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Cortisol Release From Adipose Tissue by
11p3-Hydroxysteroid Dehydrogenase Type 1 in Humans

Roland H. Stimson,' Jonas Andersson,”? Ruth Andrew,' Doris N. Redhead,® Fredrik Karpe,*
Peter C. Hayes,” Tommy Olsson,? and Brian R. Walker"

OBJECTIVE—11B-Hydroxysteroid dehydrogenase type 1 (113-
HSD1) regenerates cortisol from cortisone. 113-HSD1 mRNA and
activity are increased in vitro in subcutaneous adipose tissue
from obese patients. Inhibition of 11B-HSD1 is a promising
therapeutic approach in type 2 diabetes. However, release of
cortisol by 113-HSD1 from adipose tissue and its effect on portal
vein cortisol concentrations have not been quantified in vivo.

RESEARCH DESIGN AND METHODS—Six healthy men un-
derwent 9,11,12,12-[?H],-cortisol infusions with simultaneous
sampling of arterialized and superficial epigastric vein blood
sampling. Four men with stable chronic liver disease and a
transjugular intrahepatic porto-systemic shunt in situ underwent
tracer infusion with simultaneous sampling from the portal vein,
hepatic vein, and an arterialized peripheral vein.

RESULTS—Significant cortisol and 9,12,12-[*H];-cortisol release
were observed from subcutaneous adipose tissue (15.0 [95% CI
0.4-29.5] and 8.7 [0.2-17.2] pmol - min~ ' - 100 g~ ! adipose tissue,
respectively). Splanchnic release of cortisol and 9,12,12-[*H],-
cortisol (13.5 [3.6-23.5] and 8.0 [2.6-13.5] nmol/min, respec-
tively) was accounted for entirely by the liver; release of cortisol
from visceral tissues into portal vein was not detected.

CONCLUSIONS—Cortisol is released from subcutaneous adi-
pose tissue by 113-HSD1 in humans, and increased enzyme
expression in obesity is likely to increase local glucocorticoid
signaling and contribute to whole-body cortisol regeneration.
However, visceral adipose 11B-HSD1 activity is insufficient to
increase portal vein cortisol concentrations and hence to influ-
ence intrahepatic glucocorticoid signaling. Diabetes 58:46-53,
2009

ortisol has potent effects in adipose tissue,
influencing insulin sensitivity, fatty acid metab-
olism, adipocyte differentiation, adipokine ex-
pression, and body fat distribution (1). Adrenal
secretion of cortisol is controlled by the hypothalamic-
pituitary-adrenal axis; however, recent evidence suggests
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that cortisol is also generated from inert cortisone within
adipose tissue by the enzyme 11p-hydroxysteroid dehydro-
genase type 1 (113-HSD1) (2,3). Conversion of cortisone to
cortisol occurs in vitro in human adipocytes cultured from
visceral and subcutaneous adipose depots (4) and in vivo
during infusion of [°H] ,-cortisone into subcutaneous adipose
tissue by microdialysis (5). In obesity, 113-HSD1 mRNA and
activity are increased in subcutaneous adipose tissue biop-
sies (6) and either increased or unchanged in visceral adi-
pose tissue (rev. in 7). 11B-HSDI1 inhibitors are being
developed to lower intracellular cortisol concentrations in
adipose tissue and liver in type 2 diabetes and obesity, with
promising preclinical and early clinical results (8).

In addition to influencing intra-adipose cortisol concen-
trations, it has been suggested that cortisol release into the
portal vein from visceral adipose tissue contributes to
hepatic insulin resistance associated with central obesity
(4). Transgenic overexpression of 113-HSD1 in adipose
tissue in mice results in a two- to threefold increase in
portal vein glucocorticoid concentrations without altering
systemic levels (9). However, the extent to which cortisol
generated by 11B-HSD1 is released into the portal or
systemic circulation from visceral or subcutaneous adi-
pose tissue, respectively, in humans is unknown. In arte-
riovenous samples across subcutaneous adipose tissue,
cortisol concentrations do not change, although there is
net removal of cortisone (10,11). Similarly, sampling from
portal or omental veins during intra-abdominal surgery has
not revealed higher cortisol concentrations than in arterial
blood (12,13).

