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Abstract: The proposition of non-fullerene acceptors (NFAs) in organic solar cells has made great
progress in the raise of power conversion efficiency, and it also broadens the ways for searching and
designing new acceptor molecules. In this work, the design of novel NFAs with required properties
is performed with the conditional generative model constructed from a convolutional neural net-
work (CNN). The temporal CNN is firstly trained to be a good string-based molecular conditional
generative model to directly generate the desired molecules. The reliability of generated molecular
properties is then demonstrated by a graph-based prediction model and evaluated with quantum
chemical calculations. Specifically, the global attention mechanism is incorporated in the prediction
model to pool the extracted information of molecular structures and provide interpretability. By
combining the generative and prediction models, thousands of NFAs with required frontier molecular
orbital energies are generated. The generated new molecules essentially explore the chemical space
and enrich the database of transformation rules for molecular design. The conditional generation
model can also be trained to generate the molecules from molecular fragments, and the contribution
of molecular fragments to the properties is subsequently predicted by the prediction model.

Keywords: non-fullerene acceptors; convolutional neural networks; molecular generation model;
frontier molecular orbital energies; chemical space

1. Introduction

Organic solar cells (OSCs) [1], one of the most promising directions for exploiting
solar energy, consist of a blend of electron donor and acceptor materials. Traditionally,
fullerene molecules are taken as acceptors because of their high electron affinity and
mobility. For further improvement of power conversion efficiency (PCE), non-fullerene
acceptors (NFAs) have recently been proposed as alternative acceptors [2]. Compared
with fullerenes, NFAs have the advantages of adjustable energy level, appropriate optical
absorption, good chemical stability, excellent morphology stability, and low synthesis
cost, which could make them the most potential components in organic photovoltaic
materials [3,4]. The NFAs have made remarkable progress in the performance of OSCs.
By 2020, the PCE of Y6-based OSCs have already achieved over 18% [5]. Furthermore,
in some specific applications, such as semi-transparent organic photovoltaic materials for
buildings and agriculture and organic photodetectors, NFAs show promising application
prospects. One of the kernel characteristics of NFAs is adjustable frontier orbital energies,
especially for the highest occupied molecular orbital (HOMO) energy and the lowest
unoccupied molecular orbital (LUMO) energy, which play significant roles in modulating
the energy level alignments in the donor–acceptor pairs interface in order to enhance the
interfacial charge separation efficiency and decrease the voltage losses [6]. However, it is
still challenging to find and design the NFAs with desired orbital energies.

Machine learning is a branch of artificial intelligence. Machine learning models are
trained for mining hidden insights and internal relationships from data and making classifi-
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cations, predictions and generations. The past decade has seen increasingly rapid advances
in the field of molecular design with machine learning [7]. As one of the most powerful
tools for generating new data and approximating intractable functions, deep learning,
a sub-field of machine learning, is widely applied in automatic molecular generation [8–12]
and property prediction [13–19]. The sequence-based and graph-based generative models
are the most widely used for molecular generation [20–26], in which the molecules are
represented by simplified molecular input line entry specification (SMILES) [27] strings
and molecular graphs. To constrain the models for generating molecules with desired
properties, the goal-directed molecular generation becomes an increasingly important area
in molecular design. Many methods, such as variational autoencoder (VAE) [28–30], gener-
ative adversarial network (GAN) [31], reinforcement learning (RL) [32,33], transfer learning
(TL) [34–36], and recurrent neural network (RNN) [37] have been developed for conditional
molecular generation. The VAE and GAN can build the relationship between molecular
properties and the latent distribution of molecules. RL often combines with GAN to con-
strain the model for generating the targeted molecules. TL can fine-tune the trained models
with smaller sets for generating focused molecules. RNN aggregates selected molecular
descriptors along with bioactivity label as initial states for drug design. Most of the meth-
ods have RNN-based architectures in sequence models. Although many improvements
for RNNs have been proposed [38–40], the constraints in parallelization and long-range
context processing still remain. The architectures, such as temporal convolutional [41] or
attention mechanism [42] are researched for replacing the RNNs.

The past decade has seen increasingly rapid advances in the field of molecular de-
sign [7] as well as the NFA design. The Harvard Clean Energy Project in conjunction with
the IBM World Community Grid has screened over 51,000 NFAs to identify new classes
and fragment ligation patterns [43]. Lee has developed the machine-learning model for
predicting the efficiency of non-fullerene OSCs from frontier molecular orbital energy levels
of organic materials [44]. Min et al. have introduced 565 donor/acceptor combinations in
non-fullerene OSCs as a training dataset to evaluate the practicalities and the application
potential of five common ML algorithms [45]. Troisi et al. have considered a database of
known organic semiconductors and identified those compounds with computed electronic
properties as promising NFAs [46]. Wang et al. have used machine learning to design
NFAs for P3HT-based OSCs [47]. Compared with those works, our present work focuses
on designing NFAs for given properties and analyzing the structure–property relationships
of molecular fragments.

In our previous work [48], we used convolutional neural networks (CNNs) to construct
generative and prediction models for the design and analysis of NFAs. It is demonstrated
that the causal dilated CNN model is powerful for molecular generation and shows
performance as good as other models at the benchmarks of Molecular Sets [26]. The purpose
of the present work is to extend our previous model to a conditional generative model
for generating the molecules from property distributions directly. Compared with the
proposed molecular conditional generative models, the present model uses multi-property
as the initial states for material design and has simpler architecture and good performance.
Moreover, we further investigate the ability of the generative model for exploring the
chemical space. In the model, the molecules are still represented by SMILES strings.
Benefiting from the rapid progress in natural language processing, the SMILES-based
models show better performance in conditional generation than graph-based models [49].

