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Noninvasive electromagnetic source imaging of
spatiotemporally distributed epileptogenic brain
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Brain networks are spatiotemporal phenomena that dynamically vary over time. Functional

imaging approaches strive to noninvasively estimate these underlying processes. Here, we

propose a novel source imaging approach that uses high-density EEG recordings to map brain

networks. This approach objectively addresses the long-standing limitations of conventional

source imaging techniques, namely, difficulty in objectively estimating the spatial extent, as

well as the temporal evolution of underlying brain sources. We validate our approach by

directly comparing source imaging results with the intracranial EEG (iEEG) findings and

surgical resection outcomes in a cohort of 36 patients with focal epilepsy. To this end, we

analyzed a total of 1,027 spikes and 86 seizures. We demonstrate the capability of our

approach in imaging both the location and spatial extent of brain networks from noninvasive

electrophysiological measurements, specifically for ictal and interictal brain networks. Our

approach is a powerful tool for noninvasively investigating large-scale dynamic brain

networks.
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Normal and pathological brain states, observed via beha-
vior, are produced through the underlying function and
dysfunction, of an individual’s brain networks. Under-

standing the properties of these complicated spatiotemporal
networks, is of the utmost importance for advancing our foun-
dational knowledge of the human brain, as well as introducing
and advancing novel clinical tools aimed at managing brain
disorders and improving quality of life. Throughout the last
century, noninvasive functional neuroimaging has, in one way or
another, played a significant role in advancing our knowledge of
human brain networks1. Given brain’s organization, i.e. that
spatially localized areas specialize in particular functions (func-
tional segregation) and that the communication among these
areas results in observed behavior (functional integration),
the brain activity on large scales, can be modeled as a globally
distributed spatiotemporal network2. Estimation of these
spatiotemporally distributed networks, from noninvasive mea-
surements, provides useful information about which brain areas
are activated (or deactivated) during particular brain functions
(normal or pathological), how extended these regions are, how
their activity develops over time, and how multiple areas interact
with each other during normal or pathological brain states. In
other words, spatiotemporal imaging of brain activity provides a
quantitative reconstruction of the underlying networks involved
in a task or brain state. For instance, comparing different brain
areas involved in externally evoked responses in autistic and
healthy patients, can be used to identify potential areas involved
in autistic dysfunction3. Employing appropriate functional ima-
ging methodologies that provide meaningful and robust insight
for a given study, is important.

An ideal functional imaging modality for studying large-scale
dynamic human brain networks should have at least three
characteristics, namely, high spatial resolution, high temporal
resolution, and a wide spatial coverage. Most existing imaging
modalities do not satisfy all the aforementioned criteria, simul-
taneously. Although, invasive brain monitoring approaches and
recording devices typically provide detailed information with high
spatial and/or temporal resolution, they normally lack spatial
coverage and pose risks to subjects, due to their invasive nature.
Invasive recording techniques are more commonly involved in
clinical cases regarding dysfunction, but are rarely, if ever,
involved in healthy subject recordings, as their introduction poses
unwarranted risks, and perturbs the neural system by simply
being present, making them unsuitable for general human ima-
ging applications. Despite the need for a noninvasive imaging
technology with high spatiotemporal resolution, no such tech-
nology currently exists, in a single modality. The availability of
such an imaging technology would have a profound impact on
brain research and the clinical management of a variety of brain
disorders4.

Of the many noninvasive modalities available, they typically
factor into either electrophysiological, i.e. direct, or metabolic, i.e.
indirect, in nature. Modalities such as functional MRI (fMRI) and
functional near infrared spectroscopy fall into the metabolic
category and measure the neural brain activity indirectly through
the hemodynamic response (blood oxygenation and volume
flow), and, consequently, have inherently low temporal resolu-
tion. On the other hand, the two major noninvasive electrical
recording techniques, electroencephalography (EEG) and mag-
netoencephalography (MEG), have the capability of mapping
brain activity with high temporal resolution5,6. Unfortunately, the
spatial resolution of traditional scalp EEG/MEG measurements is
limited, due to low signal-to-noise ratio (SNR), inadequate sensor
numbers, and, most importantly, the smearing effect caused by
volume conduction. Over the years, various engineering
approaches have been designed to improve the spatial resolution

of these modalities, with the most promising advancements
coming from a set of approaches called the electrophysiological
source imaging (ESI) techniques1,7–10.

In general, ESI involves modeling brain electrical activity as a
series of equivalent current source distributions9. Typically, these
approaches model the system as a series of linear problems, where
reconstruction relies on varying the magnitude of a distribution
of current dipoles located within pre-allocated grids that span the
cortex11. While source imaging algorithms have been successfully
developed and applied to localize the underlying brain activity,
these conventional approaches suffer from a common short-
coming: they are incapable of objectively determining the source’s
extent on their own12–16. This is a serious shortcoming, as the
ability to distinguish between the relevant brain activity and
background activity (defined here as unrelated brain activity) is a
necessary requirement for studying both normal and pathological
brain functions. Different brain regions are functionally specia-
lized to perform particular functions2, thus, determining the
spatial extent of these regions is indispensable, and highly
desirable when imaging brain networks.

Although recent attempts have been made to address this issue,
by estimating extended sources17–23, these methods still require
the application of post-hoc thresholds in order to distinguish
between the true underlying brain activity and irrelevant back-
ground activity. These thresholds may lead to biases which might
work within datasets with known ground-truth, but can produce
highly variable results in novel circumstances or exploratory
analyses. Some of these recently proposed methods generate
relatively extended sources which better distinguish background
activity from desired brain activity (compared to conventional
approaches)19, which in return, enables them to use more
objective thresholding schemes such as Otsu’s thresholding
technique24 to discard background activity. However, the
dependence of these algorithms on post-hoc addendums suggests
that the modeling framework needs improvement.

Our approach, which we have termed the fast spatiotemporal
iteratively reweighted edge sparsity (FAST-IRES) technique, can
fill this gap by objectively estimating extended sources and their
time-course of activity as they vary over time (Fig. 1). FAST-IRES
requires little to no input from the clinician or researcher, when
determining the spatial extent of underlying sources, completely
avoiding the issue of potentially biased subjective thresholds. Our
method estimates focally extended sources by starting with a
relaxed estimation and iteratively refining the estimate by pena-
lizing source locations with smaller amplitude compared to
source locations with higher amplitude. In order to do so, we
formulate our algorithm as a series of convex optimization pro-
blems that can be solved easily and efficiently. Additionally, by
computing internodal connectivity among the estimated nodes of
activity, we can determine major functional nodes, leading to a
more interpretable picture of the underlying dynamics of brain
networks. Although numerous problems could benefit from the
application of our proposed technique, human-epilepsy stands
apart as a uniquely challenging option that provides a rigorous
testbed due to the availability of ground truth measurements.
Additionally, and equally importantly, is the fact that clinicians
could benefit from an objective form of noninvasive source
estimation.

