
Magn Reson Med. 2019;82:1553–1565.	﻿	     |  1553wileyonlinelibrary.com/journal/mrm

Received: 11 November 2018  |  Revised: 7 May 2019  |  Accepted: 8 May 2019

DOI: 10.1002/mrm.27831  

F U L L  P A P E R

Population‐based Bayesian regularization for microstructural 
diffusion MRI with NODDIDA

Meghdoot Mozumder1,2  |    Jose M. Pozo3  |    Santiago Coelho3  |    Alejandro F. Frangi3,4

1Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, The 
University of Sheffield, Sheffield, United Kingdom
2Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
3Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), School of Computing and School of Medicine, University of 
Leeds, Leeds, United Kingdom
4LICAMM Leeds Institute of Cardiac and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine

Correspondence
Alejandro F. Frangi, Centre for 
Computational Imaging & Simulation 
Technologies in Biomedicine (CISTIB), 
School of Computing and School of 
Medicine, University of Leeds, United 
Kingdom. and LICAMM Leeds Institute of 
Cardiac and Metabolic Medicine, School 
of Medicine, University of Leeds, Leeds, 
United Kingdom.
Email: a.frangi@leeds.ac.uk
Twitter: @affrangi

Purpose: Information on the brain microstructure can be probed by Diffusion Magnetic 
Resonance Imaging (dMRI). Neurite Orientation Dispersion and Density Imaging with 
Diffusivities Assessment (NODDIDA) is one of the simplest microstructural model 
proposed. However, the estimation of the NODDIDA parameters from clinically plau-
sible dMRI acquisition is ill‐posed, and different parameter sets can describe the same 
measurements equally well. A few approaches to resolve this problem focused on de-
veloping better optimization strategies for this non‐convex optimization. However, this 
fundamentally does not resolve ill‐posedness. This article introduces a Bayesian esti-
mation framework, which is regularized through knowledge from an extensive dMRI 
measurement set on a population of healthy adults (henceforth population‐based prior).
Methods: We reformulate the problem as a Bayesian maximum a posteriori esti-
mation, which includes as a special case previous approach using non‐informative 
uniform priors. A population‐based prior is estimated from 35 subjects of the MGH 
Adult Diffusion data (Human Connectome Project), acquired with an extensive ac-
quisition protocol including high b‐values. The accuracy and robustness of different 
approaches with and without the population‐based prior is tested on subsets of the 
MGH dataset, and an independent dataset from a clinically comparable scanner, with 
only clinically plausible dMRI measurements.
Results: The population‐based prior produced substantially more accurate and ro-
bust parameter estimates, compared to the conventional uniform priors, for clinically 
feasible protocols, without introducing any evident bias.
Conclusions: The use of the proposed Bayesian population‐based prior can lead to 
clinically feasible and robust estimation of NODDIDA parameters without changing 
the acquisition protocol.
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1  |   INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) allows in 
vivo and noninvasive mapping of water molecules’ diffusive 
movement in biological tissues. This motion is constrained 
by the tissue microarchitecture.1 Hence, combined with bio-
physical modeling, dMRI is potentially capable of capturing 
microstructural features related to tissue constituents. There 
exists several modeling techniques in the literature capable 
of capturing such information. Signal models, for instance, 
directly model the dMRI signal with a particular functional 
form. The most common of them is the diffusion tensor im-
aging,2 which, despite its simplicity, can still provide mean-
ingful biomarkers that are widely used as indications of 
microstructural tissue changes.3 Micro‐structural models,4 
instead, derive the dMRI signal from a physical model of the 
tissue microstructure (e.g.5-7). This allows capturing more 
specific information of individual tissue constituents.

One of the most popular dMRI microstructural models 
is the neurite orientation dispersion and density imaging 
(NODDI).7 NODDI describes the signal generated from a 
voxel as arising from three independent non‐exchanging 
compartments: intra‐neurite, extra‐neurite, and cerebrospinal 
fluid (CSF). The intra‐neurite compartment is modeled as a 
set of sticks, i.e. cylinders with zero radius, the extracellular 
compartment is modeled as set of cylindrically symmetric 
diffusion tensors, and the CSF as an isotropic compartment. 
Instead of estimating all model parameters directly from the 
data, NODDI makes some assumptions and constrains a few 
of its microstructural parameters for estimating the rest. These 
assumptions have been shown8-10 to be not always valid and to 
result in biased estimates for the remaining model parameters.

Jelescu et al11 suggested an alternative approach where 
these microstructural parameters were no longer consid-
ered fixed or constrained, called NODDIDA (NODDI with 
Diffusivity Assessment). This approach removes the in-
correct assumptions of NODDI, but it makes the problem 

ill‐posed10: i.e. multiple parameter sets can describe the 
dMRI signal equally well (see Figure 1) and hence the solu-
tion is not unique. Also, it reduces NODDI from a three‐com-
partment model to a two‐compartment model, by eliminating 
the isotropic compartment. Hence, the model is only applica-
ble in brain regions with minimal CSF contamination.