To judge whether the generated new molecules indeed have required properties, one
can verify the results and analyze the structure–property relationship using the SMILES-
based prediction model [48]. Many investigations show that the prediction models based on
graph neural networks (GNNs) should be a natural and intuitive choice, and they also have
excellent performance in the property prediction [13–19]. These GNNs include message
passing neural network [13], deep tensor neural network [14], and so on. In the graph-
based models, atoms and bonds are taken as nodes and edges respectively, the interactions
of atoms are updated around nodes and edges. In the present work, we alternatively
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choose GNN-based prediction models to analyze the frontier orbital energies of NFAs.
The atomic number and the message about whether bonding or not are provided as inputs,
graph attention networks (GAT) [50] are adopted as the main architecture, and the global
attention mechanism as the readout phase.

With the help of the presented models, thousands of NFAs with targeted proper-
ties will be easily generated and screened out. It can be proved that the generated new
molecules can expand the chemical space and provide more possible structural transforma-
tions. In addition, the conditional generation of molecules can also start with molecular
fragments. The prediction model can accurately get the properties of generated molecules
as well as the contributions of molecular fragments to those properties.

2. Methods and Materials
2.1. Molecular Conditional Generative Model

Figure 1a displays the molecular conditional generative model, which is based on our
previous work [48]. The inputs of CNN are described by

z0
l = Embed(xl)‖ fΦ(y1, . . . , yn). (1)

Here, y1, . . . , yn, the targeted properties, are transformed to vectors with a hidden size
by linear transformation fΦ. The xl is the index of the l-th character in the SMILES string,
and it is mapped to the vector of real numbers by an embedding layer. The ‖ represents
the concatenation of two vectors. These operations are performed on all inputs x0 . . . , xL−1
before entering the convolutional layers. It should be noted that x0 is the index of the
addition starting character “&” and xL is the index of the addition ending character “\n”
in the SMILES string. For the generation of a string, the hidden state zt

l of each character
in the t-th layer should only relate to the states zt−1

0 , . . . , zt−1
l of previous characters. Thus,

the causal convolutions are used in the model instead of normal convolutions. The diagram
above in Figure 1b is the normal convolution, where two convolutional kernels are applied
over one-dimensional multi-channel inputs. The input arrays in the window and each
kernel are multiplied and summed by the element to get the element at the corresponding
location in the output array. The zero-padding is added to two sides of the input arrays
to keep the output arrays having the same length as the input arrays. The zt

l is related to
zt−1

l−1, zt−1
l and zt−1

l+1. However, in the causal convolution shown in the diagram below in the
Figure 1b, the zero-padding with size 2 is added to the left side of the input arrays, thus the
output zt

0 is only related to zt−1
l−2, zt−1

l−1 and zt−1
l . To incorporate longer messages of preceding

characters and reduce the information redundancy, the dilated convolution is thus adopted
to increase the spacing between the points of each kernel. In our model, the convolutional
kernel size of CNN is taken as 3, the stride of the kernel is 1, the dilation factor is 2t−1 for
the t-th layer, and the padding size is (k− 1)d. After the causal convolution layer, the gated
linear unit and residual networks are adopted for multichannel information transmission,
and can be written as

Zt+1 = GLU(Conv1d(Zt)) + Zt, (2)

where Zt represents the inputs of the t-th layer zt
0, . . . , zt

L−1, the GLU is the gated linear
unit, which splits the matrix in half along a given dimension to form a and b matrix, then
computes a⊗ σ(b), where σ is the sigmoid function and ⊗ is the element-wise product
between matrices. The operations are repeated in T layers as shown in the dashed box of
Figure 1a. Then, the output of the last convolutional layer, zT

l , is decoded to the vector zl
with the size of the dictionary (the classes of all characters in the dataset of SMILES strings)
by a linear transformation. The zl contains raw and unnormalized scores for each class of
character. The criterion of each output is given by the cross entropy loss function

lossl+1 = − ln

(
exp(zl,xl+1

)

∑j exp(zl,j)

)
, (3)
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where the zl,j is the j-th value of vector zl . The loss function aims to maximize the value
zl,xl+1

in the zl , where xl+1 is the index of the next character. The losses of all outputs are
averaged across a string.

模型1——条件生成模型

Input
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Figure 1. (a) The architecture of the generative model. (b) The normal one-dimensional multi-channel
convolution and causal convolution. (c) The conditional generative process of one SMILES string.

The CNN allows parallelization over every character in a SMILES string with high
efficiency during training. However, each molecular SMILES string should be generated
character by character, as shown in Figure 1c. The first character is generated by taking “&”
as input and the generative process is terminated as the index of “\n” is met. Between them,
the character index j is sampled from the multinomial probability distribution, and the
corresponding probability is given by

pj =
exp(zl,j)

∑j exp(zl,j)
. (4)



Int. J. Mol. Sci. 2021, 22, 9099 5 of 16

The posterior probability of the generated molecular SMILES string can be described
as the product of the conditional probabilities

Pθ(x1, . . . , xL | y1, . . . , yn) =
L−1

∏
l=0

Pθ(xl+1 | x0, . . . , xl , y1, . . . , yn). (5)

2.2. A Graph-Based Property Prediction Model

Figure 2 exhibits the architecture of a graph-based model constructed for property
prediction in the present work. The input is the atomic number ci of each atom (node),
and whether bonding or not between atoms as implicit conditions is also incorporated
in the model. Then the node feature ci is transformed to vectors h0

i as an initial state
(hydrogen atoms are neglected in this work) by an embedding layer before entering
the GAT (or other graph neural networks, the detailed architecture of GAT is provided
in Appendix A). The global attention network is performed on the output hT

i of GAT.
The attention coefficient ai of each node for output can be calculated across all nodes by
the softmax function

ai =
exp( fΨ(hT

i ))

∑k∈N exp( fΨ(hT
k ))

, (6)

where fΨ is the linear transformation neural network. Then the output Y is achieved by
aggregating messages of all nodes N

Y = ∑
i∈N

ai � fΘ(hT
i ), (7)

where the hidden state hT
i of each node is transformed to the size of output by linear

transformation fΘ and the � is element-wise multiplication. Finally, the weight of each
atom to the corresponding property can be calculated by

wi =
ai � fΘ(h′i)

Y
. (8)

Outputs (Y) & node weights

Embedding

GAT

Global Attention

𝒄𝒊

𝜶𝒊𝒋

𝒉𝒊
𝑻

Graph Attention Network

𝒉𝒊
𝟎

𝒉𝒊
𝒕 𝒉𝒋

𝒕

Figure 2. The architecture of the attention-based graph neural network.