Epilepsy poses an important challenge due to its wide spread,
affecting about 0.8–1% of the world population25,26. Uncontrolled
seizures, other than their obvious debilitating consequences, are
life-threatening and increase the risks of sudden death in epilepsy
patients27. Additionally, studies have shown that the longer a
patient suffers from untreated seizures, the less likely it is for
subsequent treatments to be successful28. While typical pharma-
cological treatments work in the majority of patients, roughly,
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one-third of epilepsy patients suffer from drug-resistant
epilepsy29,30, leaving surgery as a viable option for treatment31.
Current imaging modalities cannot successfully determine the
epileptogenic zone (EZ), which is defined as the minimum
amount of brain tissue that needs to be removed in order to stop
seizures, due to lack of spatial specificity25,32,33.

For the reasons mentioned above, our approach is uniquely
situated for aiding those with epilepsy. To both validate our
approach, and to provide much needed insight into the network
dynamics involved in epilepsy, we performed a comprehensive
study of focal epilepsy patients using high-density EEG record-
ings. In this study, we rigorously and quantitatively validated our
noninvasive source imaging results by comparing them with
invasive intracranial electrophysiological recordings and surgical
resection outcomes in the same patients.

By analyzing epilepsy networks with our proposed FAST-IRES
framework, we demonstrate that the EZ can be determined
objectively and noninvasively, with high precision, from scalp
high-density EEG recordings. We also compare the performance
of ESI when applied to both ictal recordings and interictal spikes
to determine which feature might be clinically more relevant in
determining the EZ. Note that, while developed and validated in
an epilepsy framework, our proposed approach is by no means
limited to epilepsy source imaging and is an efficient and general

source imaging approach from electromagnetic recordings,
including EEG and MEG.

Results
Monte carlo simulation of extended sources. The basic idea
behind the proposed approach, is to estimate the spatiotemporal
distributions of the underlying sources simultaneously, rather
than estimating their underlying spatial distribution at every
time-point. This allows for the development of more efficient and
accurate algorithms and more precise modeling of the underlying
brain processes. Underlying sources are assumed to be spatially
focal, i.e. limited to local regions of the brain not being too focal
and point-like, while not encompassing extremely large areas of
the cortex. We refer to sources with this trait as focally extended
sources. This property, most likely, is not specific to epileptic
sources34 and has been suggested in other large-scale phenomena,
where extended cortical areas have to be synchronously activated
to produce detectable signals at scalp-level measurements such as
EEG and MEG35,36. Note that fine micro-scale organizations of
the brain activity, are not perceivable in EEG/MEG or any surface
recordings35, and we are making no claims in this work to be able
to recover such sources. The idea of a focally extended source is to
model large-scale brain signals and organizations that are typi-
cally recorded in surface measurements such as EEG and MEG.

Underlying brain
network

Non-invasive
electromagnetic
measurements

Temporal priors

Scalp measurements
EEG/MEG

BSS

Ch. 1
Ch. 2
Ch. 3
Ch. 4
Ch. 5

Time basis function
extraction

Estimated brain
networks

Iteratively reweighted edge sparsity –
spatial contraint

Penalizing
less

Penalizing
more

Later iterationsEarlier iterations

Fig. 1 The concept of the proposed spatiotemporal source imaging approach. Brain networks are modeled as focally extended sources that vary over
time. The net-effect of these dynamics are recorded in EEG/MEG. Blind source separation (BSS) techniques applied to these measurements can delineate
these underlying dynamics and serve as a temporal prior in the imaging algorithm. Spatial constraints that enforce the edge sparsity, i.e. clear distinction of
activity and background noise, can be ensured by applying an iterative reweighting scheme in a data-driven manner to guarantee focally extended sources.
Combining these data-driven priors into our imaging module, we can estimate underlying brain networks; the nodes and internodal connectivity (links) of
these networks. Nodes are spatially extended regions in the brain and not focal points. Our spatiotemporal source imaging approach considers the
functional segregation, i.e. spatially coherent regions in the brain specialized for specific functions, and functional integration, i.e. inter-regional
communication and connectivity, of different brain regions.
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A key feature of our work is to capture this fundamental
property of large-scale brain organization, mathematically, and
to develop computational tools to solve these mathematical
models. Each focally extended spatial source has its own unique
time-course of activity corresponding to its change in
amplitude over time. As the activity of all sources are linearly
super-imposed to form the scalp potentials recorded by EEG,
the source activities can be delineated from scalp measurements
with blind source separation (BSS) techniques37. Additionally,
spatial constraints, such as focality and the presence of distinct
boundaries between activity and background noise, can be
achieved by enforcing sparsity via iterative approaches,
ultimately promoting focally extended sources. These spatial
constraints and temporal priors, depicted in Fig. 1, can be
implemented within a series of convex optimization problems
which are easy and efficient to solve.

In order to thoroughly investigate the performance of our
framework in reliably determining underlying sources’ extent, we
performed a Monte Carlo simulation (Fig. 2). In this simulation
random locations on the cortex were selected and an extended
source was simulated at that location, and the EEG signals
generated by these source configurations were calculated. Figure 2
presents the results of our simulation along a typical example of a
mesio-temporal source that has been localized in all SNR
conditions. The estimated time-course of activity for this source
matches the simulated time-course, nicely. A significantly high
Pearson’s correlation value of 0.88 was found for these results (for
more details refer to Supplementary Notes 1 and 2, Supplemen-
tary Tables 1–3, and Supplementary Movie 1).

Overview of clinical data analysis results. With all modern
forms of machine learning, or structured decomposition, dis-
cerning relevant feature vectors is paramount to quantitative
assessment and interpretability of results. In our case, in order to

image epileptic activity, we first need to extract the known epi-
leptic features from EEG recordings, namely, the interictal spikes
and seizures. We studied 36 patients suffering from focal epilepsy,
who underwent surgery as a treatment for their intractable sei-
zures. As shown previously38–40, high-density EEG recordings are
important for achieving accurate solutions during ESI imaging.
We developed a novel high-density (76 channels) EEG technique,
which allowed us to record continuous EEG over multiple days in
patients undergoing pre-operational monitoring, to capture both
interictal events and seizures. We analyzed this novel data to
estimate the EZ and to quantitatively compare our noninvasive
ESI results to invasive iEEG findings and surgical resection out-
comes in the same patients. Seizures were determined and
marked by experienced epileptologists while spikes were extrac-
ted, for each individual patient, by the research team. Detailed
information about the patients can be found in Supplementary
Tables 4 and 5. We analyzed both seizures and interictal spikes,
contrasting the quality and the concordance of the estimated
solutions with clinical findings, for each feature (Fig. 3). Com-
ponent analysis was used to reject noise as well as determine the
time basis function (TBF) for the underlying sources (refer to
Supplementary Methods for detail). The criteria for selecting TBF
components was different for spikes and seizures, as explained
later in the Methods section (Fig. 3, top panel). Once the tem-
poral priors, i.e. TBF, were calculated, the source imaging process
was performed for spikes and seizures (Fig. 3, middle panel) and
the estimates from each feature were compared to surgically
resected volume and/or intracranial electrodes denoted as seizure
onset zone (SOZ) by epileptologists (Fig. 3, bottom panel).
Detailed information about the implementation and mathema-
tical derivation of our method is presented in the Supplementary
Note 1 and Supplementary Methods, specifically in Supplemen-
tary Tables 1–3, Supplementary Figs. 1–3, and Supplementary
Movie 1.
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Fig. 2 Monte Carlo simulation results of extent estimation. The results of estimated extent from our FAST-IRES algorithm is plotted against the simulated
sources’ extent for four different SNR conditions. An example of a mesio-temporal source is also presented for all the SNR conditions, along its estimated
time-course of activity. The red line in the four plots is the identity line and is provided for reference. Source data are provided as a Source Data file.
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Spike imaging. Spikes are generally believed to arise from the
irritative zone, which is not the same as the SOZ41. While the
irritative zone and SOZ are straightforward to define and easy to
assess, the EZ has proven elusive. Clinically, the EZ is defined as
the minimum amount of tissue which, if resected, results in
seizure-freedom. This definition is abstract and difficult to assess.
The closest measurable feature to the EZ is most likely the