Despite these difficulties, these models describe several 
useful microstructural parameters for detecting pathological 
conditions, meriting further investigation. For example, the 
neurite orientation distribution has demonstrated potential 
in capturing white matter disarray in Alzheimer’s disease 
(AD).12 Extracellular radial diffusivity increases with re-
duced myelination,13,14 and is observed in the development 
of multiple sclerosis (MS) and AD. Since demyelination, un-
like axonal loss, is in many cases reversible, a method that 
differentiates between the two has potential clinical value. 
NODDIDA parameters are also prospective biomarkers for 
other brain disorders, such as axonal loss in MS and AD could 
be inferred from the intra‐neurite fraction,13 accumulation of 
fluids in intra‐ and extracellular spaces in cerebral edema and 
beading could be inferred from the intra‐ and extra‐neurite 
diffusivites.15,16

The ill‐posed parameter estimation in NODDIDA, some-
times referred to as degeneracy, requires some consideration. 
The NODDIDA degeneracy has been sometimes attributed to 
the non‐convexity of the problem resulting in multiple local 
minima of the cost function. Non‐convexity can be tackled 
using repeated local optimizations, starting from random pa-
rameter initializations, and selecting the solution with global 
minimum residual error.11 But this strategy does not address 
the ill‐posedness. The method produced reasonable estimates 
with extensive dMRI measurement protocols. However, for 
clinically feasible dMRI measurements, the method fails to 
resolve the NODDIDA degeneracy since there are multiple 
global minima with equal cost function value (as illustrated 
in Figure 1), making the optimum identification unstable for 
any noise level.

F I G U R E  1   Illustration of the degeneracy present in the likelihood function of the dMRI signal for the NODDIDA model. From the example 
NODDIDA parameters, θ, in the Set B of Jelescu et al11, we generated the dMRI measurements, y, for a clinically feasible protocol and SNR. 
The residual norm, ‖y‐S(θ)‖, presents 2 local minima with very similar values: the parameter point, A, generating the measurements, and another 
spurious minimum, B. Plots (A) and (B) display the cellular fraction, f, and intracellular diffusivity, D

a
, plane (fixing the rest of the parameters) 

including the parameter points B and A, respectively. Plot (C) displays the line connecting both local minima
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It was observed in Jelescu et al11 for a sample of cases, 
that the actual solution presented a wider basin of attraction 
in the parameter space than the spurious one. Assuming this 
observation is valid in general, they suggested to consider a 
corresponding alternative criterion for estimating the opti-
mal solution: from several random initializations, selecting 
the local minimum with higher prevalence. This method was 
subsequently applied for a microstructural model similar to 
NODDIDA in Novikov et al.10 However, this assumption is 
not correct in all situations. The case illustrated in Figure 1 
is a counterexample, showing larger basin around the wrong 
minima. A systematic comparison of these methods, has not 
yet been performed.

A machine learning Bayesian approach, based on training 
using simulated data and assuming the traces of the intra‐ and 
extra‐axonal diffusivities to be similar, has been proposed in 
Reisert et al.17 The approach provided largely unreliable es-
timates for extracellular diffusivities, putting in doubt its as-
sumption. In addition, this method estimates the parameters 
expected value, ignoring (not solving) the possible bimodal-
ity of the posterior. Moreover, the implementation of meth-
ods factoring out the neurite orientation distributions10,17 is 
not straightforward, limiting its applicability.

In this paper, we demonstrate for the first time, that pa-
rameter estimation approaches proposed earlier10,11 can be 
described within the Bayesian estimation formalism as maxi-
mum a posteriori (MAP) estimation with uniform probability 
density function (pdf) priors on the parameters. Subsequently, 
we used a prior on model parameters by estimating their prob-
ability density function from extensive dMRI measurements 
in a population of 35 healthy adult subjects. We coin these 
population‐based priors, since they were estimated from a pa-
rameter sample in a reference population. We then compared 
MAP estimates with uniform and population‐based priors 
using common optimization methods, using real dMRI data. 
We also compared these approaches to NODDI. We demon-
strate that the estimation using the proposed population‐based 
prior provides most reliable parameter estimates on clinical 
data that can be implemented on clinical dMRI protocols. 
However, no clear difference is observed between the perfor-
mance of previously published optimization methods for each 
prior model. The proposed method is easily implemented by 
a straightforward modification of NODDI toolbox, increasing 
its potential application in clinical diagnosis.

2  |   METHODS

2.1  |  dMRI data
We have used the Massachusetts General Hospital (MGH) 
Adult Diffusion data,18 available from the Human Connectome 
Project (HCP).19 It is a high resolution, high b‐value dMRI 
dataset, obtained from 35 healthy adult subjects between 20 

and 59 years old, using a protocol that used a substantially 
large set of b‐values and gradient directions (compared to 
clinical measurement protocols). Each subject of the MGH 
HCP has 40 b0 images and measurements from 64 diffu-
sion directions for b = 1000, 3000 s/mm2, 128 directions for 
b = 5000 s/mm2, and 256 directions for b = 10 000 s/mm2.