2.3. Dataset and Technique Details

The library of NFAs was introduced by Lopez et al. [43]. This library has more than
51,000 molecules, built by the combinations of 12 core fragments, 43 spacer fragments, and
47 terminal fragments. The library provides the theoretical calculated and experimental
calibrated data of molecular features, such as HOMO and LUMO energies, and the PCE
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of solar cell with poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-
benzothia-diazole)] as the donor. Figure 3 shows the HOMO and LUMO distributions
of the most molecules in the library. In this work, the molecular conditional generative
model aims to generate desired molecules with given HOMO and LUMO energies, and the
prediction model is a multi-task learning model trained for the prediction of both HOMO
and LUMO energies. The filtered dataset used for the generative model contains 43,497
acceptors with the calculated HOMO energies from−7.0 eV to−5.2 eV and LUMO energies
from −4.0 eV to −2.2 eV, as shown in the black frame of Figure 3. Most molecules in the
dataset for the generative model have band gaps from 2 eV to 4 eV. The dataset is randomly
divided into training set, validation set, and test set with sizes of 33,497, 5000, and 5000,
respectively. The prediction model is trained with 50,656 acceptors whose HOMO energies
locate from −7.6 eV to −4.6 eV and LUMO energies locate from −4.6 eV to −1.6 eV. Here,
40,656 molecules are used for the training set, 5000 for the validation set, and 5000 for the
test set.

7.5 7.0 6.5 6.0 5.5 5.0
HOMO(eV)

4.5

4.0

3.5

3.0
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2.0

LU
M

O
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V
)

5 4 3

2

1

0

20
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60

C
ou

nt
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Figure 3. The distribution of NFAs for training the deep learning models (the white diagonals are the
constant bandgap of the HOMO and LUMO).

The deep learning models are built with PyTorch(v1.7) [51] and DGL-LifeSci [52].
DGL-LifeSci is a python toolkit based on RDKit [53], PyTorch, and Deep Graph Library
(DGL) [54]. The RDKit is an open-source tool used for related operations of cheminfor-
matics and DGL is an open-source domain package specifically designed for researchers
and application developers of GNNs. In the dataset for the generative model, the SMILES
strings include 28 unique characters (exclude “&” and “\n”). In our model testing, it
is found that the most suitable size of embedding layer for the best performance is 32.
For the prediction model, the SMILES strings are transferred to the graph representa-
tion with the help of DGL-LifeSci. The models in this work are both trained on NVIDIA
1080Ti with a batch size of 32. Adam is taken as an optimizer with the initializing learn-
ing rate of 0.001. The model parameters with the best performance in validation set are
saved during 300 epochs of training. With the trained generative model, the mean cross
entropy for the test set is 0.0880. With the trained prediction model, the mean-absolute-
errors/root-mean-square-errors of HOMO and LUMO energy prediction for the test set are
0.0566 eV/0.0814 eV and 0.0581 eV/0.0889 eV, respectively. More details and codes are
available at https://github.com/PSPhi/CGEN-GPRE (last accessed date 20 August 2021).

The new molecules generated may have new structures for designing molecules.
Thus, we further use the mmpdb [55], an open-source platform, for matched molecular pair
(MMP) analysis. An MMP is formed by two molecules that differ by a defined structural
transformation [56], and the mmpdb can compile all possible structural transformation
rules for the dataset to build the rule database and guide molecular transformation.

https://github.com/PSPhi/CGEN-GPRE


Int. J. Mol. Sci. 2021, 22, 9099 7 of 16

The quantum chemistry calculations of HOMO and LUMO energies are performed by
Gaussian 16 [57] at a level of DFT/B3LYP/Def2SVP.

3. Results
3.1. Conditional Molecular Generation and Evaluation

Before applying the present generative model to NFAs generation, we first evaluate
it with GuacaMol, an evaluation framework for de novo molecular design [49]. The
benchmarks and performance of the model are provided in Appendix B. For the CNN-
based conditional generative model trained by the dataset of NFAs, we first test its ability
for generating the molecules with the properties located in the range of the training set.
The 4000 targeted HOMO and LUMO energies are randomly chosen from a uniform
distribution to generate the molecular SMILES strings. Then the generated SMILES strings
are transformed to the molecular graph representation for the prediction of the HOMO
and LUMO energies from the prediction model. Figure 4a,b displays the predicted HOMO
(LUMO) energies versus targeted HOMO (LUMO) energies, in which there are 3610
reasonable molecules in the 4000 generated SMILES strings. It is seen that the targeted and
predicted HOMO (LUMO) energies of the generated molecules have a relative coefficient
R2 of 0.84 (0.82). In the figures we also color the nearest neighbor molecular similarity for
generated molecules. The result shows that most of the generated molecules are similar
to the molecules in the dataset. To find the molecules whose predicted HOMO/LUMO
energies are closest to the targeted energies, the generation processes are run 30 times
(with 120,000 SMILES strings generated). Figure 4c,d show the results of 4000 generated
molecules with the smallest mean absolute error (MAE) of HOMO and LUMO energies.
The value of R2 reaches to 0.99, manifesting that the molecules screened out almost meet the
demand. However, the similarity shown in Figure 4c,d indicates that most of the matched
molecules come from the dataset. To explore the chemical space, the generated new
molecules are selected in 30 runs and 3995 best matched new molecules are screened out
for 4000 desired orbital energies, and the corresponding energies are shown in Figure 4e,f.
The R2 of 0.96 indicates that the conditional molecular generation model also has an
excellent performance in generating required new molecules.