Measuring cortisol concentrations in arterial and ve-
nous samples may not detect cortisol release by 11[-
HSD1 if cortisol is also removed by other enzymes. This
occurs, for example, in the liver, where cortisol concen-
trations are lower in hepatic vein than in arterial blood
(14). A tracer technique is required to detect cortisol
production in the liver in the face of additional cortisol
clearance. We devised a stable isotope deuterated trac-
er—9,11,12,12-[*H],-cortisol (d4-cortisol)—for this pur-
pose (15). During d4-cortisol infusion, there is removal
of the 11a-*H by 11B-HSD type 2 to form d3-cortisone,
which is then regenerated to d3-cortisol by 113-HSD1
(Fig. 1). The dilution of d4-cortisol by d3-cortisol there-
fore indicates 11B-HSD1 reductase activity and is inde-
pendent of removal of both d4-cortisol and d3-cortisol
by other enzymes. In tissues in which there is no source
of cortisol production other than by 11B-HSDI1, the
dilution of d4-cortisol by cortisol also indicates 11pB-
HSD1 activity. Using this technique, we and others have
quantified substantial cortisol release into the hepatic
vein by 113-HSD1 in the splanchnic circulation (visceral
organs plus liver) (16,17). Moreover, by extrapolating
from the rate of cortisol release into hepatic vein during
first-pass liver metabolism of an oral dose of cortisone,
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FIG. 1. Quantifying cortisol production using deuterated cortisol.
d4-Cortisol is converted mainly in the kidney to d3-cortisone, with the
loss of the deuterium on C,,. The d3-cortisone is then reduced by
118-HSD1, predominantly in the liver and adipose tissue, with the
addition of an unlabeled hydrogen to form d3-cortisol. Differences
between d3-cortisol and d4-cortisol metabolism therefore reflect 11$3-
HSD1 reductase activity.

we estimated that a substantial proportion of splanchnic
cortisol production occurs in visceral tissues and liver
(16). However, direct cannulation of veins draining
adipose tissue depots during tracer cortisol infusion has
not been reported, and portal vein sampling has only
been performed in dogs in which cortisol release by
visceral tissues was undetectable (18).

Here, we report results of deuterated cortisol infu-
sions with selective venous cannulation to measure
arteriovenous differences across subcutaneous adipose
tissue and visceral tissues, to quantify cortisol release
by 11B-HSDI1 from adipose tissue for the first time in
humans.

RESEARCH DESIGN AND METHODS

Participants were men, aged 20-70 years, with BMI 20—45 kg/m? and normal
full blood count and renal and thyroid function, and received no glucocorti-
coid therapy in the previous 6 months. Six men with normal liver function
tests and alcohol intake <21 units/week were recruited for the subcutaneous
adipose tissue study. Three subjects had no concurrent medical conditions,
two had hypertension, and one had Parkinson’s disease. Felodipine, ben-
droflumethiazide, enalapril, levodopa, entacapone, and pramipexole were
each taken by one subject. Four men with alcoholic cirrhosis and transjugular
intrahepatic portal-systemic shunts (TIPSS) in situ were recruited for the
portal vein study. The TIPSS had been inserted at least 1 year previously for
portal hypertension. These patients were currently abstinent from alcohol and
attending an annual check of TIPSS patency. Three TIPSS patients had no
additional medical conditions; one had type 2 diabetes. Three were taking
proton pump inhibitors; insulin, metoprolol, spironolactone, furosemide, and
aspirin were each taken by one subject. Local ethical approval and written
informed consent were obtained.

Subjects were given oral dexamethasone (1 mg in TIPSS patients and 1.5
mg in healthy men) at 2300 h and fasted until attending the Clinical
Research Facility at 0800 h. Measurements were taken of height, weight,
total fat mass, and percentage body fat by bioimpedance. Blood was taken
for fasting glucose and lipids. 21G cannulae were placed in a right
antecubital fossa vein for infusion and a left dorsal hand vein for sampling;
the left hand was placed in a box heated to 60°C to achieve arterialization.
d4-Cortisol (Cambridge Isotopes, Andover, MA) was infused at 40% molar
enrichment with 60% cortisol (Calbiochem, Nottingham, U.K.) at 1.74 mg/h
for 210 min after a priming 3.5-mg bolus. The combination of dexametha-
sone and unlabeled cortisol administration aimed to maintain circulating
cortisol and cortisone concentrations at stable nonstressed physiological
levels during steady-state measurements. d4-Cortisol was infused at suffi-
ciently high enrichment to ensure detectable levels of d3-cortisol and
d3-cortisone, even in hepatic vein. Dexamethasone is not known to
interfere with cortisol kinetics.
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Cortisol release from subcutaneous adipose tissue in healthy men.
Subjects were served breakfast (30 g cornflakes and 300 ml skim milk) at
0800-0830 h, and 5% dextrose (50 ml/h) was infused intravenously
throughout the study. Once the deuterated cortisol infusion was estab-
lished, a 20G 15-cm catheter was sited in a superficial epigastric vein, as
previously described (19). To ensure that blood was collected from
subcutaneous adipose tissue and not from deeper structures, O, saturation
was confirmed to be >85%. After 2 h of d4-cortisol infusion, 1-2 MBq
133Xenon (gas) was injected subcutaneously beside the umbilicus, and
radioactivity was measured continuously with a Nal detector to assess
blood flow (20,21). Blood samples were taken from arterialized hand vein
and superficial epigastric vein at intervals (Fig. 2).