We also used an independent dataset acquired by a 3T 
Siemens MAGNETOM PrismaFit system with 80  mT/m 
maximum gradient strength, which is comparable to a clini-
cal scanner. An EPI/spin echo (SE) diffusion‐weighted pulse 
sequence was used with 75 ms echo time, 2700 ms pulse rep-
etition time, and a 128 × 128 acquisition matrix resulting in 
an isotropic voxel size of 2.5 mm. 11 b‐values were acquired 
(b = 0, 250, 350, 450, 550, 650, 750, 850, 1150, 1500, 2000 
s/mm2) with 12 b0 images and 60 non‐co‐linear magnetic 
field gradient directions for the others. The total acquisition 
time was 33 minutes.

Only voxels with minimal CSF contamination were used 
in the analysis, selected by a threshold of 1% CSF frac-
tion estimated by the “free water elimination” technique in 
Pasternak et al.20

2.2  |  NODDIDA model
The NODDIDA microstructural model10,11,21 considers a dis-
tribution of axonal fibers with two tissue components result-
ing in a biexponential kernel, 

dependent on the gradient strength, b, and the projection, 
𝜉 = ĝ ⋅ n̂, of the gradient direction, ĝ, into the fiber direc-
tion, n̂. This kernel describes the diffusion due to a single 
axon and its extracellular matrix. Here, f describes the in-
tracellular (axonal) fraction, Da is the intracellular diffu-
sivity, and D

∥
e and D⟂

e
 are the parallel and perpendicular 

extracellular diffusivities. The dMRI signal attenuation is 
given by the convolution of the kernel with the fiber orien-
tation distribution function p(n̂): 

NODDI7 and NODDIDA models consider the Watson spher-
ical distribution, p(n̂|𝜅, �̂), as fiber orientation distribution, 
parametrized by its main orientation �̂ and the concentration κ,  
characterizing its anisotropy. Let � = (f , Da, D

∥
e , D⟂

e
, �) de-

note the NODIDDA model parameters, and let θ ↦ S(θ) be 
the deterministic forward model defined by (2). By determin-
istic, we mean, the model S does not contain any signal noise 
or model inaccuracies. Typical clinical dMRI scanners show 

(1)(b, �)= f e−b Da�
2

+ (1− f ) e−bD⟂

e
−b(D

∥
e−D⟂

e
)�2

,

(2)S≡Sĝ(b)=S0 ⋅� dn̂ p(n̂)(b,ĝ ⋅ n̂).
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SNRs >3 for the human brain,22 and as such the additive 
Rician noise, �, in measurements can be approximated by 
a Gaussian distribution.23 Thus, the actual dMRI measure-
ments can be modeled as 

so that their conditional probability is 

Assuming independent noise of the same standard deviation for 
all measurements, the covariance matrix will be proportional to 
the identity matrix, �� = �2

�.

2.3  |  Bayesian estimation
In the Bayesian approach to inverse problems, all unknowns 
and measured quantities are considered random variables and 
the uncertainty of their values is encoded into a probability 
density function (model). Using the Bayes theorem, we can 
express the posterior distribution 

in terms of the measurements model, π(y|θ), and the prior pdf 
on the model parameters, π(θ). All these pdfs are probability 
densities on some high‐dimensional space. One standard crite-
rion for the estimation of the model parameters from the poste-
rior probability, is the maximum a posteriori (MAP) estimate.

If a uniform prior distribution is considered for the model 
parameters, �∼ (a,b), and the Gaussian measurement model 
(4) is explicitly expanded, the MAP estimate is given by 

Thus, this leads us to the least square cost function typically 
used10,11,21 with box constraints 

This estimator can be easily implemented as a modification 
to the NODDI toolbox7,11 and is available for download from 
Mozumder.24

This cost function is usually interpreted as a maxi-
mum likelihood estimation (MLE) subject to constraints.11 
However, the Bayesian formulation allows us to consider  
diverse priors, incorporating available information on the 
problem at hand via the pdf of the model parameters.

2.4  |  Population‐based priors
We use informative priors estimated from a sample of dMRI 
datasets with extended diffusion protocols. We used horizon-
tal midbrain dMRI slices from the 35 subjects from the MGH 
HCP database. In contrast to more common clinical dMRI 
protocols, this protocol used to acquire the MGH HCP, had a 
substantially larger set of b‐values and gradient directions. This 
makes the parameter estimation problem better posed, and the 
larger number of directional measures increases accuracy.10,11 
We considered the method outlined in Jelescu et al11 for solving 
Equation (6) using several parameter initializations and choos-
ing the solution with minimum residual errors. The obtained 
parameters have been considered as ground truth (GT). A total 
of N = 44 931 horizontal midbrain voxels have been analyzed, 
obtaining the corresponding N sets of NODDIDA parameters: 

The parameter distribution in this sample (shown in Figure 2) 
provides an estimate of their population pdf, which is used as 
prior in MAP estimation. All parameters display near‐symmet-
ric unimodal pdfs. Thus, we model them jointly as a multidi-
mensional Gaussian pdf, 

(3)y=S(�)+�, �∼ (0,��).