surgical resection volume in patients who become seizure-free
after surgery. The surgical resection volume can be thought of as
the pseudo-EZ, or the true EZ, for the purposes of comparison in
this paper. While prior literature demonstrates unequivocally the
concordance of spike-imaging results and clinically determined
EZs42–44, the relationship between spike-imaging findings and
imaging results from ictal recordings, remains uncertain. We have
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Fig. 3 Overall study design. In this figure the analysis pipeline is depicted. (Top) The main two arms of the study show how interictal spikes and seizures
are extracted from EEG recordings, denoised, their time basis function determined, and input into the FAST-IRES solver. (Middle) The proposed FAST-IRES
source imaging approach takes the spatial extent and focality of brain sources into account. The output of the algorithm is a spatiotemporal distribution of
underlying brain sources, from which the epileptogenic zone (EZ) is extracted and compared to clinical findings, such as resection volume and seizure
onset zone determined from intracranial EEG. (Bottom) Finally, the performance of epilepsy features, i.e. estimating the EZ by imaging interictal activity and
ictal activity with FAST-IRES, is evaluated by comparing the estimated EZ to clinical findings.
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investigated this relation in the present study in order to deter-
mine which, if either, of these features can provide more relevant
information about the EZ.

Spike waveforms were selected as the 2-s symmetric windows
surrounding the spike peaks in each patients’ EEG recordings
prior to surgery. These waveforms were then averaged, and

source imaged (Fig. 4a). More details on component analysis and
selection are presented in the Methods section.

After the averaged spikes and their corresponding TBFs are
input to the FAST-IRES solver, the output is the distribution of
the brain electrical activity that varies over the 2-s interval. The
results are averaged across a 40 ms window around the spike-
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Fig. 4 Spike imaging overview and results. a The output of FAST-IRES is a spatiotemporal distribution where spatial distributions correspond to a time-
course of activity. To determine the epileptogenic tissue, the source signals’ energy is calculated around the spike peak-time and compared to clinical
findings for validation. b Examples of spike-imaging results along the clinical findings in the same patients. c Quantitative results of spike-imaging results
for all patients (top) and separated based on surgical outcome (bottom). Note that while the color scheme distinguishes precision vs. recall in these
patients, for localization error it is used to denote seizure-free from non-seizure-free patient groups (bottom). Each gray circle corresponds to individual
patient’s data. The horizontal black bar indicates the mean, the color bars indicate the 95% confidence interval for the mean and the dark vertical bars
indicate the standard deviation. To compute precision (n= 29, 0.58 ± 0.38) and recall (n= 29, 0.58 ± 0.32), 29 data points were available in total (n= 29).
The same analysis for seizure-free patients yielded higher precision (n= 20, 0.65 ± 0.39) and recall (n= 20, 0.61 ± 0.32) compared to the precision (n= 9,
0.41 ± 0.31) and recall (n= 9, 0.49 ± 0.32) in the non-seizure-free group. The localization error (n= 16, 18.1 ± 14.08 in mm) was calculated from the data of
16 patients (n= 16). The localization error (n= 9, 13.9 ± 11.96 in mm) in seizure-free patients was smaller than the same value (n= 7, 23.5 ± 15.7 in mm) in
non-seizure-free patients. Reported values are (mean ± standard deviation). Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15781-0

6 NATURE COMMUNICATIONS |         (2020) 11:1946 | https://doi.org/10.1038/s41467-020-15781-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


peak time to obtain a single source distribution, which is
compared to the clinical findings in each patient (Fig. 4a). A few
examples of spike-imaging results are presented in Fig. 4b,
overlapped with the corresponding clinical findings for each
case. On average a precision and recall of 0.6 is observed for
spike-imaging results (Fig. 4c). This roughly translates to spike-
imaging estimates of the EZ having a 60% overlap with the
resected tissue. This indicates that the EZ can be estimated with
spike-imaging results, specifically when considering that
surgical resections are typically large enough to ensure that
all of the epileptogenic tissue is removed (hence they over-
estimate the true EZ). The localization error, which indicates
the distance of the estimated EZ to SOZ electrodes, is on
average about 18 mm for spike-imaging results (compared to 6
mm in seizure imaging, Fig. 5c). This falls in line with the fact
that spikes and seizures do not originate from the exact same
regions in the brain, hence conveying different information
about the underlying epilepsy circuits.

No statistically significant differences were observed between
the seizure-free and non-seizure-free groups (Fig. 4c). The
implications of this observation are discussed later in the “Ictal
imaging vs. spike imaging” section. Supplementary Movie 2
presents the estimated spike source on the cortex throughout a
0.5 s window around the spike peak time in one patient. An
advantage of this computational approach is that spike generation
and propagation can be visualized clearly, and a wealth of
information can be extracted by observing the video.

Ictal imaging. While interictal spikes have been analyzed over the
years, seizures (ictal recordings) are typically left unanalyzed. This
is partially because ictal recordings are very noisy and often
include a large number of undesirable artifacts, such as eye
movement, blinking, muscle and movement artifacts. Further-
more, most source imaging algorithms were developed to
localize and image sources corresponding to a spatial map or
spatiotemporal distributions of a relatively short segment. As a
result, imaging raw ictal recordings is extremely difficult. Visually
inspecting raw EEG recordings does not provide accurate infor-
mation about the origin and extent of the underlying seizure-
generating tissue. Such impediments in the quantitative study of
ictal recordings is a major motivation for developing ictal-
imaging techniques. Such quantitative approaches can provide a
wealth of clinically relevant information about the origin and
extent of seizure generating networks.

As before, defining the relevant features within ictal activity is
foundational for its successful analysis. Historically, strong
rhythmic signals have been attributed as the main characteristic
of ictal activity with pronounced changes in frequency content
coinciding with seizure onset. Additionally, it has been shown
that the lobe from which the seizures arise is correlated with the
frequency of ictal oscillations45. In light of these findings, many
methods have been proposed which attempt to classify seizures by
their origin in the brain, i.e. mesial vs. neo-cortical temporal
seizures. Unfortunately, these gross attempts at classification are
far too broad to accurately localize ictal activity for each
individual patient. In an attempt to add nuance to their estimates,
some studies have further attempted to localize the dominant
seizure frequency of the ictal signal at and around the seizure
onset46–49. The main shortcoming of these methods is that in
order to remove noisy artifacts and improve the SNR, the signal
becomes much too smooth (by averaging for instance).
Additionally, some of the earlier studies used dipole fitting to
localize SOZ, ignoring all information regarding the spatial extent
of the sources, given that seizures propagate fast and are not
generated at extremely focal sources.