Encouraged by these results, we save more than 24,000 new molecules generated
here with predicted HOMO/LUMO energies in an extending library and provide it in the
Supplementary Materials. This new library may be further used for exploring the chemical
space. In the following section, we will demonstrate its potential applications.
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Figure 4. Cont.
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Figure 4. The performance of the molecular generation model for 4000 desired HOMO/LUMO
energies. (a) The predicted HOMO energies versus targeted HOMO energies and (b) the predicted
LUMO energies versus targeted LUMO energies of molecules generated in one generation process.
The predicted values versus the targeted values of (c) HOMO and (d) LUMO energies of the best
matched molecules screened out in 30 generation processes. The predicted values versus targeted
values of (e) HOMO and (f) LUMO energies of the best matched new molecules screened out in
30 runs.

3.2. Chemical Space Exploring

We first demonstrate the ability of the conditional generative model for exploring
chemical space. In the training set, the HOMO and LUMO energies are from −7.0 eV
to −5.2 eV and from −4.0 eV to −2.2 eV, respectively. However, we generate molecules
with the energy ranges of HOMO and LUMO larger than those in the training set, i.e., the
HOMO and LUMO energies are in the range from −7.6 eV to −4.6 eV and from −4.6 eV
to −1.6 eV, respectively. For a given HOMO/LUMO energy, we generate 30 SMILES
strings with the conditional generative model. Figure 5a displays the MAE of predicted
HOMO/LUMO and targeted HOMO/LUMO of the reasonable molecules transformed
from 30 generated SMILES strings. As expected, the orbital energies of most generated
molecules are close to the targeted values, but, those outside of the training set have obvious
deviations, as shown on the outside of the black frame. Furthermore, in the generated
molecules from 30 runs, we screen out the best-matched molecules (the predicted HOMO
and LUMO energies closest to the targeted properties) and show their corresponding
MAEs in Figure 5. The results indicate that the model indeed generates the molecules
with required energies if these energies are not too far from the range of the training set.
Specially, the generated molecules with bandgaps from 1 eV to 5 eV have low MAEs.
To further reveal the ability for generating new molecules, we filter out the best matched
new molecules from the molecules shown in Figure 5a, and the corresponding MAEs are
shown in Figure 5c. Obviously, the MAEs of some new molecules are larger than those
shown in Figure 5b.
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Figure 5. The performance of the conditional generative model for the desired HOMO/LUMO
energies in a broad range. The heatmap shows the MAEs of predicted properties and targeted values
for generated molecules (the white diagonals are the constant bandgap of the HOMO and LUMO).
(a) The MAEs of molecules generated in 30 runs for desired HOMO/LUMO energies (unreasonable
molecules are excluded). (b) The MAEs of the best matched molecules screened out in 30 runs.
(c) The MAEs of the best matched new molecules in 30 runs. (d) The MAEs of all possible molecules
transformed from molecules in (c) with the transformation rule database created by the original
library. (e) The MAEs of the best matched new molecules in the transformed molecules. (f) The
MAEs of the best matched new molecules transformed from molecules in (c) with the rule database
created by the original library and our library.

Although new molecules may have other energies than the desired ones, they are
helpful to explore the chemical space. To do so, we use “mmpdb” to build the structural
transformation rule database from the original NFAs library, also the database together
with our new NFAs library. Then, we apply the individual structural transformation rules
from the two databases to the new molecules in Figure 5c. After that, many potential
new molecules are constructed and the orbital energies of these new molecules can be
predicted by the prediction model. To see the derivation of these energies to the targeted
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values, we show the MAE of the molecules transformed with the original rule database in
Figure 5d (the MAE from the original database together with ours have a similar behavior,
which is not shown). Although the energies of transformed molecules shown in Figure 5d
are distributed in a broad range, the energy errors of the best matched new molecules
are smaller than the initial molecules in Figure 5c, as shown in Figure 5e, where the
MAEs become comparable with those shown in Figure 5b. It is noticed that there are no
transformation rules for several molecules shown by white spaces in Figure 5d,e. However,
the absent transformation rules can be built up from the combination of original and
our NFA libraries. For instance, the molecule at −4.6 eV (HOMO) and −3.6 eV (LUMO)
appears, as shown in Figure 5f, where the best matched new molecules (marked by fork)
are screened out from transformed molecules with the use of the new transformation
rules database. The lower MAEs of molecules in Figure 5f show that more molecules
transformed with the new database can also provide more desired molecules.

3.3. Fragment-Based Molecular Conditional Generation

The generative model can also be trained with datasets of randomized SMILES strings.
With the trained model, the generation of molecules can start with fragments. Figure 6
shows the five possible molecules generated for the targeted HOMO energy of −6.5 eV
and LUMO energy of −3.3 eV by the same fragment. The SMILES string of the fragment
is “N#Cc1ccc2c(c1)ccs2” in its canonical form. As shown in Table 1, the strings colored in
orange are the SMILES specify the last atoms with the help of Open Babel [58]. The five
new molecules are generated by the trained model according to the previous characters
and the targeted properties. The bonding at different geometric positions can overcome
the limitations of the inherent linking relationship between fragments, and enlarge the
chemical space. However, the properties of some generated molecules may differ from
the targeted properties. The generated molecules can be used as the scaffolds for further
decoration. Here, we choose the first molecule in Figure 6 as an example. As shown in
Figure 7a, there are also five possible atoms for further decoration. Here, we specify the
atom pointed by arrow 2’ as an example and the SMILES string for subsequent generation
is underlined. The molecule generated for the targeted HOMO energy of −6.5 eV and
LUMO energy of −3.3 eV is displayed in Figure 7b. The results listed in Table 2 exhibit
that the frontier orbital energies of molecule (b) are closer to the target energies.

N#Cc1ccc2c(c1)ccs2

1

2

3

4 5

Figure 6. The five possible molecules generated from the given molecular fragment for the targeted
HOMO energy of −6.5 eV and LUMO energy of −3.3 eV.
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Table 1. The SMILES strings and predicted HOMO and LUMO energies of five generated molecules.