(4)�(y|�)= (S(�),��).

(5)�(�|y)∝�(y|�)�(�)

(6)

�MAP= arg max
�

�(��y)

= arg max
�

exp
�
−

1

2
‖y−S(�)‖2

�−1
�

� (a,b)

= arg min
�

‖y−S(�)‖2, subject to �∈ [a,b].

(7)
f ∈ [0, 1]⊂ℝ, Da, D∥

e
, D⟂

e
∈ [0, 4]⊂ℝ, 𝜅∈ [0, 64]⊂ℝ.

(8){�(l), l=1…N}.

(9)�(�)= (�,��),

F I G U R E  2   Distribution of NODDIDA parameters in the population estimated from midbrain sections of 35 patients from the MGH HCP 
dataset. They have been approximated by a multivariate Gaussian distributions (red dashed lines), defining the population‐based prior. Their cross‐
correlations are not shown here
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which allows an easy treatment of their correlation, with the 
mean parameter vector, �, and covariance matrix, ��, estimated 
from the sample (8). Mean and covariance calculated from the 
35 subjects are provided in the Supporting Information Equation 
S1. Proceeding as in Equation (6), but using this Gaussian prior, 
the MAP estimate is given by 

which is a generalized least mean square cost function.
The covariance �� depends on the noise of the dMRI ex-

perimental data. We estimated it from the value of S0 and 
assumed a SNR = 50. This SNR was arbitrarily chosen, since 
typical clinically feasible protocols does not acquire many S0 
images,11 and hence, the SNR cannot be directly estimated 
from the standard deviation of S0 signals.

2.5  |  Optimization strategies
The calculation of the maximum posterior estimate, �MAP, 
with both uniform (6) and population‐based Gaussian (10) 
priors, requires solving a nonlinear optimization problem 
and concomitant iterative optimization. We have used the 
Levenberg‐Marquardt method, following the same approach 
as in Jelescu et al.11 The MAP estimations with each type 
of prior, was carried out using three different optimization 
strategies:

2.5.1  |  Single random initialization
The optimization algorithm is run only once, considering ran-
domly sampled initialization parameters in the interval (7). 
This strategy only guarantees the localization of a random 
local optimum. Thus, the instability of the result evidences 
the non‐convexity of the optimization problem.

2.5.2  |  Maximum a posteriori selection
The optimization algorithm is run multiple times with dif-
ferent initializations.11 The estimate yielding the maximum 
a posteriori probability is selected as estimate of the global 
optimum. We have considered 20 initializations, the same 
number as in Novikov et al.10 This allows its direct compari-
son with their results, and we have observed no significant 
difference using a larger number of initializations.

2.5.3  |  Highest prevalence selection
Optimization from multiple initializations. The most com-
mon solution is considered as the estimate representing the 
local optimum with wider basin of attraction.10 As for the 
previous strategy, 20 initializations were used.

These three optimization strategies, combined with the 
two pdfs, give a total of six estimation strategies. For com-
pleteness, we have also compared the estimates obtained via 
NODDI (as in the NODDI toolbox7,11). NODDI fixes two 
diffusivities (Da = D

∥
e = 1.7 × 10−3 mm2/s) and assumes 

that the third diffusivity is constrained (D⟂

e
= (1− f )D

∥
e). 

Hence, it estimates only f, κ out of the five NODDIDA pa-
rameters. Table 1 lists the seven estimation strategies with the 
corresponding acronyms used in this work.

2.6  |  Experiments
From the complete dMRI extended acquisition protocol of 
the MGH HCP dataset, we considered a subset emulating a 
clinically feasible protocol.11 This subset included 3 b‐val-
ues (b = 0, 1000, 3000 s/mm2), consisting of 1 b0 image and 
30 non‐co‐linear gradient directions for other shells. The 
b = 3000 s/mm2 is the closest value to b = 2000 s/mm2, 
used in Jelescu et al,11 available in the MGH HCP database. 
Despite this increased b‐value, it is still clinically feasible.25

The parameters estimated from the complete extended 
protocol were used for two purposes. First, the population‐
based prior, π(θ), was estimated from them. Second, they 
were considered as the GT for the evaluation of the seven ap-
proaches considered, when applied on the clinically feasible 
subset. For a fair comparison, for the analysis of each subject, 
the prior in methods G1, Gm, and Gp did not include infor-
mation from the same subject. That is, the prior estimation 
and accuracy evaluation were performed in a leave‐one‐sub-
ject‐out fashion.

2.6.1  |  Evidencing the degeneracy
In order to illustrate the presence of a degenerated estima-
tion in NODDIDA parameter and to explore in detail how 
this affects different estimation strategies, we considered two 
random voxels selected one from the corpus callosum (CC) 
and another from the posterior limb of the internal capsule 
(PLIC), from subject MGH_1001.