Cortisol release into portal and hepatic veins in TIPSS patients. These
patients were not given breakfast or infused with dextrose. During the
d4-cortisol infusion, dexamethasone was concurrently infused at 240 p.g/h.
Twenty minutes after beginning the tracer infusion, the right internal
jugular vein was cannulated under local anesthesia (5 ml 2% lidocaine), and
a bF pigtail catheter (Cordis, Berkshire, U.K.) was passed into the TIPSS
under X-ray guidance. After confirming patency of the TIPSS, the catheter
was positioned in the portal vein for sampling. A 5F vertebral catheter
(Merrit Medical, Lanarkshire, U.K.) was then placed in a separate tributary
of the hepatic vein for sampling. From 2 h after beginning the tracer
infusion, indocyanine green (ICG) (Pulsion Medical, Middlesex, U.K.) was
infused into the antecubital vein at 30 mg/h. Blood samples were taken
from the portal, hepatic, and arterialized veins at intervals (Fig. 2).
Laboratory analyses. Plasma cortisol, d3-cortisol, d4-cortisol, cortisone, and
d3-cortisone were measured by liquid chromatography-tandem mass spec-
trometry (LC-MS/MS). Epi-cortisol (500 ng) was added to 1.5 ml plasma and
extracted using 15 ml chloroform. Samples were evaporated and then
reconstituted in mobile phase (60% methanol and 40% 5 mmol/l ammonium
acetate) before injection into a Thermo Finnigan LC-MS/MS, consisting of a
TSQ Quantum Discovery Mass Spectrometer and a Surveyor Liquid Chromato-
gram using an Allure biphenyl column (50 mm X 4.6 mm X 5 wm; Thames
Restek), with column temperature 25°C and mobile phase flow rate 0.5
ml/min. Ionization was achieved by positive electrospray. The precursor and
product mass-to—charge ratios used were as follows: cortisol (363—121),
d3-cortisol (366—121), d4-cortisol (367—121), cortisone (361—163), and
d3-cortisone (364—164). Compounds were quantified by the ratio of area
under peak of interest to area under peak of internal standard against a
standard curve.

Serum ICG was measured by adapting a previous method (22) using
diazepam as internal standard. Briefly, acetonitrile (ACN) was added to
serum to sediment protein, the supernatant was mixed with ammonium
sulfate and centrifuged, and the organic phase was added to water before
analysis by high-performance liquid chromatography (HPLC) using a P680
HPLC pump and a PDA-100 photodiode array detector (Dionex, Sunnyvale,
CA) with a Nova-pak C,;q column (300 mm X 3.9 mm X 4 pm) at a
temperature of 35°C. Analytes were eluted under linear gradient conditions
at 1 ml/min mobile phase (initially, 80% water, 12% ACN, and 8% methanol;
0-17 min, 25% water, 65% ACN, and 8% methanol; and 17-29 min, 80%
water, 12% ACN, and 8% methanol) and detected at \230 (diazepam) and
\784 nm (ICG).

Plasma glucose, lipids, and liver function were measured using enzymatic

colorimetric methods on an Olympus Diagnostics analyzer (County Clare,
Ireland). Plasma A1C was analyzed by HPLC using a Variant II analyzer
(Bio-Rad Laboratories, Hertfordshire, U.K.).
Kinetic analyses. Calculations in each subject used the mean of measure-
ments in steady state, between 180 and 210 min of d4-cortisol infusion (Fig. 2).
Where possible, kinetic calculations relying on tracer-to-tracee ratios rather
concentrations were favored to minimize variability. The equations are
derived from Wolfe and Chinkes (23).