No. SMILES Similarity HOMO
Energy (eV)

LUMO
Energy (eV)

1 N#Cc1ccc2c(c1)cc(s2)c1c(F)c(F)c(c2c1n
sn2)c1ncncn1 0.75 −6.614 −3.521

2 N#Cc1ccc2c(c1)c(cs2)OC(=O)c1noc(c1
C(=O)O)C1=CC(=C(C#N)C#N)C=CO1 0.76 −6.698 −3.508

3 N#Cc1ccc2c(ccs2)c1-c1nc(-c2sc(C#N)c
c2C#N)ncc1 0.78 −6.541 −3.260

4 N#Cc1c(cc2c(c1)ccs2)C(=O)c1cocc1-c1
c2c3c(ccc2)C(=O)N(C)C(=O)c3cc1 0.76 −6.468 −3.063

5 N#Cc1cc(c2c(c1)ccs2)c1ccc2nc(-c3ncnc
(-c4oc5ccccc5n4)n3)oc2c1 0.81 −6.463 −2.881

The initial SMILES strings of the fragment used for generation are colored orange.

分子分析

Property Energy_calc(eV) Energy_pred(eV) Orange Yellow Green

HOMO -6.537 -6.614 0.446 0.386 0.168

LUMO -3.372 -3.521 0.172 0.687 0.141

(a)

N#Cc1ccc2c(c1)cc(s2)c1c(F)c(F)c(c2c1nsn2)c1ncncn1

N#Cc1ccc2c(c1)cc(s2)c1c(F)c(F)c(c2c1nsn2)c1ncnc(n1)

N#Cc1ccc2c(c1)c(c(s2)c1c(F)c(F)c(c2c1nsn2)c1ncncn1)

N#Cc1ccc2c(cc(s2)c2c(F)c(F)c(c3c2nsn3)c2ncncn2)c1

N#Cc1c(cc2c(c1)cc(s2)c1c(F)c(F)c(c2c1nsn2)c1ncncn1)

N#Cc1cc(c2c(c1)cc(s2)c1c(F)c(F)c(c2c1nsn2)c1ncncn1)

2’

3’

4’ 5’

1’

1’

HOMO

LUMO

Property Energy_calc(eV) Energy_pred(eV) Red Orange Yellow Green

HOMO -6.499 -6.540 0.194 0.379 0.299 0.129

LUMO -3.240 -3.359 0.310 0.081 0.498 0.111

分子分析

(b)

N#Cc1ccc2c(c1)c(c(s2)c1c(F)c(F)c(c2c1nsn2)c1ncncn1)c1c(F)ccc2c1nsn2

HOMO

LUMO

Figure 7. The structures of molecule (a,b) and their calculated HOMO and LUMO distributions.

Table 2. The weighted sum of each fragment from the prediction model to the molecular orbitals for
molecule (a) and (b).

Mol Orbital Energy_calc
(eV)

Energy_pred
(eV) Red Orange Yellow Green

(a) HOMO −6.537 −6.614 0.446 0.386 0.168

LUMO −3.372 −3.521 0.172 0.687 0.141

(b) HOMO −6.499 −6.540 0.194 0.379 0.299 0.129

LUMO −3.240 −3.359 0.310 0.081 0.498 0.111
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It is significant to understand the molecular structure–property relationship in molec-
ular design. In the present case, this relationship corresponds to the contributions of
molecular fragments to the orbital energies, and it can be revealed by the global attention
mechanism adopted in the predicted model. In Supplementary Materials, we list the results
for some generated new molecules. Figure 7 displays the distributions of HOMO and
LUMO obtained by Gaussian 16 calculations as the references for the verification of the
predicted results. Table 2 lists the energies of HOMO and LUMO and the weighted sum
of each fragment (the column header corresponds to the color of molecular fragment in
the left of Figure 7) to the HOMO and LUMO energies from the predicted model. It is
seen that the predicted and calculated HOMO and LUMO energies are quite close to each
other. The most important fragment from the prediction model and the one from the
calculation are also consistent, as shown in the table. In molecules (a) and (b), the frag-
ment colored by orange dominantly determines HOMO energy levels, whereas the LUMO
energy level-determined fragment in molecules is colored yellow. It is noticed that the
prediction model can correctly predict the weights of fragments to the molecular orbital
energies. The red fragment shown in Figure 7b has various weights to HOMO and LUMO.
Compared with the variation of HOMO energy, the red fragment in molecule (b) introduces
a larger variation of LUMO energy with a larger weight.

4. Conclusions

We have extended our previous generative model based on convolutional neural
networks to incorporate the properties as conditions for generating the SMILES strings
of novel molecules. The proposed conditional generative model is trained to directly
generate new non-fullerene molecules with desired HOMO and LUMO energies as initial
inputs. The orbital energies of generated molecules are further verified by the graph-
based prediction model with the attention mechanism introduced. Together with proposed
generative and prediction models trained with the library of NFAs, we have built up a
new library with more than twenty thousand new non-fullerene molecules. It is found
that the conditional generative model can generate new molecules with an ability to
explore chemical space, and the new molecules can be used to generate the database of
molecular structural transformation rules to further construct new molecules for screening.
Molecular fragments can also be taken as initial conditions for generating needed molecules
with a generative model trained by a dataset of randomized SMILES strings. In terms
of property prediction, the prediction model predicts the HOMO and LUMO energies
correctly. Furthermore, the fragment weights to these orbital energies are successfully
predicted by the global attention mechanism in molecular generation processes. It should
be mentioned that the HOMO and LUMO energies of new molecules in the present work
are predicted by the prediction model, and the accuracy thus heavily depends on the
transferability of the prediction model. To improve the accuracy, one should calibrate
the orbital energies of generated new molecules with quantum chemistry calculations or
experimental measurements. We believe that the architecture of CNN can be seen as an
alternative to RNN in various conditional generative models and the information from
interpretable models have the potential to further improve the existing models. Besides
the HOMO and LUMO energies, solubility, steric hindrance, and electronic properties of
NFAs, such as oscillator strength of the excited state and reorganization energy for electron
transfer, are also significant for the design of NFAs. These factors can be used as additional
properties for further screening if the corresponding datasets are available.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22169099/s1, Table S1: The table of generated new molecules, Table S2: The results from
prediction model and quantum chemistry calculations of some generated new molecules.