(10)
�MAP= arg max

�
exp

�
−

1

2
‖y−S(�)‖2

�−1
�

−
1

2
‖�−�‖2

�
−1
�

�

= arg min
�

�
‖y−S(�)‖2

�−1
�

+‖�−�‖2

�
−1
�

�
,

T A B L E  1   Acronyms for the models and estimation methods 
considered in this paper

Acronym Prior Optimization strategies

N Uniform NODDI

U1 Uniform Single initialization.

Um Uniform Maximum a posteriori (20 init.)

Up Uniform Highest prevalence (20 init.)

G1 Population‐based Single initialization.

Gm Population‐based Maximum a posteriori (20 init.)

Gp Population‐based Highest prevalence (20 init.)
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2.6.2  |  Brain maps illustration
Two different brain regions of subjects MGH_1001 and 
MGH_1002 were considered to explore the spatial continuity 
of the model parameters and the importance of the gener-
ated noise with each of the seven estimation strategies. The 
NODDIDA parameter maps using the clinically feasible sub-
set were also compared to the GT.

2.6.3  |  Global accuracy evaluation
The midbrain slices of the full set of 35 subjects of the 
MGH HCP database was considered to evaluate and com-
pare the accuracy of the seven estimation strategies when 
applied to the clinically feasible subset. To further explore 
the impact of the noise level on the parameter estima-
tion accuracy, we subdivided the set of voxels into three 
groups, according to the SNR calculated using the standard 
deviation of the S0 data: SNR < 25, 25 ≤ SNR ≤ 35, and 

35 < SNR. The estimation accuracy for each of the param-
eters, � = (f , Da, D

∥
e , D⟂

e
, �), was measured by the relative 

error 

2.6.4  |  Using an independent dataset
We used the independent dMRI dataset from the 
MAGNETOM PrismaFit system to test the performance of 
the seven estimation strategies. First, the whole dataset (all 
b‐values and gradient directions) were used to estimate the 
GT parameters. Then, a clinically feasible subset with three 
b‐values (b = 0, 1150, 2000 s/mm2), with 1 b0 image and 30 
directions from other shells were used for the evaluation of 
the estimation strategies. The population‐based prior used in 
this case was based on the MGH HCP data.

(11)
E� = |�(Estimated)

�
−�(GT)

�
|∕�(GT)

�
×100%, for �=1, … , 5.

F I G U R E  3   Illustration of the 
degeneracy in NODDIDA parameter 
estimation in two random voxels from CC 
and PLIC. The estimation of each of the 
NODDIDA parameters from a clinically 
feasible subset of dMRI measurements using 
the different estimation methods produce 
histogram of solutions, which can be 
multimodal. The cyan dotted lines represent 
the estimates using NODDI. The parameter 
estimates using the full extended protocol 
(GT) is shown in magenta dotted lines
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3  |   RESULTS

3.1  |  Evidencing degeneracy
Figure 3 displays the histogram of estimates, for each 
model parameters obtained with each estimation method. 
It presents separately the results for a random voxel of CC 
and for a random voxel of PLIC. The multimodal distribu-
tion shown by U1 evidences the non‐convexity of the dMRI 
likelihood for NODIDDA, presenting many local optima. 
The results for G1, show that this non‐convexity is already 
partially mitigated for the posterior with the population‐
based prior. The global optimum selected by Um is close to 
the GT for the PLIC voxel, but identifies the wrong value 
in the CC. Only a slight improvement is obtained by the 
higher prevalence criteria in Up. In contrast, the popula-
tion‐based prior allows both Gm and Gp to localize the cor-
rect optimum. We can also observe that the values assumed 
by NODDI for the diffusivities are suboptimal, thus biasing 
the estimates for f and κ, in agreement with,8 especially in 
the PLIC.

3.2  |  Brain dMRI example
Figures 4 and 5 show model parameter maps in two different  
regions of the brain, each from a different subject. Parameter 
map of an entire brain slice is displayed in Supporting 
Information Figure S1. The estimates with U1, Um, and Up 
are very noisy. In contrast, the estimates obtained with popula-
tion‐based priors (methods G1, Gp, and Gm) are smoother and 
present more realistic patterns alike GT maps. In addition, the 
obtained values are in the ranges expected for human brains, 
qualitatively matching parameter maps in Novikov et al,10 ob-
tained with more extensive dMRI acquisition protocols, and 
showing higher (f , Da, �) and lower (D∥

e , D⟂

e
) in white matter 

compared to gray matter. The maps obtained by NODDI are 
also smooth and qualitatively similar for f and κ, but cannot es-
timate the diffusivities.