The concentration of ICG in the artery (A) and hepatic vein (HV) in steady
state (ss) were used to calculate hepatic blood flow (HBF) (24) using

ICG extraction rate » 1
[ICG4)ss — [ICGaylss

HBF (liters/min) = (€))

1 — hematocrit

Whole-body cortisol kinetics were calculated from measurements in arterial-
ized samples (15,16) using Eqgs. 2 and 3, where “cortisol” denotes unlabeled
cortisol. Clearances were calculated by dividing the infusion rate (of cortisol
or d4-cortisol) by the steady-state arterial concentration (of cortisol or
d4-cortisol) (15).

d4-cortisol infusion rate
d4-cortisol/cortisol
— cortisol infusion rate )

Rate of appearance of cortisol =
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FIG. 2. Left panel: subcutaneous sampling; right panel: visceral sampling. Plasma measurements during deuterated cortisol infusion. Data
are means = SE for n = 6 (subcutaneous measurements) and n = 4 (visceral measurements) during deuterated cortisol infusion, with plasma
samples from arterialized (H), portal or subcutaneous ( ¢ ), and hepatic (A) cannulae. Plasma cortisol concentrations (A), plasma d4-cortisol
enrichment (C), and d4-cortisol-to—d3-cortisol ratio (E) for subcutaneous study. Plasma cortisol concentrations (B), plasma d4-cortisol enrichment
(D), d4-cortisol-to—d3-cortisol ratio (F') for visceral study. Statistical comparison of mean values in steady state (180-210 min) is shown in Table 2.

d4-cortisol infusion rate

Rate of appearance of d3-cortisol = T-cortisol/dB—cortisol 3)

Subcutaneous adipose tissue production of cortisol and d3-cortisol were
calculated from measurements in arterialized (A) and superficial epigastric
vein (V) samples using Egs. 4 and 5. “Tissue delivery” is synonymous with
“influx.”
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Subcutaneous cortisol production = (tissue cortisol delivery

[d4-cortisol/cortisol, |
[d4-cortisol/cortisoly]

> — tissue cortisol delivery 4

where
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Tissue cortisol delivery = blood flow,, X [cortisol,]s

Subcutaneous d3-cortisol production = <tissue d3-cortisol delivery

[d4-cortisol/d3-cortisol, ]
[d4-cortisol/d3-cortisoly]s

) — tissue d3-cortisol delivery )

where

Tissue d3-cortisol delivery = blood flow,, X [d3-cortisol, ]

Splanchnic cortisol and d3-cortisol production (from visceral tissues and liver
combined) were calculated from measurements in arterialized (A) and hepatic
vein (HV) samples as previously described (16) using Egs. 6 and 7, in which
“tissue delivery” was calculated as above.

Splanchnic cortisol production = <tissue cortisol delivery

[d4-cortisol/cortisol, ]
[d4-cortisol/cortisolyy]ss

> — tissue cortisol delivery (6)

Splanchnic d3-cortisol production = <tissue d3-cortisol delivery

[d4-cortisol/d3-cortisol, ]
[d4-cortisol/d3-cortisolyy]ss

> — tissue d3-cortisol delivery  (7)

Liver production of cortisol and d3-cortisol were calculated from measure-
ments in portal vein (PV) and hepatic vein (HV) using Egs. 8 and 9. HBF was
measured by ICG extraction (Eq. 1) but portal blood flow (PBF) and hepatic
arterial blood flow (HABF) were not measured. In health, the portal vein
provides ~80% and the hepatic artery ~20% of total liver blood flow (25). In
cirrhosis, PBF decreases and HABF increases (26,27), such that as little as 10%
of HBF may originate from the portal vein (28). To account for this unknown,
we have modeled PBF to range between 10 and 80% of HBF and concordantly
for HABF to range between 90 and 20% of HBF.

Hepatic cortisol production = (hepatic cortisol delivery

[PBF/HBF X {d4-cortisol/cortisolpy}s]
[d4-cortisol/cortisolyy s
— hepatic cortisol delivery ®)

[HABF/HBF X {d4-cortisol/cortisol,}] + )

where

Hepatic cortisol delivery = (HABF,, X [cortisol,]s) + (PBF X [cortisolpy]s)

Hepatic d3-cortisol production = (hepatic d3-cortisol delivery

(PBF/HBF X [d4-cortisol/d3-cortisolpy]ss)
[d4-cortisol/d3-cortisolyy]ss
— hepatic d3-cortisol delivery (©))

(HABF/HBF X [d4-cortisol/d3-cortisol,]) + )

where

Hepatic d3-cortisol delivery = (HABF,, X [d3-cortisol,],,) + (PBFy
X [d3-cortisolpy]s,)