Recently two works from Ding et al.50 and Yang et al.40,
proposed a component-based analysis to remove artifacts and
improve SNR in ictal signals. Yang et al.40 proposed that by
performing independent component analysis (ICA), major
artifacts can be rejected and components showing a similar trend
of spectral and temporal evolution to the raw ictal EEG
recordings can be extracted and analyzed as seizure-relevant
signals. They showed significantly improved results and also
demonstrated that their proposed method has considerable
advantage compared to methods proposed previously40. The
TBF estimation and ICA denoising procedure, employed in this
work are based on the positive results obtained in these
prior works.

Using our proposed algorithm, we imaged the first few seconds
(3–5 s) of seizures and estimated the distribution of electrical
activity in the brain over this time interval, subsequently band-
pass filtering our solutions at the dominant ictal rhythm. To find
the dominant ictal rhythm in each patient, we compared the first
5 s spectrogram of the ictal signal after seizure onset to the
spectrogram of the 5 s interval prior to ictal onset, and selected
the frequency band where the two spectra were most different
(Fig. 5a).

Examples of applying this method to ictal recordings to
estimate the EZ are presented alongside the clinical findings in
these patients (Fig. 5b). The precision and recall for our estimated
EZs are both high, about 0.75, demonstrating that our inferred
sources neither underestimate nor overestimate the true under-
lying EZ (Fig. 5c). This is due to the fact that precision and recall
are normalized metrics describing the overlap of source and
ground truth, i.e. surgically resected volume, in relation to
estimated source size or ground truth. As a result, if a source
underestimates the extent of the surgical volume but falls
perfectly within it, only one of these values will be high.
Conversely, if the estimate overestimates the surgical volume size
and completely contains the volume, still only one of these values
will be high. Only, when the estimated source and surgical
volume are roughly the same size and overlap nicely, will both of
these values be high. Additionally, the localization error, in
patients who underwent iEEG recordings, is around 5 mm, which
is already near the iEEG electrode resolution limit (defined as half
of the smallest distance between iEEG electrodes, which is
typically 10 mm in our study). When the results are plotted for
both the seizure-free and non-seizure-free groups of patients
(international league against epilepsy (ILAE) 1 and 2 vs. ILAE
3–6), no statistically significant difference is observed (Fig. 5c).

In 87% of patients who underwent invasive iEEG recordings,
deep electrodes were implanted to determine if deeper structures
were involved in epileptogenesis or not, which resulted in deep
structures such as the hippocampus being resected (refer to
Supplementary Table 4 for more details). Nevertheless, the small
localization errors indicate that using our proposed method, even
deep sources can be delineated noninvasively. This finding is
supported from other studies as well5,6.

Two videos, showing the estimated epileptic activity of two
patients, are presented as examples in Supplementary Movies 3
and 4, demonstrating seizure dynamics and propagation. As
observed in Supplementary Movie 3, a virtual cut can provide a
view of deeper brain structures (such as the mesio-temporal view
presented in this video). Additionally, we calculated the
correlation of estimated time-courses of activity, within the
lateral portion of the anterior temporal lobe and the deep
structures near the hippocampus and para-hippocampal cortex,
and compared them to intracranial traces recorded in this patient.
Our results show a correlational value of 0.61 between estimated
time-courses and iEEG recordings in these two regions
(Supplementary Movie 3 depicts these results as well). Videos
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like these can help physicians to better interpret and analyze
seizure dynamics and propagation as well as pertinent informa-
tion about its onset. This virtual inspection of deeper brain
structures is one of the major benefits of our noninvasive ESI
approach that is beneficial for studying epileptic networks. It can
also be employed to study brain networks in general.

Connectivity imaging. FAST-IRES provides a spatiotemporal
estimate of underlying brain sources. This implies that in
addition to the location and spatial extent of underlying brain
activities, the time-course of such activities can be estimated, as
well. Subsequent network or connectivity analyses can be per-
formed based on FAST-IRES results. We have outlined and
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performed a connectivity analysis based on our FAST-IRES
results which bears novel ideas of how to potentially implement
such analyses in tandem with the proposed framework. Refer to
Supplementary Note 3, Supplementary Figs. 4–7, and Supple-
mentary Table 6 for more details.

Ictal imaging vs. spike imaging. Significant differences were
observed between spike and ictal imaging results that deserve
further investigation. However, before discussing these issues, we
should briefly introduce two additional measures that we have
employed to quantify our results (mathematical details in
the Methods section). Both of our normalized ratios, i.e., preci-
sion and recall, should ideally be 1, so in order to make com-
parison easier and more intuitive, we use the geometric and
harmonic means of precision and recall. These means would be
small and close to zero if either of these values is close to zero,
only attaining high values when both measures (precision and
recall) are close to 1 (the ideal case).

The results of seizure imaging are statistically significantly
superior to those of spike imaging in terms of both localization
error, geometric mean and harmonic mean (Fig. 6a, b, detailed
statistical results and values are presented in the Supplementary
Table 7 and Supplementary Fig. 8, geometric mean: 0.7,
harmonic mean: 0.68). Upon further investigation we found
that this difference (between spike and seizure imaging results)
only existed in patients who were not seizure free post
operation (Fig. 6a, b). This can most likely be attributed to
the fact that some patients had multiple types of spikes, where
one type could be contralateral to the affected side (Fig. 6c),
while seizures consistently occurred on the same side as clinical
findings. In other words, when a spike type, i.e. cluster of spikes
having the same spatiotemporal characteristics, is discordant
with clinical findings, for instance when it is contralateral to the
resection site, the precision and recall decrease and localization
errors increase, resulting in worse performance metrics for
spike analysis results compared to seizure analysis results. In
our study, only 18% of seizure-free patients demonstrated
inconsistent spike types, while this value was close to 60% for
the non-seizure-free cohort. This suggests that when incon-
sistent spike types are present, merely relying on spike imaging
results can be misleading and the electrophysiological assess-
ment of seizures must be considered. A detailed discussion of
this point is reserved for the Discussion section.

We further investigated the difference observed between spike
and seizure analysis, by comparing consistent spikes to seizures in
our dataset. Consistent spikes were defined as spikes that were
ipsilateral to the resection side. Our results indicated that no
significant differences could be perceived between consistent spikes
and seizures. We also investigated the use of a boot-strapping
technique for spike averaging on the quality of results and found no
improvement. Results and statistics are presented in Supplementary
Notes 4 and 5, Supplementary Figs. 9 and 10 and Supplementary
Tables 8 and 9. Note that even when seizures propagated to the
contralateral side (which is common in seizures) both our post-hoc
frequency analysis and our connectivity analysis could still pinpoint
the correct SOZ (Fig. 6d).

Additionally, we have also looked at the difference between our
connectivity and ictal-imaging results (the driving node is
selected as the estimated EZ in the connectivity imaging) and
found no statistically significant difference among the two groups.
This indicates that while the connectivity imaging approach
provides a more analytical framework, it did not improve the ictal
imaging results significantly. The statistical tests and values are
reported in Supplementary Table 6 and have been additionally,
depicted in Supplementary Fig. 7.

Investigating extent estimation in empirical data. In order to
directly compare our results with clinical findings, we calculated the
size of our estimated epileptogenic tissue using seizure imaging
analysis and spike imaging analysis and plotted these values against
resection size. Significant correlations are observed. Please refer to
Supplementary Note 6, and Supplementary Fig. 11 for more details.

