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Oncolytic virotherapy uses replication-competent virus as a
means of treating cancer. Whereas this field has shown great
promise as a viable treatment method, the limited spread of
these viruses throughout the tumor microenvironment re-
mains a major challenge. To overcome this issue, researchers
have begun looking at syncytia formation as a novel method
of increasing viral spread. Several naturally occurring fuso-
genic viruses have been shown to possess strong oncolytic po-
tential and have since been studied to gain insight into how
this process benefits oncolytic virotherapy. Whereas these
naturally fusogenic viruses have been beneficial, there are still
challenges associated with their regular use. Because of this, en-
gineered/recombinant fusogenic viruses have also been created
that enhance nonfusogenic oncolytic viruses with the beneficial
property of syncytia formation. The purpose of this review is to
examine the existing body of literature on syncytia formation
in oncolytics and offer direction for potential future studies.
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Roughly 1.6 million new cases of cancer are diagnosed each year, lead-
ing to an ever-increasing number of patients in need of viable treat-
ment options.1 Whereas there have been many advances in cancer
treatment, most patients ultimately still undergo chemotherapy
and/or radiation therapy as their standard of care. Unfortunately,
these treatments are associated with varying amounts of success,
and many patients experience either refractory or relapsing disease.
Due to these underwhelming results, medicine has long been search-
ing for more efficient solutions to the problem of cancer.

One solution that has recently shown great promise is the field of on-
colytic virotherapy (OV).2 This treatment uses cancer-tropic viruses
to infect and subsequently eliminate a wide range of malignancies.
The power of the oncolytic strategy is 2-fold. First, it combines a
multimodal therapeutic approach, which is both rapid, through the
direct cellular death caused from viral infections, as well as long
term, through the initiation of an adaptive immune response against
both viral and tumor antigens.3–6 Second, genetic engineering allows
for “arming” of the oncolytic genomes to maximize phenotypes,
which are associated with improved treatment efficacy.7

One phenotype, which has been suggested to improve oncolytic po-
tential, is the ability of a virus to form syncytia. Syncytia are multinu-
cleated cells created by the fusion of membranes from neighboring
cells (Figure 1). Syncytia appear naturally during development, in
the trophoblast, as well as in the development of the embryo.8,9 In
other instances, however, such a phenotype results in either abnormal
cell death or the spread of an infectious pathogen, such as a virus.10–13
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In 2002, a seminal paper by Fu and Zhang14 proposed that the induc-
tion of syncytia during OV might improve therapeutic efficacy both
by enhancing viral spread within the tumor microenvironment as
well as by inducing bystander killing of noninfected tumor cells. Since
then, a number of naturally syncytia-forming viruses have been stud-
ied as potential oncolytic candidates.15 Additionally, a variety of non-
syncytia-forming viruses have been genetically engineered to induce
artificially cell-cell fusion. Both types of viruses spread through de
novo infection as well as fusion of infected and uninfected cells, which
theoretically increases both their dissemination throughout the tumor
and their overall efficacy. The purpose of this review is to discuss the
capacity of different oncolytic viruses to form syncytia and how this
ability influences each virus’s therapeutic potential.
Natural Syncytia Viruses

Several viral families have evolved the ability to form syncytia be-
tween individual infected cells and neighboring uninfected cells. Dur-
ing infection, this phenomenon is facilitated by a viral fusion protein
(often termed F) that mediates its function either with or without the
presence of additional viral proteins.16,17 A number of these naturally
occurring fusogenic viruses have been studied as oncolytic agents,
including Newcastle disease virus (NDV), Sendai virus (SV), respira-
tory syncytial virus (RSV), and measles. In addition to these viruses,
other viral families can induce membrane fusion between viral parti-
cles and cellular membranes without causing subsequent syncytia
formation. For the purpose of this review, however, we will limit
our discussion to viruses for which infection has been definitively
shown to result in direct cell-cell fusion.