Visceral production of cortisol and d3-cortisol (i.e., release into the portal
vein) was calculated using measurements from arterialized blood and portal
vein with estimates of PBF as above, using Egs. 10 and 11, in which tissue
delivery was calculated as above.
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TABLE 1
Anthropometry and fasting plasma biochemistry
Subcutaneous Visceral
arteriovenous  arteriovenous
sampling sampling
n 6 4
Age (years) 53.8 + 54 50.9 £ 4.1
BMI (kg/m?) 30.8 = 3.7 323 = 1.1
Fat mass (%) 289 £ 4.1 30.6 = 2.6
Fat mass (kg) 294+ 7.1 32.5 = 4.3
Plasma glucose (mmol/l) 55+04 7.8 2.0
Plasma A1C (%) 4.3+ 0.3 6.3+ 12
Total plasma cholesterol
(mmol/1) 54+ 0.3 4.3 = 0.7
Plasma triglycerides (mmol/l) 1.7+ 0.6 1.0 £ 0.3
Serum alanine
aminotransferase (units/l1) 30.5 = 6.0 26.3 = 2.6
Serum bilirubin (umol/1) 8717 23.5 + 6.3

Data are means *= SE.

Visceral cortisol production = <tissue cortisol delivery

[d4-cortisol/cortisol, |ss
[d4-cortisol/cortisolpy]s

> — tissue cortisol delivery (10)

Visceral d3-cortisol production = <tissue d3-cortisol delivery

[d4-cortisol/d3-cortisol, ]
[d4-cortisol/d3-cortisolpy]

) — tissue d3-cortisol delivery (11)

Net production of cortisone and d3-cortisone across the viscera, liver, and the
splanchnic tissues were calculated using Egs. 12 and 13, in which the relevant
measurements of blood flow and venous concentrations were substituted as
appropriate.

Net tissue cortisone production = ([cortisoney],, — [cortisone,],)
X blood flow,

12)

Net tissue d3-cortisone production = ([d3-cortisoney],, — [d3-cortisone,]s)
X blood flow, 13)

Statistical analysis. Using variance of steady-state kinetic parameters, a
power calculation showed that including four patients in the portal vein
sampling study gives >80% power to detect (to P < 0.05) release of 10
nmol/min cortisol into the portal vein. This provides ample power to detect
the ~30 nmol/min cortisol, which was estimated to be released into the portal
vein from indirect modeling (16).

Using SPSS version 14, comparisons were by paired ¢ tests or repeated
measures ANOVA with post hoc Fisher’s least significant differences test, as
appropriate. Differences from zero were determined using the one-sample ¢
test. P < 0.05 was considered significant. Data are presented as mean * SE or,
for calculated kinetic parameters, mean (95% CI).

RESULTS

Subject characteristics. Participants’ anthropometric
and biochemical characteristics are shown in Table 1.
Superficial epigastric vein cannulation study. Adrenal
cortisol production was suppressed by dexamethasone,
with fasting morning plasma cortisol concentrations of
23 £ 9 nmol/l and cortisone concentrations of 9 * 4
nmol/l. Steady state was achieved between 180 and 210
min of d4-cortisol infusion (Fig. 2).

Mean plasma measurements at steady state are in Table
2. Cortisol and d4-cortisol clearance was 0.56 = 0.09 and
0.90 = 0.09 I/min, respectively. Plasma cortisol concentra-
tions were not different between artery and superficial
epigastric vein; however, there was a trend for increased
d3-cortisol levels in the vein (P < 0.06). d4-Cortisol,
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TABLE 2

Steady-state concentrations and ratios during deuterated cortisol infusion

Subcutaneous measurements

Visceral measurements

Subcutaneous

Artery vein Artery Portal vein Hepatic vein
Cortisol (nmol/1) 97 + 16 103 + 15 186 + 17 176 + 22 180 = 18
d3-Cortisol (nmol/l) 33+4 36+4 59 =4 56 = 4 65 *+ 6%
d4-Cortisol (nmol/) 37*3 37*4 71+9 67 = 11 57 *+ 6*
Cortisone (nmol/1) 17+ 2 14 +£2 75+ 6 91 +6 22 + 16%F
d3-Cortisone (nmol/1) 8+1 6+ 2 36 +4 45 + 4% 9 + 8%
d4-Cortisol-to—cortisol ratio 0.40 = 0.03 0.38 = 0.03* 0.38 = 0.02 0.38 = 0.02 0.32 = 0.01%f
d4-Cortisol-to—d3-cortisol ratio 1.13 = 0.04 1.02 = 0.04% 1.19 = 0.08 1.17 = 0.10 0.87 = 0.07*F

Data are means = SE for n = 6 (subcutaneous measurements) and n = 4 (visceral measurements) participants. The mean data from samples
obtained between 180 and 210 min during the deuterated cortisol infusion was used to calculate steady-state concentrations. Comparisons
were made by paired ¢ test (subcutaneous study) or repeated measures ANOVA with post hoc testing with Fisher’s least significant differences
test (visceral study). *P < 0.05 and #P < 0.001 compared with artery; P < 0.05 compared with portal vein.

cortisone, and d3-cortisone concentrations were un-
changed between artery and vein.