https://www.mdpi.com/article/10.3390/ijms22169099/s1
https://www.mdpi.com/article/10.3390/ijms22169099/s1
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional neural network
NFA Non-fullerene acceptor
PCE Power conversion efficiency
HOMO Highest occupied molecular orbital
LUMO Lowest unoccupied molecular orbital
SMILES Simplified molecular input line entry
VAE Variational autoencoder
GAN Generative adversarial network
RL Reinforcement learning
TL Transfer learning
RNN Recurrent neural network
GNN Graph neural network
GAT Graph attention network
MMP Matched molecular pair
MAE Mean absolute error

Appendix A. The Graph Attention Networks

In GAT, the masked self-attention layers are performed for updating the state of each
node ht

i in t-th layer. To specify different weights of i and its nearest neighbor nodes
(bonding atoms) j ∈ N (i) (including i), the softmax function is used for normalizing across
all j for obtaining the attention coefficients

αt
ij =

exp(LeakyReLU((at)>[Wtht
i‖Wtht

j ]))

∑k∈Ni
exp(LeakyReLU((at)>[Wtht

i‖Wtht
k]))

, (A1)

where the ht
i shares the same linear transformation parametrized by the weight matrix

W. Then a single-layer feedforward neural network, parametrized by a weight vector
at, is applied on ht

i and ht
j, > is transposition, ‖ is concatenation, and the LeakyReLU is

the activation function. Then the attention coefficients are used for pooling the states of
neighborhood to obtain the updated state ht+1

i of node i

ht+1
i = ‖M

m=1σ( ∑
j∈Ni

αm,t
ij Wmht

j) or ht+1
i = σ

(
1
M

M

∑
m=1

∑
j∈Ni

αm,t
ij Wmht

j

)
. (A2)

Here, αm,t
ij is the attention coefficient computed by the m-th attention mechanism and

Wm is the weight matrix for linear transformation. The non-linear activation function
σ and multi-head attention are used for stabilizing the model. After that, the results of
K independent attention mechanisms are concatenated, except for the last layer of GAT,
where averaging is applied instead of concatenation.
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Appendix B. The Evaluation of CNN-Based Conditional Molecular Generation
Models for Benchmarks

The performance of our model at different goal-directed benchmarks are provided
in Table A1, and the table also lists the metrics for the baseline models based on genetic
algorithm (GA), Monte Carlo Tree Search (MCTS), and Long Short-Term Memory (LSTM).
For the similarity benchmarks, the models aim to generate molecules similar to a target
that was removed from the training set. The rediscovery tasks explicitly aims to rediscover
the target molecules. For the isomer benchmarks, the tasks are to generate molecules that
correspond to target molecular formulas. In the median molecules benchmarks, the sim-
ilarity to several molecules must be maximized simultaneously. For the multi-property
objective (MPO), valsartan SMARTS, Scaffold Hop, and Decorator Hop benchmarks, each
scoring function is defined as the combination of one or several functions. Here, we
use the scores as the properties of our model for training and fine-tune the model with
high-scoring molecules. It is demonstrated that the CNN-based conditional molecular
generative model can achieve the nearly total scores as well as other baseline models.
Especially, the CNN-based generative model shows better performance in similarity and
isomer benchmarks.

Table A1. Results of the generative models for the goal-directed benchmarks.

Benchmark Best of
Dataset

SMILES
GA

SMILES
LSTM

SMILES
CNN

Celecoxib rediscovery 0.505 0.732 1.000 0.844
Troglitazone rediscovery 0.419 0.515 1.000 1.000
Thiothixene rediscovery 0.456 0.598 1.000 0.687
Aripiprazole similarity 0.595 0.834 1.000 1.000

Albuterol similarity 0.719 0.907 1.000 1.000
Mestranol similarity 0.629 0.790 1.000 0.997

C11H24 0.684 0.829 0.993 0.998
C9H10N2O2PF2Cl 0.747 0.889 0.879 0.982

Median molecules 1 0.334 0.334 0.438 0.363
Median molecules 2 0.351 0.380 0.422 0.377
Osimertinib MPO 0.839 0.886 0.907 0.863

Fexofenadine MPO 0.817 0.931 0.959 0.976
Ranolazine MPO 0.792 0.881 0.855 0.864
Perindopril MPO 0.575 0.661 0.808 0.679
Amlodipine MPO 0.696 0.722 0.894 0.763
Sitagliptin MPO 0.509 0.689 0.669 0.586
Zaleplon MPO 0.259 0.552 0.978 0.637

Valsartan SMARTS 0.259 0.978 0.040 0.985
deco hop 0.933 0.970 0.996 0.983

scaffold hop 0.738 0.885 0.998 0.844
total 12.144 14.396 17.340 16.428

References
1. Servaites, J.D.; Ratner, M.A.; Marks, T.J. Organic Solar Cells: A New Look at Traditional Models. Energy Environ. Sci. 2011,

4, 4410–4422. [CrossRef]
2. Nielsen, C.B.; Holliday, S.; Chen, H.Y.; Cryer, S.J.; McCulloch, I. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells.

Acc. Chem. Res. 2015, 48, 2803–2812. [CrossRef] [PubMed]
3. Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A.K.Y.; Marder, S.R.; Zhan, X. Non-Fullerene Acceptors for Organic Solar Cells. Nat.

Rev. Mater. 2018, 3, 18003. [CrossRef]
4. Zhang, J.; Tan, H.S.; Guo, X.; Facchetti, A.; Yan, H. Material Insights and Challenges for Non-Fullerene Organic Solar Cells Based

on Small Molecular Acceptors. Nat. Energy 2018, 3, 720–731. [CrossRef]
5. Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% Efficiency Organic Solar Cells. Sci. Bull.