Discussion
The presented results firmly demonstrate that the location and
extent of underlying brain networks can be determined in a
precise and objective manner, noninvasively. Our proposed
approach significantly extends the library of existing imaging/
monitoring approaches, with the potential to be the main source
of information in some cases. While, our method, was motivated
by and tested in the framework of epilepsy imaging, we would like
to emphasize that it has the capability of studying other normal
and pathological brain functions, as underlying networks con-
stituting these brain states are spatiotemporal processes that vary
over relatively short time intervals1.

In addition to our spatiotemporal approach towards brain’s
spatiotemporal processes, the mathematical assumptions of our
method are based on physiological and physical principles which
are fundamental, and therefore, general. This generality of
assumptions ensures the aptness of our approach to study various
large-scale network phenomena in the brain. The main assump-
tions of our approach pertain to the temporal and spatial aspects
of brain networks. Firstly, we assumed that underlying sources’
time-courses of activity can be delineated on scalp recordings,
which was subsequently used to form our temporal priors. This is
due to the linearity of the volume conduction model as necessi-
tated by Maxwell’s equations. Secondly, we assumed brain sources
to be focally extended sources, which enabled us to impose spatial
constraints on solutions. This assumption is backed up by phy-
siological recordings and studies, suggesting that, a considerable
amount of cortical tissue is activated during different brain
functions and states; it is such large-scale phenomena that EEG/
MEG sensors record during epilepsy-related brain activity
(micro-scaled brain organization are not considered)35,36. Our
proposed framework, which is constituted on these fundamental
properties is therefore applicable to study other normal and
pathological large-scale brain networks that are, inherently, dis-
tributed spatiotemporal processes.

It is apt to be reminded that our proposed approach like any
model, is based on a theoretical framework and some model
assumptions. For instance, we chose an L1 optimization frame-
work to formulate the inverse problem while another method
might formulate the problem within a Bayesian framework of
analysis. These choices are inevitable and are not the kind of
subjectivity that must be avoided, as they are the product of a
model-driven effort. However, based on the choices and
assumptions different models make, subsequent steps of the
analyses they must perform and the characteristics of the results
they obtain, will differ. FAST-IRES has three significant advan-
tages compared to existing approaches. Firstly, it can, in itself and
through the process of iterative re-weighting, distinguish signal
and background without the need of any post-hoc analysis. Sec-
ondly, its hyper-parameters are easy to tune and track. For
instance, the hyper-parameter α which balances between sparsity
and edge-sparsity of the solution can be tuned by the L-curve
approach. This easy and intuitive method of tuning a hyper-
parameter in itself is a major advantage of our proposed method
compared to some more mathematically based assumptions, such
as independence of variables in some Bayesian methods or hyper-
parameters decided by trial and error or expert opinion. Thirdly,
our approach does not pre-parcellate the brain19, in a data-driven
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or pre-determined manner, to estimate spatial extent (refer to
Methods for more technical details).

Our results were rigorously validated by imaging epilepsy
networks and were highly concordant with invasive clinical
findings in these patients. Successful application of this technique
may significantly impact clinical practice, as a wealth of infor-
mation about underlying networks can be provided to physicians.
For instance, providing a video of where seizure onset is located
and how it propagates to other brain regions is highly helpful in
determining the EZ, planning for surgery, or forming a hypoth-
esis for iEEG electrode placement51, or even placing responsive
neuro-stimulation (RNS) stimulators. Furthermore, since the
video-EEG monitoring of patients who are candidates of surgery

(to surgically remove the drug-resistant epileptogenic tissue), is a
common pre-surgical medical routine52, the high-density EEG
approach we have introduced for ictal ESI imaging can be used to
provide noninvasive, accurate, and reliable information about the
epilepsy networks, without disrupting the clinical workflow.
Actually, such high-density EEG pre-operational monitoring has
recently been implemented in Mayo Clinic, Rochester, and is
provided as an option to each patient for their routine epilepsy
management and monitoring.

Our technique should not be seen in the light of competition but
rather collaboration with existing imaging techniques to improve
the management of epilepsy and maximize treatment benefits for
epilepsy patients. It is not uncommon for epilepsy patients to
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undergo invasive iEEG studies before or during the main surgery to
determine where the seizures are arising from, as iEEG studies are
considered the gold standard in determining the SOZ53. However,
before undergoing such procedures it must first be determined if
such studies are beneficial or not; additionally, a clear hypothesis as
to the location and extent of the regions involved in seizure gen-
eration and propagation is required51. Currently, information from
patient and family history, semiology, structural images like MRI,
and EEG studies are considered to form this hypothesis, directing
the placement of electrodes and surgical decisions. Our approach
can offer a wealth of assistance in determining the SOZ and EZ
noninvasively by providing reliable information about possible
brain regions involved in epilepsy generation and propagation as
well as the spatial extent of these sources. This information can be
used to guide the placement of intracranial and stereo-EEG (sEEG)
electrodes or even devices that use electrical stimulation to stop
seizures, such as the RNS device.

Invasive measures come with increased risks of infection,
complications and costs54,55 and with the advent of more mini-
mally invasive approaches to treat epilepsy, such as laser inter-
stitial thermal ablation (LITT) therapy56 and the RNS therapy,
there is an unmet need to advance noninvasive imaging tools.
These noninvasive approaches, e.g. FAST-IRES, can provide
enough information to move epilepsy treatments away from
invasive approaches towards less invasive and even potentially
noninvasive monitoring.

An important observation in our results was that seizure
imaging provided more accurate estimates of the EZ, compared to
spike imaging. The reason for this difference in performance was
that spikes were more likely to be inconsistent; meaning that
patients could have multiple types of spikes, where some types
might not be consistent with clinical findings (for example, two
different spikes could be on opposite sides). This phenomenon of
inconsistent spikes was more prevalent in patients who did not
become seizure-free post-surgery (who were scored as ILAE 3–6,
refer to Methods for definition) compared to seizure-free patients
(ILAE 1 and 2 individuals). For instance, in our dataset, 5 patients
out of the 22 seizure-free patients had multiple spike types of
which 4 were spatially inconsistent spikes (spikes not arising from
the same side or lobe, or apart more than 2 cm) while 9 out of the
12 non-seizure-free patients had multiple spike types, of which 7
were spatially inconsistent. In other words, only 20% (4 in 22) of
seizure-free patients had multiple inconsistent spike types com-
pared to about 60% (7 in 12) for non-seizure-free patients (in our
dataset). This is possibly why we observed a markedly significant
difference between ILAE3–6 patients’ spike and seizure analysis
while no such difference was observed among ILAE 1 and 2
patients in the two groups. Additionally, our post-hoc analysis of
consistent spikes (spikes that were ipsilateral to the resection side)
also supports this hypothesis, as consistent spikes bore no sta-
tistically significant difference with ictal imaging results (refer to
Supplementary Note 4, Supplementary Fig. 8, and Supplementary
Table 9). Thus, it is fair to conclude, that inconsistent spikes are
ground for further investigation, and as a result seizure imaging
must be performed in these patients to unequivocally determine
the affected side and the EZ. This has been observed in the
clinical literature; if patients have bitemporal activation, in tem-
poral lobe epilepsy cases for instance, it is more likely to expect
unfavorable results and chances of seizure-freedom are reduced
significantly57. However, our data suggest that if the patient has
consistent spikes, spike imaging might provide accurate infor-
mation about the EZ on its own, without foreseeable benefits
from seizure imaging. This indicates that spike imaging is a useful
technique for imaging epileptogenic tissue but in cases of multiple
inconsistent spike types, other relevant clinical information such
as seizures, need to be considered and analyzed carefully.

