmed cell death-ligand 1 (PD-L1) (r = 0.41–0.47, 
p  <  0.029) and the messenger RNA (mRNA) expres-
sion levels of programmed cell death-1 (PD-1) and 

cytotoxic T-lymphocyte-associated protein 4 (CTLA4) 
(r = − 0.48–0.47, p < 0.037), suggesting that MRI radi-
omics features can be used as noninvasive predictors of 
HCC immuno-oncology features, which can be helpful for 
the treatment stratification of HCC patients. Jia [29] et al. 
explored the value of a nomogram model that combined 
IVIM-DWI and radiomics features of rectal adenocarci-
noma primary lesions in the preoperative assessment of 
nonenlarged lymph node metastasis (N-LNM), and the 
results showed that the nomogram model that combined 
IVIM-DWI parameters (D* and f) and radiomics features 
had better evaluation performance (AUC = 0.864) than 
any other model in the training cohort. In addition, Zhang 
[30] showed that a nomogram based on clinical, IVIM-
DWI and radiological parameters had high clinical value 
in predicting recurrence and disease-free survival (DFS) 
in patients with locally advanced cervical cancer (LACC) 
after concurrent chemoradiotherapy (CCRT), providing a 
reference for the prognostic assessment and individual-
ized treatment of patients with cervical cancer. The present 
study used a radiomics model based on contrast-enhanced 
MRI sequences to noninvasively predict Ang-2 expression 
in HCC tissues, and a model established by combining 
radiomics features and CR factors obtained a higher pre-
dictive value and clinical net benefit.

Fig. 3   The consistency analyses 
in this study included intraob-
server and interobserver consist-
ency tests. Intragroup ICC/
intergroup ICC values ≥ 0.75 
indicated good agreement. a 
Intergroup ICC, b Intragroup 
ICC

Fig. 4   Radiomics feature selec-
tion using the LASSO regres-
sion analysis. a Coefficient 
convergence graph for optimal 
features, b Schematic diagram 
of LASSO
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The limitations of this study are as follows. First, 
although manual segmentation of ROIs was used in this 
study, inaccurate segmentation caused by unclear bounda-
ries in some images was still possible. Second, this was a 
retrospective study, and therefore, selection bias may be 
present. Last, the sample size in this study was small, and 

this was a single-center study, thus lacking effective external 
validation.

In conclusion, DCE-MRI radiomics features can be 
used to build a model to predict Ang-2 expression in HCC 
patients, and the model that combined radiomics and CR 
characteristics had an improved prediction performance.

Table 2   Univariate and 
multivariate analyses of clinic-
radiologic characteristics for the 
evaluation of Ang-2 expression

INR international normalized ratio, APTT activated partial thromboplastin time, FIB fibrinogen, ATIII 
antithrombin III, AST aspartate aminotransferase, ALT alanine aminotransferase, ALP alkaline phosphatase, 
GGT​ gamma glutamyl transpeptidase, ADA adenosine deaminase, AFU alpha-L-fucosidase, 5′NT 5′-nucle-
otidase, ChE choline esterase, PA prealbumin, TP total protein, ALB albumin, GLOB globulin, A/G albu-
min-to-globulin ratio, TBA total bile acid, TBIL total bilirubin, DBIL direct bilirubin, IBIL indirect biliru-
bin, AFP alpha-fetoprotein, PVTT portal vein tumor thrombus, LNM lymph node metastasis.

Variables Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

Sex (male/female) 0.704 (0.128–3.870) 0.686
Age (years) 1.968 (0.568–6.824) 0.286
INR (≤ 1.2/> 1.2) 0.789 (0.167–3.722) 0.765
APTT (≤ 39/> 39 s) 0.648 (0.196–2.143) 0.477
FIB (≤ 4/> 4 g/L) 4.200 (0.944–18.683) 0.059
ATIII (≤ 130/> 130%) 1.700 (0.486–5.953) 0.407
AST (≤ 40/> 40 U/L) 1.333 (0.399–4.457) 0.640
ALT (≤ 50/> 50 U/L) 1.615 (0.509–5.123) 0.415
ALP (≤ 125/> 125 U/L) 1.385 (0.443–4.327) 0.576
GGT (≤ 60/> 60 U/L) 1.968 (0.568–6.824) 0.286
ADA (≤ 25/> 25 U/L) 0.966 (0.261–3.573) 0.959
AFU (≤ 40/> 40 U/L) 0.238 (0.026–2.201) 0.206
5'NT (≤ 11/> 11 U/L) 2.211 (0.337–14.511) 0.409
ChE (≤ 4000/> 4000 U/L) 0.652 (0.190–2.238) 0.497
PA (≤ 150/> 150 mg/L) 0.933 (0.288–3.023) 0.908
TP (≤ 65/> 65 g/L) 0.250 (0.073–0.850) 0.026
ALB (≤ 40/> 40 g/L) 0.150 (0.029–0.763) 0.022
GLOB (≤ 20/> 20 g/L) 1.333 (0.415–4.288) 0.629
A/G (≤ 1.2/> 1.2) 0.297 (0.094–0.941) 0.039
TBA (≤ 10/> 10 μmol/L) 1.667 (0.538–5.168) 0.376
TBIL (≤ 26/> 26 μmol/L) 1.026 (0.205–5.132) 0.975
DBIL (≤ 7/> 7 μmol/L) 0.632 (0.139–2.862) 0.551
IBIL (≤ 17/> 17 μmol/L) 0.789 (0.167–3.722) 0.765
AFP (≤ 400/> 400 µg/L) 3.701 (1.155–11.861) 0.028
ADC 13.531 (0.940–194.679) 0.056
D 10.927 (0.493–242.224) 0.130
D* 1.062 (1.026–1.100) 0.001 1.053 (1.014–1.092) 0.007
f 1.169 (1.067–1.282) 0.001 1.160 (1.035–1.301) 0.011
PVTT 0.350 (0.096–1.278) 0.112
Tumor size(≤ 5/> 5 cm) 1.371 (0.455–4.136) 0.575
LNM 0.900 (0.212–3.828) 0.887
Tumor boundary 0.429 (0.115–1.595) 0.206
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Fig. 5   a ROC curves for the 10-fold cross-validation of the radiomics model, b ROC curves for the 10-fold cross-validation of the CR model, c 
ROC curves for the 10-fold cross-validation of the combined model

Fig. 6   a Radiomics model calibration curve, b CR model calibration curve, c Combined model calibration curve; Calibration curve: predicted 
probability of the model and the actual probability; that is, the closer the nomogram is to the ideal curve, the better the fit of the model.
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