Newcastle Disease Virus

NDV represents one of the first oncolytic viruses to show clinical
potential and has been studied for more than 60 years.18–20 NDV
differentiated itself from other early oncolytic candidates both for
its ability to infect a majority of human cancers, without the presence
of a tumor-specific receptor,21 and for its lack of pathogenicity in hu-
mans.22 This allowed NDV to be used against a plethora of cancers
with relative success.23–26 From an oncolytic standpoint, at least
part of the efficacy of NDV is achieved through virally induced
apoptosis.27 Unfortunately, few studies have defined the mechanism
through which NDV induces this pathway; however, it has been
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Figure 1. Schematic of Syncytia-Mediated Viral Spread

During traditional viral infections, spread occurs slowly by repeated infections of single cells following production of new infectious progeny. In syncytia-mediated viral spread,

dissemination is facilitated by the expression of the fusion protein on the infected cells, which in turn, binds to various receptors on the neighboring cells. By spreading through

the interaction of the fusion protein, dissemination is both more rapid and no longer limited to cells that express the viral receptor. This results in infection of more tumor cells

than with a nonfusogenic virus.
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suggested that it is a cytotoxic effect of viral syncytial formation.28,29 It
has been known for many years that NDV encodes a fusion complex
that is normally involved in the fusion of the virion with a host cell
during infection.30 For NDV, this fusion complex is made up of
both the viral F (fusion) and HN (neuraminadase) proteins, with
the F protein being initially transcribed as an inactive form (F0)
and subsequently cleaved into the active polypeptides F1 and F2 by
cellular proteases.21,31 Whereas the major evolutionary role of this
fusion complex is most likely during viral entry, studies have also
described high multiplicity NDV infections resulting in syncytia for-
mation between infected and noninfected cells.32 Interestingly, during
these infections, the relationship between F andHN plays a significant
role in determining the outcomes of syncytia formation. The presence
of both proteins results in efficient formation of stable syncytia,
whereas mutations in one or both of these proteins can result in hy-
perfusogenic phenotypes that increase oncolytic potential.33–35 This
suggests that the role of syncytia formation during oncolytic NDV
treatment might vary based on the ratio of F to HN during a given
infection. Some studies have attempted to bypass this issue by gener-
ating mutated forms of NDV that are hyperfusogenic due to an
altered multibasic cleavage component of the F0 protein.

36–39 In these
studies, the introduced mutations increased therapeutic efficacy by
eliminating the need for the HN attachment protein. The above
studies build off of an earlier study that shows that a mutation of
lysine to arginine resulted in a mutated NDV that canmediate cell:cell
fusion in the absence of HN.40 However it is important to mention
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that whereas this mutation allows for F to induce cell:cell fusion
without HN, this occurs less efficiently than with HN present. This
HN independence promoted NDV infection by decreasing the
specificity of F protein binding, allowing for inclusion of a more het-
erogeneous tumor population. Surprisingly, these works also show
that this increased fusion potential does not increase toxicity to
healthy cells. These finding are significant since they provide evidence
that virally induced fusion can be modified while still maintaining the
cancer-specific tropism of oncolytic viruses in terms of the virus being
able to replicate preferentially in tumor cells. Although this work
establishes that oncotropic specificity can be maintained during syn-
cytia formation, however, the molecular basis for this specificity was
not determined.

In addition to the F:HN ratio, it has also been shown that the outcome
of the fusogenicity of NDV depends on tumor cells’ resistance to
apoptosis.41 Under normal conditions, NDV-induced syncytial for-
mation rapidly activates apoptotic pathways, resulting in cellular
death.42–45 Although this is might seem an attractive outcome during
OV, there is a fine balance in terms of cellular death and viral repli-
cation.46 In the case of fusogenic NDV, it is plausible that the increase
in cellular death occurs too rapidly, thus preventing completion of the
replication cycle. In contrast, expression of the anti-apoptotic protein
B cell lymphoma-extra large (BCL-xL) during infection inhibits acute
apoptotic cell death, which allows for more sustained viral replica-
tion.41,47 Over time, this decreased cell death actually results in
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improved viral spread and increased release of tumor antigens.48