3.3  |  Evaluating global accuracy
Figure 6 displays the distribution of relative errors obtained 
using each of the seven estimation strategies, for different 

F I G U R E  4   Map of NODDIDA 
parameters estimated from a brain region 
of interest (ROI) from subject MGH_1001 
(indicated within a rectangle in its S

0
 

image on the left). Top row show the GT 
parameters estimated using the whole set of 
extended dMRI measurements. The rows 
below show the results from the seven 
different methods applied on a clinically 
feasible subset of measurements

f

T
ar

ge
t

Da De
|| De

 N
O

D
D

I
 U

1
 U

m
 U

p
 G

1
 G

m
 G

p

0 1 0    0.004 0    0.004 0    0.002 0 6

ROI



1560  |      MOZUMDER et al.

SNR ranges. The proposed population‐based priors gave 
lower errors for all parameters and all SNRs, for the three op-
timization strategies. Both highest prevalence (Gp) and mini-
mum cost (Gm) displayed similar errors. The only slightly 
higher errors obtained with a single initialization (G1) sug-
gest, in agreement with Figure 3, that the non‐convexity of 
the problem is largely mitigated. This could indicate that the 
global optima could be robustly found with fewer initializa-
tions than the 20 used here for Gm and Gp, making the esti-
mation faster.

For the uniform prior, the maximum prevalence crite-
rion (Up), provides in general worse results than minimum 
cost (Um). This contrasts with the observations in Jelescu 
et al,11 subsequently applied in Novikov et al,10 suggesting 
that minimum cost is a better criterion for the estimation of 
NODDIDA parameters.

The errors provided by NODDI were smaller than the 
ones from the NODDIDA estimation with uniform prior for 
all parameters. This happens even for the diffusivities, which 
have given fixed values in NODDI. In contrast, the inclusion 

of the population‐based prior leads to smaller errors also in 
comparison to NODDI.

The errors in the group with higher SNR are, in general, 
smaller. But this effect is more prominent for estimates with 
population‐based priors. Thus, Gm estimations could further 
benefit from increased dMRI signal quality. The estimation 
with uniform priors is apparently not improved by the in-
crease in SNR, probably due to the presence of bimodality 
in the estimations.

3.4  |  Independent dataset
Figure 7 displays parameter maps from an independ-
ent dMRI dataset. We observe that the proposed popula-
tion‐based prior still provide smooth realistic parameter 
maps, closer to the target parameter maps. Figure 8 dis-
plays the distribution of relative errors obtained using the 
seven estimation strategies on the whole brain slice. The 
proposed population‐based priors gave lower errors for all 
parameters.

F I G U R E  5   Map of NODDIDA 
parameters estimated from a brain region 
of interest (ROI) from subject MGH_1002 
(indicated within a rectangle in its S

0
 

image on the left). Top row show the GT 
parameters estimated using the whole set of 
extended dMRI measurements. The rows 
below show the results from the seven 
different methods applied on a clinically 
feasible subset of measurements
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4  |   DISCUSSION

This work addresses parameter estimation in microstruc-
tural and in general, multi‐compartmental dMRI models. 
Estimation of parameters in multi‐compartmental dMRI 
models, such as NODDIDA, is inherently ill‐posed. This 
problem fundamentally arises when microstructural param-
eter values for different compartments are exchanged result-
ing in indistinguishable dMRI signals. Approaches to resolve 
this degeneracy have focused on developing better optimi-
zation strategies addressing non‐convex optimization. This, 
however, does not solve the ill‐posed nature of the problem 
for clinically relevant dMRI acquisition protocols and SNR, 
where acquiring extensive diffussion orientations is unfeasi-
ble. The use of priors in the estimation of NODDIDA param-
eters has been suggested earlier in Jelescu et al.11 However, 

its use has been ill‐advised in Novikov et al,10 following the 
prevalent belief among the diffusion community that priors 
are equivalent to constraints introducing bias in parameter 
estimation.

Nevertheless, we demonstrate in this work that the use 
of population‐based priors can substantially increase the 
robustness and accuracy of the NODDIDA parameters esti-
mates without introducing noticeable bias. The mean estima-
tion errors reduced to below 16% using the proposed prior, 
compared to below 42% using previously proposed priors. 
There are two aspects to highlight here. First, in contrast 
with NODDI constraints, the prior distribution can model pa-
rameter correlations without fixing them to exact parameter 
values. Second, prior information is encoded based on the ob-
servation of the model parameter distribution across distinct 
patient populations, not in hypothetical parameter values.

F I G U R E  6   Accuracy of the estimation of the NODDIDA parameters by each of the estimation methods applied to a clinically feasible subset 
of measurements. The boxplots represent the distribution of the relative estimation error for each NODDIDA parameter and for each method. The 
results have been stratified in three groups of SNR ranges
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In our methods we chose SNR 50, since clinically feasible 
datasets doesn’t have multiple b0 values to allow the estima-
tion of SNRs. A good guess of SNR can further improve the 
estimation accuracy, see Supporting Information Figure S2 
and the discussion therein.