No statistically significant difference was observed between the
seizure-free patients and non-seizure-free patients (in seizure imaging
analysis) in terms of performance (in estimating the EZ), even
though a reduced performance was observed for ILAE 3–6 patients
compared to ILAE 1 and 2 patients (although, the geometric mean of
the two groups was different in spike imaging with a p-value of 0.08,
this, we believe, is due to the spatially inconsistent spike types). The
majority of our non-seizure-free patients are ILAE 3 and 4 patients
who saw marked seizure reduction after surgery, but due to non-
significant differences (compared to seizure-free patients), it is
impossible to comment on the efficiency of resected volume in these
patients (whether resection size was large enough in non-seizure-free
patients or not). In this aspect, our algorithm has not been able to
provide additional insight to physicians, as the physicians were
confident enough about the EZ in these patients to suggest and
perform surgery.

Furthermore, analysis of variance (ANOVA) for our results and
different sub-populations of our patients, e.g. temporal-lobe cases
vs. extra-temporal-lobe cases, revealed no significant differences
between any sub-group of patients (detailed analyses are presented
in Supplementary Note 7 and Supplementary Tables 10 and 11).

Determining the success of surgery or what risk factors will
impact the outcome is an ongoing topic of research, without any
final verdict on a biomarker that can distinguish perfectly
between successful and unsuccessful cases25,31,33,58,59. It is pos-
sible that multiple factors will have to be considered in addition to
electrophysiological signals. Research into high-frequency
oscillations60,61, connectivity62, and other possible candidates
will have to be considered (or even combined) to obtain better
results. While we used a Granger causality analysis to determine
the driving node, we have not looked at other possibilities, such as
phase-locking values and indices63; these measures might provide
additional information that could help estimate the EZ, as well as
distinguishing between responders and non-responders (to
treatment).

To conclude, our work demonstrates the merits and benefits of
noninvasive source imaging approaches and the extent which
they can be used to image brain networks. In other words, our
approach can localize network nodes, determine the spatial extent
of these nodes, estimate the temporal variation of nodal activities,
and compute the internodal connectivity and dynamics, only
from noninvasive EEG recordings. We also demonstrated that
epilepsy networks can be successfully imaged to determine the EZ
in individual patients with results that are in concordance with
invasive clinical findings. Specifically, ictal imaging was observed
to be superior to spike imaging, when patients have multiple
spatially inconsistent spike types in their EEG recordings.

Methods
Ethics statement. Our clinical studies, recordings and data analysis were approved
by and performed in accordance with the regulations of the Institutional Review
Boards (IRB) of Carnegie Mellon University, Mayo Clinic, Rochester, and the
University of Minnesota. Patients gave their informed consent to participate in
this study.

Patient information. A total of 36 patients were included in this study. These
patients all underwent surgery. In 34 of these patients, seizures were recorded pre-
operatively in high-density EEG (76 electrodes) and 35 patients had interictal
spikes in their EEG recordings. These patients were scored based on the ILAE
system by the physicians and were monitored for an average of 18 months (follow-
up duration). All patients had at least 1 year of follow-up (refer to Supplementary
Table 4 for individual’s clinical information). Twenty-one patients were scored as
ILAE 1 (completely seizure-free), 3 were scored as ILAE 2 (no seizures, only auras)
during a 19-month follow-up period, and 12 were scored ILAE 3–6 (non-seizure-
free; detailed explanation in Supplementary Table 4) during a 15-month follow-up
period. The surgical resection boundaries and volume was available in 30 of these
patients, for which precision and recall was calculated. This information was
extracted from the post-operative MRI in all relevant patients; except for two
anterior temporal lobe resections where post-operative MRI was not available. In
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these cases, reports clearly provided the dimensions and location of the resection,
so the resection boundary could be reconstructed. In six other patients, only
intracranial electrode locations were available from CT images. These subjects were
not excluded, as the SOZ was determined based on the iEEG studies in these
patients. In total, 16 patients underwent iEEG study and localization error was
calculated in these patients. Detailed information about the clinical information of
patients included in our study, is summarized in Supplementary Tables 4 and 5.

Algorithm outline. The basic mathematical principles of the FAST-IRES algorithm is
based on our work reported previously64. That version of the algorithm assumed
static sources and was not suitable for studying dynamic brain processes and net-
works. In our new approach we have modified and enhanced the algorithm to be
suitable for imaging sources changing over time (spatiotemporal processes). We
proposed an efficient algorithm to solve the optimization problem formulated by our
ESI approach. The basic idea of this algorithm is that sources recorded with EEG/
MEG are not extremely focal but focally extended, as EEG/MEG signals are the
superimposed post-synaptic potentials of many synchronous neuron ensembles.
Additionally, the time courses of activity of these sources are detectable on the scalp as
the sources are superimposed on each other over time. Based on these premises we
assumed that if the TBF of the underlying brain activities are delineated from the
scalp recordings through component analysis, each row of the estimated TBF cor-
responds to a spatially extended focal source (mathematical details are presented in
the Supplementary Methods). The type of optimization problem that needs to be
solved based on these assumptions is of the following form:

jL ¼ argmin
j

PNc

i¼1
k WL�1

d;i ðVjiÞ k1 þα
PNc

i¼1
k WL�1

i ji k1

subject to Trace ϕðtÞ � KjAð ÞTΣ�1 ϕðtÞ � KjAð Þ
n o

≤ β2
ð1Þ

where ϕ(t) is the scalp potential (or magnetic field) measurements over the interval of
interest (an E × T matrix where E is the number of measurements and T is the
number of time points in a given interval), K is the lead field matrix (an E ×N matrix
where N is the number of sources), j is the unknown current density of the brain
regions (an N ×Nc matrix, where Nc is the number of TBFs), A is the time course
activation matrix (an Nc × T matrix) or the TBF which is given by, A= [a1 (t), a2 (t),
…], β2 is essentially the noise power, to be determined by the discrepancy theorem, Σ
is the covariance matrix of the noise to be determined from the baseline activity,Wd,i

L

−1 andWi
L−1 are the weights pertaining to each ji and are updated with the same rule

determined in IRES iterations64, V is the discrete gradient operator, α is the hyper-
parameter balancing between the two terms in the regularization term which will be
tuned using the L-curve approach, and L is counting the iteration steps (we imple-
ment an iterative approach to determine the extent of underlying sources objectively
without applying subjective thresholds).

We proposed an efficient algorithm (coded in MATLAB) that can solve
optimization problems proposed in Eq. (1) using basic convex optimization tools in
an efficient and optimal manner (refer to Supplementary Note 1 and
Supplementary Methods for mathematical and implementation details).