These data suggest that the upregulation of BCL-xL might promote
increased oncolytic potential of fusogenic NDV over time. Interest-
ingly, it has previously been reported that the upregulation of BCL-
xL is able to confer resistance to bothmultidrug and radiation therapy
through a similar anti-apoptotic mechanism.49,50 By hijacking the tu-
mors own cell-survival pathways, fusogenic NDV might therefore
become an attractive treatment option for patients who have failed
traditional therapies.

Sendai Virus

SV is a member of the same viral family as NDV, and the two viruses
likely possess similar oncolytic characteristics.51 Compared to NDV,
however, the oncolytic potential of SV is less well studied, although it
also appears to have potential against a wide range of cancers.52,53

Like NDV, SV forms syncytia upon infection, which results in the in-
duction of apoptotic cell death.52,54 Additionally, SV also encodes an
accessory glycoprotein (G) HN, which aids in both virus:cell as well as
cell:cell fusion,55–57 although it has been suggested that this protein is
less important for the latter.58

Importantly, recent studies have directly addressed the role that syn-
cytia formation plays in SV-based therapy.53,54,59 A publication by
Hasegawa et al.53 demonstrates that the use of a fusogenic SV strain
can increase both spread and cytotoxicity from viral infection by as
much as four times over that of a nonfusogenic counterpart across
a range of glioblastoma (GB) tumor lines. These results were then
translated to an in vivo model using a virus also encoding an inter-
feron (IFN)-b transgene, which resulted in significantly reduced tu-
mor volume and improved overall survival compared to both mock
and nonfusogenic controls.53 The authors of this work suggest that
the efficacy of this fusogenic virus might be partially due to potential
synergy between syncytia formation, which increased spread of the
fusogenic virus, and the INF-b transgene, which enhanced overall
anti-tumor immunity. In contrast, another possible explanation to
why fusogenic SV shows increased efficacy was offered in a study
by Suzuki et al.60 In this study, the research team found the presence
of the SV-F protein itself resulted in an upregulation of interleukin-6
(IL-6) following treatment.60 Critically, IL-6 is associated with the
inhibition of T-regulatory (Treg) cells, which are known to downre-
gulate adaptive immune responses during immunotherapy. The fact
that the F protein of SV can trigger IL-6 upregulation could therefore
explain part of the increased efficacy seen with fusogenic SV.Whether
this is an isolated phenomenon or whether all fusion proteins produce
similar effects, however, remains to be determined.

Respiratory Syncytial Virus

RSVwas originally identified as an oncolytic virus due to the degree of
sensitivity that it exhibits toward IFN. As cancer cells have frequently
lost the ability to respond to IFN, this allows for highly oncotropic in-
fections using RSV.61 As with NDV and SV, the RSV-F protein is
transcribed in an inactive form that then undergoes additional
processing to the active form. In the case of RSV, F0 is cleaved by
furin to produce the active complex consisting of two subunits: F1 a
C-terminal membrane-anchored subunit, and F2, the N-terminal
subunit. Like SV, RSV fusogenicity is not dependent on the presence
of an HN protein, although this virus does encode a glycoprotein
(G that can enhance its fusion capacity.62–69 Theoretically, the ability
of RSV to initiate fusion with neighboring cells, independent of coex-
pressed attachment proteins, could make this virus a more versatile
inducer of syncytia formation; unfortunately, the direct role that syn-
cytia formation plays in RSV-based oncolytics remains poorly defined