We evidence that previously proposed approaches in 
Novikov et al10 and Jelescu et al11 are akin to using non‐in-
formative uniform priors within our Bayesian estimation 
framework. To develop more informative priors integrat-
ing information from specific populations, we considered 

F I G U R E  7   Map of NODDIDA 
parameters estimated from a brain region of 
interest (ROI) from the independent dMRI 
dataset (indicated within a rectangle in its 
S

0
 image on the left). Top row show the 

GT parameters estimated using the whole 
set of extended dMRI measurements. The 
rows below show the results from the seven 
different methods applied on a clinically 
feasible subset of measurements

F I G U R E  8   Accuracy of the estimation of the NODDIDA parameters by each of the estimation methods applied to a clinically feasible subset 
of measurements from the independent dMRI dataset. The boxplots represent the distribution of the relative estimation error for each NODDIDA 
parameter and for each method
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the distribution of the model parameters estimated from 35 
subjects of the MGH dataset from the HCP.19 These data 
comprise dMRI measurements with an extensive protocol in-
cluding high b‐values, for which the degeneracy issue is min-
imal. The resulting parameters distribution was sufficiently 
well approximated by a multivariate Gaussian. The use of a 
Gaussian prior leads also to Gaussian posterior, convenient 
for computational optimization.

We tested previously proposed estimation approaches using 
uniform and population‐based priors in experimental datasets 
with clinically achievable dMRI acquisition protocols. For 
this, we selected appropriate subsets of measurements from 
the MGH dataset. This allowed evaluating the accuracy of the 
estimations from clinically feasible acquisitions, considering 
the model parameters estimated from the extensive protocol 
as GT. Observe that, unlike the previous NODDI/NODDIDA 
studies,7,10,11,17 the evaluation was carried out against GT val-
ues calculated from real experimental data.

First, we explored in two sample voxels the behavior of 
the estimations for each method. Second, we qualitatively in-
vestigated the smoothness and plausibility of the spatial map 
of estimated parameters in two ROIs from two subjects. Next, 
we quantified the global accuracy of the estimations by the 
distribution of the relative errors in the dataset of 35 subjects. 
Finally, we used an independent dMRI measurement from a 
clinically comparable scanner to evaluate the estimation ac-
curacies. Consistently across the four experiments, the intro-
duction of the population‐based priors, effectively deals with 
the ill‐posedness of the problem and produce substantially 
more accurate results than previous techniques.

The multimodality of the parameter estimates using a 
single parameter initialization with the uniform prior (U1), 
observed in Figure 3, evidences the non‐convexity of the 
problem, as earlier reported in Jelescu et al.11 The known, 
more severe, ill‐posedness of the problem is evidenced in 
the instability of the global optimum with minimum resid-
ual (Um). In contrast with the observation and suggestion 
in Novikov et al10 and Jelescu et al,11 the selection of the 
wider optimum by the higher prevalence criterion (Up) does 
not solve the problem. This is further evidenced in the noisy 
parameter maps (Figures 4 and 5) obtained from any of the 
three criteria with uniform prior. Further, the largest errors 
observed (Figure 6) for the higher prevalence criteria (Up) 
discourages the use of this criteria. A few more examples are 
presented in Supporting Information Figures S3‐S6.

The non‐convexity of the estimation problem is largely 
reduced by the introduction of the population‐based prior, as 
evidenced in the removing of most of the multimodality in 
Figure 3 for a single initialization (G1). This is further re-
flected in the significant error reduction (Figures 6 and 8) for 
all methods including the population‐based prior (G1, Gm, 
and Gp) but with only slightly larger errors for G1, indicating 
that the search for the global optimum is much simplified.

Figure 6 points out the impact on the estimation accuracy 
of the level of noise in the three SNR ranges considered is 
negligible for NODDI and for the methods with uniform 
prior. In contrast, the gain in parameter accuracy with the 
quality of the signal is clear for the methods with the popula-
tion‐based prior. This can be interpreted considering that the 
existing bimodality in the likelihood function is a persistent 
obstruction to the accuracy even with infinitesimal noise, but 
the removal of the bimodality by the population‐based prior 
releases the achievable accuracy from this obstruction.

NODDI provides accuracies (Figure 6) similar to the best 
method (Gm) for the dispersion parameter, κ, and, to some 
extent, for the diffusivities, Da and D

∥
e, especially for mea-

surements with low SNR. However, NODDI presents sub-
stantially larger errors for the cellular fraction, f, and cannot 
estimate the variations in the diffusivities, since, in contrast 
with NODDIDA, they are fixed to predefined values (see 
Figures 4,5 and 7).

The population‐based prior in this work was based on 
measurements from the Connectome scanner which has very 
high 300 mT/m maximum gradient strength, compared to 
clinical scanners which have 40‐60 mT/m maximum gradient 
strength. Since the observed diffusion values in dMRI de-
pends partially on the diffusion gradient strengths and other 
scanning parameters,26 the presented prior might cause some 
bias in the estimation of the extra and intracellular diffusion 
coefficients, when applied to data obtained with other scan-
ners or protocols. The presented experiment on an indepen-
dent dMRI data acquired with a clinical scanner, demonstrates 
that the use of the prior still results in the same reduction of 
the ill‐posedness. However, since no ground truth is available 
in this case, we cannot discard a possible bias.