The rates of appearance in arterial blood of cortisol (Eq.
2) and d3-cortisol (a specific measure of whole-body
11B-HSD1 activity; Eq. 3) were 33.8 (95% CI 16.0-51.5) and
28.3 (25.6-31.0) nmol/min, respectively. Adipose blood
flow measured 2.5 = 0.7 ml - min" ! - 100 g~ ! adipose
tissue. There was significant release across the subcuta-
neous adipose bed of both cortisol (15.0 [0.4-29.5] pmol -
min ! - 100 g~ ! adipose tissue; Eq. 4) and d3-cortisol (8.7
[0.2-17.2] pmol - min~ ! - 100 g~ adipose tissue; Eq. 5)
(both P < 0.05 vs. zero).

Hepatic and portal vein cannulation study. Fasting
morning plasma cortisol and cortisone concentrations
were suppressed by dexamethasone, measuring 15 = 5
and 11 = 2 nmol/l, respectively. Steady state was achieved
between 180 and 210 min of d4-cortisol infusion (Fig. 2).

Mean plasma measurements at steady state are in Table
2. Cortisol and d4-cortisol clearance was 0.27 = 0.03 and
0.47 = 0.06 /min, respectively. In the hepatic vein, d3-
cortisol concentrations were increased, and cortisone and
d3-cortisone concentrations decreased, consistent with
substantial intrahepatic steroid extraction and 113-HSD1
reductase activity. Conversely, d4-cortisol, which cannot
be regenerated by 113-HSD1, was lower in the hepatic
vein, consistent with substantial intrahepatic cortisol me-
tabolism. In the portal vein, cortisol, d3-cortisol and d4-
cortisol concentrations were unaltered compared with
arterial blood. However, d3-cortisone concentrations were
significantly increased, and there was a trend for increased
cortisone (P = 0.051) in portal vein, consistent with
visceral 11B3-dehydrogenase activity.

The whole-body rates of appearance of cortisol (Eq. 2)
and d3-cortisol (Eq. 3) in the artery were 36.3 (95% CI
24.4-48.2) and 26.9 (21.0-32.7) nmol/min, respectively.
HBF by ICG extraction was 0.40 £ 0.08 1/min. Splanchnic
production of cortisol (13.5 [3.6-23.5] nmol/min; Eq. 6)
and d3-cortisol (8.0 [2.6—13.5] nmol/min; Eq. 7) was sub-
stantial (both P < 0.05 vs. zero). This could be accounted
for entirely by the liver, because hepatic cortisol (Eq. 8)
and d3-cortisol (Eq. 9) production rates were 13.3 (1.3—
25.4) and 7.7 (1.3-14.2) nmol/min, respectively (both P <
0.05 vs. zero and not different from splanchnic production
rates) when PBF was estimated as 40% of total HBF (28).
No visceral cortisol (Eq. 10) or d3-cortisol (Eq. 11) release
into the portal vein was detected (0.0 [—1.7 to 1.7] and 0.1
[—0.7 to 1.1] nmol/min, respectively). Modeling for portal
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venous flow from 10-80% of HBF did not significantly alter
these results (not shown).

Net cortisone and d3-cortisone production across the
splanchnic tissues (Eqgs. 12 and 13) measured —18.2 (95%
CI —33.3 to —3.2) and —9.2 (—15.4 to —3.0) nmol/min,
respectively (both P < 0.05 vs. zero). This was accounted
for by cortisone and d3-cortisone extraction across the
liver (—20.8 [—39.4 to —2.2] and —10.6 [—18.3 to —2.8]
nmol/min, estimating portal flow as 40% of HBF), consis-
tent with substantial hepatic cortisone metabolism and
11B-HSD1 reductase activity. However, across the viscera,
net cortisone production rate did not differ from zero (2.6
[—1.2 to 6.3] nmol/min; P = 0.12), and there was a trend for
net generation of d3-cortisone (1.4 [—0.4 to 3.1] nmol/min;
P = 0.09 vs. zero).