A 2015 paper by Choi et al.70 demonstrates that infection with RSV
resulted in a reduction in the growth of some, but not all, hepatocel-
lular carcinoma cell lines and that syncytia formation was specifically
present in the cell lines that showed a decrease in cellular viability.
A second study obtained similar results in a variety of skin carcinoma
cell lines; however, this work also showed that infection with RSV
resulted in increased apoptotic cell death that correlated with syncytia
formation.71 Unfortunately, neither paper directly examines if there is
a mechanistic relationship between syncytia formation and the
inhibition of cancer cell growth; however, RSV-dependent syncytial
formation has been shown to result in activation of p53, which could
explain the apparent correlation.72,73

Measles Virus

The oncolytic potential of genetically modified measles virus (MV)
has been known since the 1970s.74,75 Since then, the virus has been
used against a wide range of cancers frommany different tissue types,
including lymphoma, leukemia, gliomas, and osteosarcoma.76–79 MV
is able to infect cells when its fusion complex interacts with one of
three receptors on the target cell: CD46, signaling lymphocyte activa-
tion molecule (SLAM), or nectin-4.80–83 MV then induces cell-to-cell
fusion via expression of the MV-F protein and its interaction with the
hemagglutinin protein H.84 Similar to other fusogenic viruses, MV-F
is initially translated as an inactive form that cannot interact with the
H protein to create the fusion complex unless MV-F is cleaved by the
appropriate proteases during vesicular trafficking.85–87

A 2015 paper by Studebaker et al.88 shows the positive effect that
fusogenicity has on oncolytic MV treatment of a typical teratoid
rhabdoid tumor. Whereas this is a rare cancer subset, this work is
interesting because it offers two key findings relevant to the use of
syncytia forming oncolytic agents. First is that even a low MOI is suf-
ficient to reduce tumor cell viability drastically after infection. Second
is that the use of fusogenic virus in vivo can improve survival in both
localized and metastatic tumor models. Similar results were also re-
ported by the same group in the context of medulloblastoma.89

Together, these results show that the enhanced efficacy of fusogenic
viruses is not strictly due to improvements in direct viral infection
and spread alone but rather a combination of these mechanisms,
along with the cytotoxic effects of noninfected cells, known as the
bystander effect. Whereas the mechanism(s) mediating this bystander
killing are likely multifactorial, efficacy does require viral replication
and is associated with both increased cytotoxicity correlated with
syncytial formation as well as activation of the Toll-like receptor 2
(TLR-2) antiviral signaling pathways.79 Critically, this work suggested
Molecular Therapy: Oncolytics Vol. 15 December 2019 133
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that activation of TLR-2 signaling was caused by the mere presence of
the H protein in the fusion complex.90–92 Similar to the induction of
IL-6 by the SV-F protein, this result suggests that the presence of a
fusion complex could itself be inflammatory, independent of either
viral replication or cellular lysis. Interestingly, the authors of this
work further suggest that in the case of MV, sensing of the F protein
might be enhanced by the evolutionary interaction of the immune
system with the human MV.93,94 Whether a similar effect is seen
with the use of nonhuman oncolytic viruses is therefore a question
that future studies should address.

Although both of the previous papers discuss how fusogenic MV can
be used against fully differentiated tumor cell lines, tumor-initiating
cells (TICs) pose a much greater challenge in terms of therapeutic
outcomes and techniques.95–97 These cells are often resistant to
most conventional treatments and are a primary cause of relapse
for cancer patients.6,98,99 It is therefore interesting to note that MV-
induced syncytia can apparently include gliomal TICs based on the
inclusion of the CD133 marker.78 This work demonstrates a critical
characteristic of syncytial-forming viruses in that they can often
form syncytia with cells near them regardless of these cells’ suscepti-
bility to direct viral infection. This allows syncytia-forming oncolytic
viruses to spread to both differentiated tumor cells and TICs, offering
a much greater therapeutic potential. Critically, the inclusion of nor-
mally noninfectible TICs in MV-induced syncytia appears at odds
with the previously discussed retention of oncotropism following
modification of virally induced fusion. Future studies are therefore
needed to define the breadth and specificity of the fusogenic pheno-
type both in vitro and in vivo.