2020, 65, 272–275. [CrossRef]

http://doi.org/10.1039/c1ee01663f
http://dx.doi.org/10.1021/acs.accounts.5b00199
http://www.ncbi.nlm.nih.gov/pubmed/26505279
http://dx.doi.org/10.1038/natrevmats.2018.3
http://dx.doi.org/10.1038/s41560-018-0181-5
http://dx.doi.org/10.1016/j.scib.2020.01.001


Int. J. Mol. Sci. 2021, 22, 9099 15 of 16

6. Zhao, Y.; Liang, W. Charge Transfer in Organic Molecules for Solar Cells: Theoretical Perspective. Chem. Soc. Rev. 2012,
41, 1075–1087. [CrossRef]

7. Mater, A.C.; Coote, M.L. Deep Learning in Chemistry. J. Chem. Inf. Model. 2019, 59, 2545–2559. [CrossRef]
8. Gupta, A.; Müller, A.T.; Huisman, B.J.H.; Fuchs, J.A.; Schneider, P.; Schneider, G. Generative Recurrent Networks for De Novo

Drug Design. Mol. Inf. 2018, 37, 1700111. [CrossRef]
9. Dimitrov, T.; Kreisbeck, C.; Becker, J.S.; Aspuru-Guzik, A.; Saikin, S.K. Autonomous Molecular Design: Then and Now. ACS

Appl. Mater. Interfaces 2019, 11, 24825–24836. [CrossRef]
10. Merz, K.M.; De Fabritiis, G.; Wei, G.W. Generative Models for Molecular Design. J. Chem. Inf. Model. 2020, 60, 5635–5636.

[CrossRef]
11. Moosavi, S.M.; Jablonka, K.M.; Smit, B. The Role of Machine Learning in the Understanding and Design of Materials. J. Am.

Chem. Soc. 2020, 142, 20273–20287. [CrossRef]
12. Thiede, L.A.; Krenn, M.; Nigam, A.; Aspuru-Guzik, A. Curiosity in Exploring Chemical Space: Intrinsic Rewards for Deep

Molecular Reinforcement Learning. arXiv 2020, arXiv:physics/2012.11293.
13. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry. arXiv 2017,

arXiv:1704.01212
14. Schütt, K.T.; Arbabzadah, F.; Chmiela, S.; Müller, K.R.; Tkatchenko, A. Quantum-Chemical Insights from Deep Tensor Neural

Networks. Nat. Commun. 2017, 8, 13890. [CrossRef]
15. Schütt, K.T.; Sauceda, H.E.; Kindermans, P.J.; Tkatchenko, A.; Müller, K.R. SchNet – A Deep Learning Architecture for Molecules

and Materials. J. Chem. Phys. 2018, 148, 241722. [CrossRef] [PubMed]
16. Chen, C.; Ye, W.; Zuo, Y.; Zheng, C.; Ong, S.P. Graph Networks as a Universal Machine Learning Framework for Molecules and

Crystals. Chem. Mater. 2019, 31, 3564–3572. [CrossRef]
17. Unke, O.T.; Meuwly, M. PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments and Partial Charges. J.

Chem. Theory Comput. 2019, 15, 3678–3693, doi:10.1021/acs.jctc.9b00181 [CrossRef] [PubMed]
18. Korolev, V.; Mitrofanov, A.; Korotcov, A.; Tkachenko, V. Graph Convolutional Neural Networks as “General-Purpose” Property

Predictors: The Universality and Limits of Applicability. J. Chem. Inf. Model. 2020, 60, 22–28. [CrossRef] [PubMed]
19. Louis, S.Y.; Zhao, Y.; Nasiri, A.; Wang, X.; Song, Y.; Liu, F.; Hu, J. Graph Convolutional Neural Networks with Global Attention

for Improved Materials Property Prediction. Phys. Chem. Chem. Phys. 2020, 22, 18141–18148. [CrossRef] [PubMed]
20. Brown, N.; McKay, B.; Gilardoni, F.; Gasteiger, J. A Graph-Based Genetic Algorithm and Its Application to the Multiobjective

Evolution of Median Molecules. J. Chem. Inf. Comput. Sci. 2004, 44, 1079–1087. [CrossRef]
21. Ikebata, H.; Hongo, K.; Isomura, T.; Maezono, R.; Yoshida, R. Bayesian Molecular Design with a Chemical Language Model. J.

Comput.-Aided Mol. Des. 2017, 31, 379–391. [CrossRef] [PubMed]
22. Blaschke, T.; Olivecrona, M.; Engkvist, O.; Bajorath, J.; Chen, H. Application of Generative Autoencoder in De Novo Molecular

Design. Mol. Inf. 2018, 37, 1700123. [CrossRef] [PubMed]
23. Jensen, J.H. A Graph-Based Genetic Algorithm and Generative Model/Monte Carlo Tree Search for the Exploration of Chemical

Space. Chem. Sci. 2019, 10, 3567–3572. [CrossRef]
24. Jin, W.; Barzilay, R.; Jaakkola, T. Junction Tree Variational Autoencoder for Molecular Graph Generation. arXiv 2019,

arXiv:1802.04364.
25. Kojima, R.; Ishida, S.; Ohta, M.; Iwata, H.; Honma, T.; Okuno, Y. kGCN: A Graph-Based Deep Learning Framework for Chemical

Structures. J. Cheminform. 2020, 12, 32. [CrossRef]
26. Polykovskiy, D.; Zhebrak, A.; Sanchez-Lengeling, B.; Golovanov, S.; Tatanov, O.; Belyaev, S.; Kurbanov, R.; Artamonov, A.;

Aladinskiy, V.; Veselov, M.; et al. Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models. arXiv
2020, arXiv:1811.12823.

27. Weininger, D. SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. J.
Chem. Inf. Model. 1988, 28, 31–36. [CrossRef]

28. Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-
Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules. ACS Cent. Sci. 2018, 4, 268–276. [CrossRef]

29. Lim, J.; Ryu, S.; Kim, J.W.; Kim, W.Y. Molecular Generative Model Based on Conditional Variational Autoencoder for de Novo
Molecular Design. J. Cheminform. 2018, 10, 31. [CrossRef]

30. Kang, S.; Cho, K. Conditional Molecular Design with Deep Generative Models. J. Chem. Inf. Model. 2019, 59, 43–52. [CrossRef]
31. Guimaraes, G.L.; Sanchez-Lengeling, B.; Outeiral, C.; Farias, P.L.C.; Aspuru-Guzik, A. Objective-Reinforced Generative

Adversarial Networks (ORGAN) for Sequence Generation Models. arXiv 2018, arXiv:1705.10843.
32. Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular De-Novo Design through Deep Reinforcement Learning. J.