DISCUSSION

These data quantify for the first time the contributions of
subcutaneous adipose tissue, visceral tissues, and liver to
whole-body cortisol production by 113-HSD1 in humans.
We confirmed that splanchnic cortisol production is sub-
stantial, and we attribute this entirely to 113-HSD1 activity
in the liver. However, although we could not detect release
of cortisol by 113-HSD1 into the portal vein, which drains
a number of visceral organs, we found significant cortisol
release into veins draining exclusively subcutaneous adi-
pose tissue. Similar results were obtained using the equa-
tions derived by Basu et al. (18). These results allow us to
put in context the variations in 11B-HSD1 activity de-
scribed in biopsied tissue, for example, in obesity.

The absolute rates of appearance of cortisol and d3-
cortisol in steady state are sensitive to the prevailing
concentrations of cortisone and d3-cortisone, the sub-
strates for 113-HSD1, which are determined by the rates of
exogenous cortisol and d4-cortisol infusion. Moreover, the
implications for intra-adipose cortisol concentrations are
impossible to estimate, because venous changes in con-
centration at a given rate of appearance are highly depen-
dent on tissue blood flow. However, with these and other
caveats in mind, we can attempt to extrapolate from these
data what some of the consequences might be for endog-
enous cortisol metabolism. If the release of cortisol by
adipose tissue in the anterior abdominal wall were mir-
rored in all adipose depots, then the observed cortisol
production rate of 15 pmol - min ' - 100 g~ ! adipose tissue
would equate with a whole-body production rate of 4.0 +
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1.5 nmol/min, based on a total adipose mass of 29.4 + 7.1
kg measured in our participants using bioimpedance. This
represents ~12% of whole-body cortisol regeneration by
11B-HSD1. Significant 113-HSD1 activity in subcutaneous
adipose tissue is supported by the trend for a fall in
cortisone concentrations from artery to vein (Table 2),
which, although not statistically significant, was of similar
magnitude to previous larger studies (10,11). However,
release of cortisol from subcutaneous adipose tissue may
be offset by intra-adipose cortisol clearance, e.g., by ba-
reductase type 1 (29), so that arterial and venous cortisol
concentrations are unaltered (Table 2), as previously
described (10,11). Nevertheless, these data are consistent
with the hypothesis that variations in 113-HSD1 have a
significant impact on intra-adipose cortisol concentrations
2,3,7).

Cortisol release from subcutaneous adipose tissue into
the systemic circulation is unlikely to have effects in other
organs, because the feedback control by the hypotha-
lamic-pituitary-adrenal axis will adjust adrenal cortisol
secretion to maintain circulating cortisol concentrations.
Therefore, the most likely impact of this source of cortisol
will be intracrine or paracrine in the local adipose envi-
ronment. However, release from visceral adipose tissue
into the portal vein could deliver cortisol directly to the
liver, contributing to the association of central obesity
with hepatic insulin resistance and dyslipidemia (4,16). We
did not, however, detect release of cortisol from 113-HSD1
in visceral tissues into portal vein, in agreement with a
study in dogs (18). Assuming portal venous blood ac-
counts for 40% of total HBF (28), the mean estimate for
visceral cortisol release from these subjects was 0.0 (95%
CI —1.7 to 1.7) nmol/min. Although the number of subjects
included was small (n = 4), this provides 97.5% confidence
that visceral cortisol production is <1.7 nmol/min. Be-
cause hepatic cortisol delivery was 72.7 nmol/min, we can
conclude that any cortisol released by visceral 113-HSD1
would not significantly impact on hepatic cortisol delivery.

To access portal vein samples, we studied patients with
alcoholic liver disease and TIPSS. Although sufficiently
unwell with portal hypertension to require a TIPSS, these
patients were stable and were all overweight or obese.
Cortisol metabolism is abnormal in cirrhosis (30-32),
although specific measurements of 113-HSD1 activity have
not been reported. Compared with healthy volunteers
undergoing subcutaneous adipose tissue measurements,
our cirrhotic patients had lower whole-body clearance of
cortisol and d4-cortisol and hence higher endogenous and
deuterated cortisol and cortisone concentrations in steady
state (Table 2). Splanchnic cortisol release was less than
one-third of that reported previously under similar condi-
tions (16,17,33), even though whole-body cortisol regener-
ation by 113-HSD1 was not unusually low. This paradox
may reflect either upregulation of 11B-HSD1 in non-
splanchnic tissues or an underestimation of splanchnic
cortisol release because of misleading blood flow mea-
surement. Although it is plausible that chronic liver dis-
ease may reduce hepatic 113-HSD1 activity, it seems less
likely that it would affect extrahepatic 11p-HSD1. As
previously described in TIPSS patients (34), HBF esti-
mated by ICG extraction was substantially lower than in
healthy volunteers. Although none of our patients had
reversed flow in the portal vein (hepatofugal flow) (35), a
proportion of blood in the portal circulation is shunted
away from the portal vein in patients with liver disease via
anastomoses with the systemic circulation (36). However,
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none of these alterations predict that cortisol release into
the portal vein should be artifactually low.