Engineered Syncytia Viruses

With recent advances in molecular cloning and improved under-
standing of viral genomes, it is now possible to increase the oncolytic
potential of many viruses through the addition or removal of specific
genes. The goal of these changes is to increase or decrease phenotypes
associated with strong oncolytic potential, including various aspects
of the immune response (natural killer [NK] cell inhibition, CD8+

T cell activation, checkpoint blockade inhibition, etc.), lysis of in-
fected cells, or spread within the tumor. One approach scientists
have begun studying is to insert the fusogenic proteins of naturally
occurring syncytia viruses into the proven backbones of nonfusogenic
oncolytic viruses in order to enhance the spread of these viruses
through the tumor. This combination allows for oncolytic viruses
to benefit from the increased spread and lytic potential caused by syn-
cytial formation while maintaining the inherent oncolytic properties
of their nonfusogenic backbones. A variety of common vectors and
fusion proteins have been used during these studies.

Recombinant Vesicular Stomatitis Virus

Vesicular stomatitis virus (VSV) is a cattle pathogen that is largely
nonpathogenic in humans. Similar to RSV, VSV has been shown to
replicate preferentially in tumor cells due to its restriction by func-
tional IFN responses.100,101 Whereas VSV can cause membrane
fusion between the virion and the host cell membranes, true syncytia
134 Molecular Therapy: Oncolytics Vol. 15 December 2019
formation is normally prevented by the presence of the fusion glyco-
protein G, which is capable of initiating fusion only at acidic pH.102 In
addition to its natural oncolytic potential, VSV is also frequently used
to create recombinant viruses, since the virus offers significant
freedom to add therapeutic genes to the genome without compro-
mising other aspects of the viral biology.103

One example of such a recombinant virus is that of the VSV-H
construct that encodes both the MV-F and H proteins into the
VSV genome.104 This virus maintains the IFN-restricted replication
properties of VSV,105 while adding the CD46-specific fusion me-
chanics of MV. Interestingly however, the new recombinant virus
possesses greater all-around oncolytic capacity than either wild-type
parental virus. This increased capacity is partially due to the replace-
ment of the endogenous VSV-G protein with that of the MV fusion
complex. With this replacement, VSV-induced membrane fusion is
no longer limited by the pH dependence characteristic of the G fusion
protein, giving the recombinant virus a more general fusion ability
than either wild-type vector.102,106,107 This increased ability to pro-
duce syncytia results in the generation of significantly larger plaques
than those seen with wild-type VSV, as well as syncytia formation that
is independent of CD46 receptor density.108 A second recombinant
VSV encoding only MV-F displayed a similar phenotype but also
had improved cytotoxic effects against TICs, again independent of
CD46-based viral entry, suggesting a second possible mechanism
through which improved oncolytic potential might be obtained.109

A 2017 study by Le Boeuf et al.110 shows another recombinant VSV
possessing a fusion-associated small transmembrane (FAST) protein.
FAST proteins are F proteins that have been isolated from reovirus
and are attractive from a genetic engineering perspective, since they
are the smallest viral fusion proteins that allow for easy insertion
into other oncolytic genomes.111 The results of this paper demon-
strate that recombinant VSVs, which encode FAST proteins, are
able to induce syncytial growth in vitro. The study then goes on to
demonstrate that treatment with the recombinant virus leads to a
reduction in the growth of established tumors in vivo. Additionally,
VSV-FAST treatment also reduced the size and number of lesions
in both metastatic breast and colon cancer models.110 This finding
was not seen with nonfusogenic control viruses, suggesting that the
ability of the recombinant virus to form syncytia may have induced
an increased adaptive immune response, a hypothesis that was sup-
ported by VSV-FAST treatment, causing an increase in activated
CD8+ and CD4+ T cells in both treated and nontreated tumors.
Although this activation would start mainly in the treated tumors,
as the adaptive immune response to the tumor escalates, these cells
would localize into the metastatic lesions as well. This enhanced im-
mune activation has been previously attributed to the rapid release of
antigens that occurs during immunogenic death of the syncytia;15,112

however, our review suggests that other potential mechanisms, such
as IL-6 or TLR activation, might also be involved.