In the context of disease detection and treatment, changes 
in NODDIDA parameters (�, D⟂

e
) have been reported12-14 in 

multiple sclerosis and Alzheimer’s disease, and is known to 
be potentially useful for several other disorders such as bead-
ing, edema, and inflammation.10 The parameter variations of 
Da, D

∥
e, not accessible by NODDI, are also potentially useful 

in detection of edema and inflammation. Figure 6, shows how 
utilizing the conventional uniform prior model or NODDI 
would lead to large estimation errors and could make estima-
tion of NODDIDA parameter changes unfeasible in clinical 
settings. Using the population‐based prior, the errors are de-
creased in all parameters, for all SNR ranges. This decrease 
is particularly marked in Da, � and f, with mean errors below 
16% in the more clinically relevant parameters (Da, D⟂

e
, �, f

) for SNR ≥35, indicating the potential of the use of popula-
tion‐based prior in robust NODDIDA parameter estimation 
and subsequent clinical diagnosis development.

In this work, we have estimated the prior from a popula-
tion of healthy subjects. For clinical applications investigat-
ing any pathology, a more general prior should be estimated 
from a population including also cases with such pathologies. 
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We expect this will be feasible in the future, when extensive 
acquisition protocol‐based dMRI data from pathology cases 
will be available. We plan to construct such general priors in 
the future, based on pathology cases.

5  |   CONCLUSIONS

In this work, we introduced a novel framework of NODDIDA 
estimation, which allowed the use of a population‐based 
prior information in a Bayesian formulation. The prior was 
estimated from the distribution of NODDIDA parameters  
obtained from the publicly accessible MGH HCP dataset19 
with dMRI from 35 subjects with an exceptionally extensive 
acquisition protocol. The parameter distribution was approxi-
mated by a multivariate Gaussian distribution defining the 
prior. This leads also to a Gaussian posterior, whose optimiza-
tion is easily implemented as a modification of the NODDI 
toolbox. The code used for estimation can be downloaded from 
Mozumder24 and used in conjunction to the NODDI toolbox.

The results indicate that, contrary to previous claims,10 
the use of priors within the Bayesian estimation framework, 
can lead to accurate and robust estimation of the NODDIDA 
parameters. The integration of the population‐based prior, 
with the minimum cost criteria to find the global optimum, 
provides parameter estimation accuracies surpassing the ones 
from previous methods. The results also suggest that this 
prior largely removes the ill‐posedness, and even partially the 
non‐convexity of the estimation problem. This method pro-
vides mean relative errors below 16% for the more clinically 
relevant parameters (Da, D⟂

e
, �, f ) using clinically feasible 

SNRs and datasets. The proposed method can be potentially 
developed for clinical diagnosis of brain disorders using the 
estimated NODDIDA parameters.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 Map of NODDIDA parameters estimated from 
a midbrain slice from subject MGH_1001. Top row show the 
GT parameters estimated using the whole set of extended 
dMRI measurements. The rows below show the results from 
the seven different methods applied on a clinically feasible 
subset of measurements
EQUATION S1 The mean θ of the NODDIDA model pa-
rameters � = (f , D

a
, D

∥
e , D

⟂

e
, �), calculated from midbrain 

slices of the 35 subjects of MGH HCP database

FIGURE S2 Accuracy of the estimation of the NODDIDA 
parameters by each of the previously proposed estimation 
methods (N, U1, Um, Up) and G1, Gm, Gp assuming SNR 
50, assuming SNR 20, and using their true (calculated) SNRs. 
The boxplots represent the distribution of the relative estima-
tion error for each NODDIDA parameter and for each method, 
with a clinically feasible subset of measurements. We observe 
a slight improvement in the estimation of �, D

‖
e and D⟂

e
, using 

the proposed methods, when SNR 20 or the estimated SNRs 
were used. This is because, the mean SNR from all the MGH 
HCP data was around 35, and hence choosing SNR 20 was a 
closer approximation to the true SNR, than choosing SNR 50
FIGURE S3 Estimates from a voxel of corona radiata with 
clinical subset of measurements. The cyan dotted lines rep-
resent the estimates using NODDI. The parameter estimates 
using the full extended protocol (GT) is shown in magenta 
dotted lines
FIGURE S4 Estimates from a voxel of corona radiata with a 
different subset of measurements. The cyan dotted lines rep-
resent the estimates using NODDI. The parameter estimates 
using the full extended protocol (GT) is shown in magenta 
dotted lines
FIGURE S5 Estimates from a gray matter voxel with clinical 
subset of measurements. The cyan dotted lines represent the 
estimates using NODDI. The parameter estimates using the 
full extended protocol (GT) is shown in magenta dotted lines
FIGURE S6 Estimates from a different gray matter voxel 
with clinical subset of measurements. The cyan dotted lines 
represent the estimates using NODDI. The parameter esti-
mates using the full extended protocol (GT) is shown in ma-
genta dotted lines
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