The portal vein drains blood from other organs, includ-
ing gut, pancreas, and spleen. Although our results suggest
that none of these organs releases cortisol by 113-HSD1
reductase activity, it remains possible that venous drain-
age from the other visceral tissues dilutes any observable
change in d3-cortisol-to—d4-cortisol ratios in blood from
visceral adipose tissue. HBF was measured at 400 ml/min,
of which portal vein flow may be up to 320 ml/min. This
compares with blood flow of just 2.5 ml - min~' - 100 g~ *
in subcutaneous adipose tissue. If adipose blood flow were
the same in the visceral as in the subcutaneous adipose
depot and the visceral depot weighed 3 kg (37), then the
contribution of visceral fat to PBF may be 75 ml/min, as
little as a quarter of total flow. This dilution effect could
only be overcome by cannulating an omental vein during
d4-cortisol infusion, which is unlikely to be achievable
during steady-state tracer cortisol infusion in unstressed
subjects.

Steady-state plasma d3-cortisone concentrations were
significantly higher in portal vein than in artery, and there
was a similar trend for cortisone concentrations (Table
2). Cortisol, d3-cortisol, and d4-cortisol concentrations
showed opposite trends. Although not confirmed by sta-
tistically significant differences in visceral d3-cortisone
production, these results suggest 113-dehydrogenase ac-
tivity, converting cortisol to cortisone in the viscera. This
is likely due to 113-HSD type 2 activity in the gut, although
it is conceivable that 113-HSD1 may be functioning in the
dehydrogenase direction in visceral adipose tissue (38).

In a previous study, we measured splanchnic cortisol
production in steady state and modeled the relative con-
tribution of liver and visceral tissues by measuring first
pass conversion of oral cortisone into cortisol in the
hepatic vein (16). We estimated that up to two-thirds of
splanchnic cortisol production occurs in visceral tissues
and that portal vein cortisol concentrations were likely to
be ~30 nmol/l higher than arterial concentrations. The
current data do not support these estimates, at least in
patients with cirrhosis. This discrepancy is most likely due
to portal vein cortisone concentrations being higher than
we predicted; our model was based in part on removal of
cortisone by 11B-HSD1 in visceral adipose tissue, as
occurs in subcutaneous adipose tissue (see above). Revis-
iting our model in light of the new finding of higher
cortisone concentrations in the portal vein, we have
confirmed that it predicts much higher steady-state corti-
sol regeneration in the liver and hence a much lower
contribution from visceral adipose tissue.

What implications do these observations have for pa-
tients with obesity? The mean BMI in our participants was
in the obese range (31 kg/m? in the subcutaneous adipose
tissue study and 32 kg/m? in the portal vein study),
although the numbers (n = 4—-6) were too small to allow
meaningful correlations with indexes of 113-HSD1 activ-
ity. Previous measurements in biopsies suggest that 11(3-
HSD1 activity is ~2.5-fold higher per gram of adipose
tissue in obese people (BMI ~31 kg/m?) than in lean
controls with BMI ~9 kg/m? lower (6,39). Given the K, of
human 113-HSD1 for cortisone of ~1 pmol/1 (40), it is
reasonable to assume a linear relationship between 11(3-
HSD1 protein concentrations and cortisol generation rates
within the physiological range of cortisone concentrations
of ~10-100 nmol/l. Therefore, we anticipate that a 10-
kg/m? increase in BMI might elevate the cortisol produc-
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tion rate in subcutaneous adipose tissue by up to 2.5-fold
(i.e., 37.5 pmol - min ! - 100 g~ 1) and that, accounting for
an associated ~15 kg increase in fat mass, this equates
with an increase in whole-body adipose cortisol produc-
tion of ~12.7 nmol/min. In obesity, hepatic 113-HSD1
activity is decreased by ~50% (6,39,41). The predicted
increase in cortisol release from adipose tissue may cancel
out the decrease in cortisol release from the liver in
obesity, potentially explaining the lack of change in whole-
body d3-cortisol production rate (5,33).

These data support the concept that 113-HSD1 is a key
determinant of intra-adipose cortisol concentrations but
appear to refute the concept that 113-HSD1 substantially
elevates cortisol concentrations in the portal vein.
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