Insertion of NDV-F has also been shown to improve the oncolytic po-
tential of VSVs.113 In this work, mutated NDV-F was used, which
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allows for the induction of fusion, independent of the NDV-HN
glycoprotein.113 Treatment with this virus resulted in both prolonged
survival and increased viral infection in both metastatic liver and lung
models compared to treatment with nonrecombinant controls.
Importantly, as with the work on NDV, this study also demonstrates
that altering virally fusogenicity does not compromise cancer
tropism. In this case, the authors explicitly looked at the normal tissue
surrounding the treated tumor to determine potential toxicities asso-
ciated with introducing a fusogenic viral construct in an in vivo
model; while robust infection of malignant tissue was observed, these
studies demonstrated that infection was still excluded from surround-
ing normal cells. A later study using this same recombinant virus
confirmed this result in metastatic colorectal cancer models.114

Recombinant Herpes Simplex Virus

Herpes simplex virus (HSV) is a member of the herpes virus family
that is typically associated with dermal lesions (cold sores) in humans.
Although certain strains of HSV can acutely form syncytia at physi-
ological pH, the majority of HSV oncolytic trials, including the
ones that led to the recent Food and Drug Administration (FDA)
approval of Iymlygic,115 have been done using nonfusogenic recom-
binant HSV vectors armed with immune-modulating transgenes. In
addition to the extensive body of oncolytic literature on nonfusogenic
HSV, however, several studies have looked at the possibility of
enhancing the normally low fusogenicity of HSV by adding fusogenic
proteins into the HSV genome.

One such fusogenic virus is the recombinant HSV-GALV,116–118

which combines the oncolytic HSV backbone with the gibbon ape
leukemia virus (GALV) fusion protein. Although GALV has poor on-
colytic potential alone, the virus is hyperfusogenic, and insertion of its
F protein into oncolytic HSV has been reported to generate a fuso-
genic construct with significantly increased oncolytic potential.119

Studies using this virus have shown that the addition of the GALV-F
protein increases the death of infected tumor cells in vitro by up to
54%. Critically, as with work on fusogenic MV, these studies also
observed substantial death of uninfected cells both in vivo and
in vitro across several tumor models, including colorectal adenocarci-
noma, GB astrocytoma, and lung epidermoid carcinoma. Since
infection of 100% of malignant cells during oncolytic treatment has
proven impossible to obtain, this enhanced bystander effect might
represent a major mechanism through which fusogenic viruses
achieved enhanced efficacy.

Fusogenic HSV was also used to study the potential impact of encod-
ing two distinct fusion mechanisms into a single oncolytic virus.120

This work used a hyperfusogenic HSV backbone into which the
authors additionally encoded the F glycoprotein of GALV.14 The
proposed rationale for this approach was to combat the potential
development of fusion resistance in treated tumors. Whether the
development of this resistance is a problem during fusogenic OV re-
mains unclear; however, the doubly fusogenic viruses did display
enhanced efficacy in models of both breast and ovarian cancer.
This improved efficacy correlated with increased cell death, release
of virus into the tumor microenvironment at far greater levels (over
90% of the viral progeny), and higher rates of infection in vivo.
Unfortunately, whereas the double fusion viral constructs resulted
in overall impressive tumor control compared to untreated and non-
fusion viral construct groups,107 no comparison to single fusogenic
HSV constructs was included. Without this comparison, it is difficult
to say how much added effect the addition of the second fusion pro-
tein has on the outcome of this model or if one such protein would
have yielded the same results.