FAST-IRES principles, limitations, and parameters. The key principles of FAST-
IRES can be summarized into four main ideas. Firstly, minimizing source edges with
an L1-norm regularization term. The L1-norm of the spatial gradient, which is the
difference between the amplitude of two neighboring sources, i.e. the edges, is
minimized. This allows the solution to make sudden changes or jumps at limited
locations or edges. This is due to the nature of L1-norm where sudden changes of
amplitude are allowed at limited number of vector elements as opposed to L2-norm
which enforces smooth changes. The L1-norm basically allows a piecewise homo-
geneous solution, as changes in amplitude in the activated region are discouraged (to
minimize edges). Secondly, minimizing the solution’s L1-norm also enforces sources
to have zero background, discouraging constant backgrounds (a constant background
has a zero gradient and is not perceived by the edge sparsity term so it cannot be
excluded by the edge-sparsity enforcing term, alone). Thirdly, a parameter (i.e., α)
needs to be defined to balance the two terms of the regularization terms. An L-curve
approach can objectively achieve this goal. Fourthly, a series of iterative re-weightings
are performed, in which, the two terms of the regularization function are weighted.
These weights are updated at each iteration based on the obtained solution. These
weights systematically and without the intervention of an operator, slim down the
solution to an extended source that fits the measurements.

The reason why these iterations will not result in an overly focused solution, is
because of the edge minimization term. This term prefers extended sources and
potentially prefers a constant value so that there are no variations in the solution,
but it has to allow changes as the measurements have to be fitted as well. In this
manner a balance is reached, and the continuation of iterations will not result in
overly focused solutions. The weights also ensure that the solution and its edges are
sparse and use solution amplitude (and edge amplitude) to guide the algorithm to
converge to an extended solution, more easily.

The number of iterations in our algorithm (for this iterative re-weighting
scheme), and most algorithms we are aware of, are difficult to pre-determine, but,
the process can continue until solutions converge; that is, the relative change of the
solution, normalized by the solution at the previous iteration, does not exceed a

pre-set value such as 0.0001 (default value used in our codes). Our experience with
simulation and data suggests that within a few iterations, the solution converges
and stops changing any further, and continuing the iterations will not shrink the
solution, hence, making it overly focal; consequently, even if a different tolerance
was chosen, e.g. 10−6, the solution would not change much (refer to
Supplementary Fig. 12). Thus, we do not believe, that iteration numbers after the
solution converges, affect the extent of the sources much, if any at all.

The weights are initiated, for solution and gradient, as identity matrices, as no a
priori knowledge of sources is available. The weights’ initialization does not affect
the solutions. The choice of weights being reciprocal to the inverse of source
amplitude, is not based on heuristics, and is a direct result of approximating the
“L0-norm” with a logarithm function (explained and detailed in refs. 64,65).

To assess the effect of L-curve on FAST-IRES estimates, it must be
acknowledged that the parameter α affects source estimates as it provides a balance
between the two terms of the regularization. However, this parameter can be tuned
using an L-curve approach. The L-curve approach is based on a Pareto optimality
idea that both terms of the regularization should be as small as possible, basically
selecting the α value corresponding to the knee of the L-curve. This approach in
itself is not subjective. However, it is possible that due to noise or other
unpredictable factors, the curve changes a little. This is a possibility that cannot be
ruled out. We have provided an example in Supplementary Fig. 13 showing that
even changing the α by a factor of 10 near the bend of the L-curve does not affect
the solution much, indicating that the algorithm is robust against variability in
choosing α, as iterations can gradually compensate for such variabilities. The
presented framework provides an objective measure to select α, and this, in itself, is
not problematic. As long as these choices are warranted within the model’s
framework and are theory-driven, and do not affect the subsequent tuning of other
parameters in the model, they are not subjective. We believe that our proposed
algorithm is robust to moderate variations of α and employing the L-curve method
can systematically reduce the ranges of α that needs to be considered; hence it does
not appear to seriously affect source estimates.

It is obvious, that this approach, like any other, is susceptible to vary with noise
(as our simulations also indicate that source extent estimation does not exactly fall
on a line, albeit with very high Pearson’s correlation values). Changing the solution
size and shape a little bit will not affect the regularization terms and may still fit the
measurements well enough, so the solution is not unique within a given noise level.
Thus, depending on the measurement’s noise level, we can have errors in
estimating the source extent, hence the variability observed in our simulation
results and general decline in the algorithm’s performance with increasing noise.
These are the basic ideas and key parameters of the proposed approach and some
of the potential limitations of FAST-IRES. Our algorithm provides a relatively
simple, yet effective framework to estimate underlying sources’ extent.

General data recording and processing routines. The patients underwent 76-
channel EEG recording in the evaluation phase prior to surgery. The 76 electrodes
were glued individually based on a 10–10 montage with the reference electrode at
CPz (a common average reference was used for analysis and source imaging later in
our analyses). The EEG recordings were sampled at a 500 Hz sampling rate, using
the Xltek EEG amplifier (Natus Medical Incorporated, CA, USA), and were filtered
with a high-pass filter above 1 Hz to remove spurious slow activity and possible DC
shifts from the data. For ictal signals a low-pass filter with high-frequency cutoffs at
20–30 Hz was applied (as ictal signals contain a lot of muscle artifacts and are
noisy) while a low-pass filter at 50 Hz was applied to interictal spikes.

For each patient an individualistic head model was built using subject’s
individual MRIs to form the lead-field matrix, denoted by K (which is later used in
solving the inverse source imaging problem). A three-layer boundary element
method (BEM) model was employed13,66 to solve the forward problem and obtain
the lead-field matrix1. This BEM model consisted of three layers representing the
brain, skull, and skin with corresponding electrical conductivities of 0.33, 0.0165,
and 0.33 s/m, respectively67. The cortical current density (CCD)68 model is used to
develop the FAST-IRES approach.

ICA and component selection. In order to denoise the data and extract the TBF,
we applied ICA to our EEG signals. The manner, in which ICA was applied to
interictal spikes and ictal signals was different.

The ictal recordings were initially filtered between 1 and 30 Hz to remove high-
frequency noise, as well as enormous muscle artifacts which spectrally span broad
frequency bands. Ictal dominant frequencies are mainly in the lower frequency
range, rarely exceeding 15 Hz. After initial filtering, channels that showed huge
movement artifacts (or other high amplitude artifacts) were interpolated with the
recordings of the four closest neighboring channels and in rare cases noisy
channels were removed (2 patients and up to 4–6 electrodes).

An interval of 10 s prior to seizure onset (where seizure onset time was marked by
trained epileptologists), up until seizure termination time, was selected for component
analysis in each seizure (in two patients where seizures lasted for more than 2–3min
only the first 2 min were selected). Typically, intervals of 30–90 s were selected for
subsequent ICA analysis (which is the typical seizure length in our cohort of patients).

After the intervals were selected for each seizure in every patient, they were fed
into the ICA module available in EEGLAB69. An independent component
decomposition of ictal data using the logistic infomax ICA algorithm was
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performed, using the EEGLAB toolbox (version 14.1.1b)70. ICA decomposes the
ictal data recoded in EEG into spatially fixed and temporally independent sources.

After components were formed, artifact components such as eye movement or
eye blinks which have distinct spatial (high activity in the anterior electrodes) and
temporal features (sharp high amplitude spikes at blinking or eye rolling
moments), were visually identified and rejected. Movement artifacts demonstrate
abnormally invariant wide-frequency activity and occasionally abnormally spatially
focused topographical potential scalp maps. These well-known artifacts were
rejected to form clean and denoised EEG recordings.