Cheminform. 2017, 9, 48. [CrossRef]
33. Popova, M.; Isayev, O.; Tropsha, A. Deep Reinforcement Learning for de Novo Drug Design. Sci. Adv. 2018, 4, eaap7885.

[CrossRef] [PubMed]
34. Segler, M.H.S.; Kogej, T.; Tyrchan, C.; Waller, M.P. Generating Focused Molecule Libraries for Drug Discovery with Recurrent

Neural Networks. ACS Cent. Sci. 2018, 4, 120–131. [CrossRef]

http://dx.doi.org/10.1039/C1CS15207F
http://dx.doi.org/10.1021/acs.jcim.9b00266
http://dx.doi.org/10.1002/minf.201700111
http://dx.doi.org/10.1021/acsami.9b01226
http://dx.doi.org/10.1021/acs.jcim.0c01388
http://dx.doi.org/10.1021/jacs.0c09105
http://dx.doi.org/10.1038/ncomms13890
http://dx.doi.org/10.1063/1.5019779
http://www.ncbi.nlm.nih.gov/pubmed/29960322
http://dx.doi.org/10.1021/acs.chemmater.9b01294
http://dx.doi.org/10.1021/acs.jctc.9b00181
http://www.ncbi.nlm.nih.gov/pubmed/31042390
http://dx.doi.org/10.1021/acs.jcim.9b00587
http://www.ncbi.nlm.nih.gov/pubmed/31860296
http://dx.doi.org/10.1039/D0CP01474E
http://www.ncbi.nlm.nih.gov/pubmed/32766627
http://dx.doi.org/10.1021/ci034290p
http://dx.doi.org/10.1007/s10822-016-0008-z
http://www.ncbi.nlm.nih.gov/pubmed/28281211
http://dx.doi.org/10.1002/minf.201700123
http://www.ncbi.nlm.nih.gov/pubmed/29235269
http://dx.doi.org/10.1039/C8SC05372C
http://dx.doi.org/10.1186/s13321-020-00435-6
http://dx.doi.org/10.1021/ci00057a005
http://dx.doi.org/10.1021/acscentsci.7b00572
http://dx.doi.org/10.1186/s13321-018-0286-7
http://dx.doi.org/10.1021/acs.jcim.8b00263
http://dx.doi.org/10.1186/s13321-017-0235-x
http://dx.doi.org/10.1126/sciadv.aap7885
http://www.ncbi.nlm.nih.gov/pubmed/30050984
http://dx.doi.org/10.1021/acscentsci.7b00512


Int. J. Mol. Sci. 2021, 22, 9099 16 of 16

35. Amabilino, S.; Pogány, P.; Pickett, S.D.; Green, D.V.S. Guidelines for Recurrent Neural Network Transfer Learning-Based
Molecular Generation of Focused Libraries. J. Chem. Inf. Model. 2020, 60, 5699–5713. [CrossRef]

36. Yasonik, J. Multiobjective de Novo Drug Design with Recurrent Neural Networks and Nondominated Sorting. J. Cheminform.
2020, 12, 14. [CrossRef]

37. Kotsias, P.C.; Arús-Pous, J.; Chen, H.; Engkvist, O.; Tyrchan, C.; Bjerrum, E.J. Direct Steering of de Novo Molecular Generation
with Descriptor Conditional Recurrent Neural Networks. Nat. Mach. Intell. 2020, 2, 254–265. [CrossRef]

38. Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder-Decoder
Approaches. arXiv 2014, arXiv:1409.1259.

39. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv 2014, arXiv:1412.3555.

40. Merity, S.; Keskar, N.S.; Socher, R. Regularizing and Optimizing LSTM Language Models. arXiv 2017, arXiv:1708.02182.
41. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling.

arXiv 2018, arXiv:1803.01271.
42. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
43. Lopez, S.A.; Sanchez-Lengeling, B.; de Goes Soares, J.; Aspuru-Guzik, A. Design Principles and Top Non-Fullerene Acceptor

Candidates for Organic Photovoltaics. Joule 2017, 1, 857–870. [CrossRef]
44. Lee, M.H. Robust Random Forest Based Non-Fullerene Organic Solar Cells Efficiency Prediction. Org. Electron. 2020, 76, 105465.

[CrossRef]
45. Wu, Y.; Guo, J.; Sun, R.; Min, J. Machine Learning for Accelerating the Discovery of High-Performance Donor/Acceptor Pairs in

Non-Fullerene Organic Solar Cells. Npj Comput. Mater. 2020, 6, 120. [CrossRef]
46. Zhao, Z.W.; Omar, Ö.H.; Padula, D.; Geng, Y.; Troisi, A. Computational Identification of Novel Families of Nonfullerene Acceptors

by Modification of Known Compounds. J. Phys. Chem. Lett. 2021, 12, 5009–5015. [CrossRef]
47. Mahmood, A.; Wang, J.L. A Time and Resource Efficient Machine Learning Assisted Design of Non-Fullerene Small Molecule

Acceptors for P3HT-Based Organic Solar Cells and Green Solvent Selection. J. Mater. Chem. A 2021, 9, 15684–15695. [CrossRef]
48. Peng, S.P.; Zhao, Y. Convolutional Neural Networks for the Design and Analysis of Non-Fullerene Acceptors. J. Chem. Inf. Model.

2019, 59, 4993–5001. [CrossRef]
49. Brown, N.; Fiscato, M.; Segler, M.H.; Vaucher, A.C. GuacaMol: Benchmarking Models for de Novo Molecular Design. J. Chem.

Inf. Model. 2019, 59, 1096–1108. [CrossRef]
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