Finally, recombinant fusogenic HSVs have also been used to study the
immunological ramifications of inducing syncytia formation.61,121,122

Similar to the work with VSV, these studies have generally shown that
treatment with fusogenic HSVs induces more substantial and more
effective anti-tumor immune responses than treatment with nonfuso-
genic controls. Critically, these results were found using HSVs encod-
ingmultiple distinct F proteins, which implies that the improved anti-
tumor immunity is not specific to a single fusion protein, but instead
represents an inherent benefit of syncytial induction. No mechanism
for this enhanced immune activity has been discovered to date; how-
ever, one proposal is that it is related to fusogenic viruses improved
with bystander killing. In this model, more cells being killed results
in more antigens from the tumor able to be presented on antigen-
presenting cells. This results in improved adaptive immunity, partic-
ularly against subpopulations of the tumor that were previously
uninfectable by the virus. Alternatively, it has also been proposed
that the formation of unique antigen-rich vesicles might play a
role.61,123 These vesicles, known as syncytiosomes, are released at
an increased rate from syncytial bodies and are then uptaken by
antigen-presenting cells, resulting in increased cross presentation of
tumor-associated antigens.61 Unfortunately, neither of these hypoth-
eses has yet to be definitively proven in the context of OV. Therefore,
whereas multiple studies point to syncytial formation inducing
improved anti-tumor immunity, this phenomenon remains poorly
understood and should be a focus of future studies.111,124

Recombinant Adenovirus

Adenovirus (Ad) is a member of the Adenoviridae family, which is
characterized as nonenveloped, double-stranded DNA viruses. Onco-
lytic Ad has shown promising results across a variety of tumormodels
with many of the studies focusing on a common human variant, Ad
subtype 5 (Ad5).125 Although Ad5 is normally, completely nonfuso-
genic, it can be made to induce syncytia by the addition of exogenous
F proteins. In the case of Ad5, many of these studies have encoded
various fusion proteins into replication-defective variants of the virus
as a form of gene therapy. As this is not a true form of oncolytics, we
have excluded these works form our current review; however, it
should be noted that many of these papers show increased efficacy
using fusogenic, nonreplicating Ad vectors, which supports the
conclusion that formation of syncytia alone can be a potent mediator
of anti-tumor efficacy.

The earliest study combining replication-competent Ad and syncytia
formation used the unique approach of oncolytic Ad5 together with
Molecular Therapy: Oncolytics Vol. 15 December 2019 135
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plasmid DNA encoding the GALV-F protein to induce syncytia for-
mation. Similar to results with actual recombinant fusogenic viruses,
this study found the exogenous addition of F protein increased both
viral spread and cytotoxicity in vitro and impressively, translated into
complete cures of both small and large established tumors in an in vivo
model.126 Later studies confirmed that this efficacy could be dupli-
cated in multiple cell lines when the GALV-F protein was inserted
directly into the Ad genome,119,127,128 while still maintaining onco-
lytic safety. Interestingly, in contrast to previous studies using
GALV-F, the efficacy of this fusogenic Ad appears to be strictly due
to improved viral spread, since the immunological responses induced
following treatment did not differ with the addition of the F protein.

Conclusions

Syncytia are defined as the fusion of multiple cells into a single multi-
nucleated cell body. From an evolutionary perspective, the likely
intention of virally induced syncytia formation is to increase the
spread of a virus. Thus, the induction of this process represents a
novel solution to one of the biggest challenges facing OV. By utilizing
fusogenic viruses for OV, scientists have proven that forcing syncytia
formation both can and will kill tumor cells regardless of tumor type.
Although these results show the promise of syncytial-forming viruses,
many questions remain about the mechanisms involved following
therapy. In particular, the mechanisms mediating tumor specificity
during fusogenic infection and the ability of these viruses to induce
bystander killing and enhanced anti-tumor immunity remain to be
determined. Additionally, although a variety of fusion proteins have
been shown to enhance nonfusogenic oncolytic viruses, whether
any of these has an inherent advantage compared to the others re-
mains unclear. Therefore, whereas multiple studies have conclusively
shown the promise of inducing syncytia formation during OV, addi-
tional mechanistic work is likely needed to maximize this strategy in
the future.
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