Furthermore, in order to identify the seizure-relevant components, independent
components (ICs) that demonstrated high correlation with the temporal evolution
of the seizures, i.e. silent or less activity before seizure onset and high activity after
seizure onset time, were selected. It is the time courses of these components that
were used as the TBF, which is subsequently fed into the FAST-IRES algorithm.

For interictal spikes, we concatenated spikes that were selected in an individual
patient and performed the ICA analysis on this concatenated signal. An interval of
2 s around the spike peak was selected for each spike. In patients, where multiple
spike types existed, we performed the process independently for each spike type.
The general process followed for analyzing spikes was similar to that of seizures
with two major differences; firstly, we filtered interictal data between 1 and 50 Hz,
and secondly, after obvious artifact components were rejected, the time-course of
activities were averaged (basically every two-second interval corresponding to a
single spike, was selected and averaged). We then inspected these averaged IC time
courses and included them as spike-related components if and only if they showed
a marked increase of amplitude at the peak-time (compared to baseline). Basically,
as an averaged interictal spike will show marked increase of amplitude around its
peak-time (compared to its baseline), it is reasonable to expect and enforce the
same criteria for the IC time-courses that are to be selected as spike-related TBFs. It
is these averaged time-courses along the averaged spike, that are then input into the
FAST-IRES for the source imaging problem to be solved. The number of ICs used
for spike and seizure analyses are presented in Supplementary Table 12.

A noteworthy difference between the approach presented here and that of Yang
et al.40 is that, only the TBF’s were selected here, i.e. A in Eq. (1), and the columns
of j corresponding to each row of A were then estimated using FAST-IRES, while,
Yang et al.40 chose a different approach. They used the spatial topographical maps
obtained from ICA and mapped those scalp topographies to the source space only
to later recombine them based on each component’s time-course of activity to
obtain the source’s spatiotemporal distribution.

The ICA component selection, and consequently the number of ICs, is based on
objective measures, in principle. Additionally, as each ICA component will be a TBF
element, the spatial distribution of that TBF element will be computed for that
temporal component individually, not affecting the spatial distribution and extent of
other components; so, missing a component will not affect the spatial estimates of
other components. In this sense, the choice of TBF does not affect the extent of the
source. It is, however, possible that missing a component might affect the overall
estimate of more complex sources such as seizures. That is why the component
selection is not arbitrary. Selected components are time-locked to events observed on
the scalp, i.e. spike-peak and seizure onset. This automatically removes some noisy
components, however, to speed up the process noisy components such as eye blinks,
movement and muscle artifacts, etc. were removed by visual inspection. These
components are easy to detect and non-controversial to eliminate, as is common with
artifact removal in most EEG pre-processing pipelines (refer to Supplementary Fig. 14
for an example of denoising effects of ICA analysis). It is possible, in principle, to
automate this whole process to minimize the effect of human interactions during this
process, however, this is a project of its own and not within the scope of the current
work. When doubtful if a component is signal-related or not, the component was
included to avoid mistakenly discarding signals of interest (potentially introducing
more noise into the system). It is acknowledged that this might affect overall
estimation results, therefore, ICA must be applied carefully.

Spectral analysis. After denoising the ictal signals and forming the TBF, the
FAST-IRES algorithm was applied to this denoised ictal signal for the first 3–5 s
post seizure onset. In this manner, a spatiotemporal distribution of the seizure
within source space was obtained during the initial phase of seizure onset. In line
with our expectations of seizure propagation and rhythmicity, the distribution
fluctuates constantly and propagates rapidly, quickly involving regions that are not
in the SOZ or even spatially adjacent to it. In the case of temporal lobe epilepsy
patients, activity could propagate to the contralateral lobe in a matter of a few
milliseconds, making the task of determining the SOZ from this source space
distribution difficult. In fact, 13 patients in our studied cohort indicated secondary
generalized seizures or propagation to the contralateral side after seizure onset
(earliest, after a few seconds after onset). In the IC selection process, contralateral
components were observed and these components were ordinarily included in the
TBF as seizure propagation to the contralateral side is expected and observed (refer
to Supplementary Fig. 15 for a more illustrative example).

Following the literature in ictal source imaging, it seemed natural to filter the
solution at the dominant frequency to obtain a more spatially relevant signal. To
this end, the average spectral power of the pre-ictal period over all channels (a 5 s
period right before seizure onset) was plotted against the same quantity during the
initial 5 s right after seizure onset. These pre-ictal and ictal periods were further

divided into five non-overlapping 1 s intervals where the average spectrum was
calculated in each period and averaged together to finally obtain two average
spectrums; one average pre-ictal spectrum and one average early-ictal spectrum. By
comparing these two spectrums the frequency band that showed distinct
differences between the two spectrums (a significant increase of power compared to
pre-ictal spectrum) was selected as the dominant frequency band of analysis. This
frequency band was selected based on the criteria that its spectral power had to be
larger than the pre-ictal spectrum and only the single most powerful lobe in the
spectrum was selected (basically side-lobes of the ictal spectrum were rejected even
if significantly larger than pre-ictal spectrum to ensure a narrow-band selection).
The solution was filtered to keep all of the frequencies in this band and reject the
frequencies outside. Subsequently the average power (energy) of this filtered
solution during a 1-second interval at the beginning of seizure onset was calculated
and visualized. This is best depicted in Fig. 5a. To further assess the effect of this
window size on the proposed analyses, different window sizes were tested (refer to
Supplementary Fig. 16 for two examples). Window sizes cannot be too large, as
there is the risk of capturing propagated ictal activity. Furthermore, given that the
dominant frequency of the analyzed seizures is typically within the 1–4 Hz range,
including short windows will not capture full oscillations of low-frequency waves
and might negatively affect results.

Defining performance metrics. In order to compare the shape and relative position
of the estimated sources with the ground truth, an overlap metric is used. The amount
of overlap between the estimated sources and the resection area is calculated and
divided by either the resection area or the estimated source’s area to derive a nor-
malized overlap ratio (NOR). This NOR shows how well the two distributions match
each other, with ideal values for both ratios being 1. If an overestimated or under-
estimated solution is obtained, one of the two measures will be close to 1 while the
other decreases significantly. These two NORs are also referred to as precision and
recall in some statistical and computer science literature. Estimates were computed on
the cortical surface, so surgical surfaces extracted from post-operational MRI had to
be projected to the cortical surface for calculating NORs, i.e. precision and recall
(Supplementary Fig. 17 depicts two examples).

Another performance metric used in this paper is the localization error (LE),
which is defined as the average minimum distance between every SOZ electrode
(computed in patients who underwent iEEG implantation) and the EZ estimated
from the solution (either using spike imaging, ictal imaging or connectivity imaging).
The distance is calculated to the boundary of the estimated EZ. The amplitude of
estimated solutions by FAST-IRES do not vary much within the activated region, and
SOZ electrodes cover (or are close to) regions where solutions’ amplitudes reach
maximum (refer to Supplementary Fig. 18 for a few examples).

The geometric mean between two numbers a and b is defined as
ffiffiffiffiffiffi
a:b

p
, and the

harmonic mean is defined as 2a:b
aþb. As it can be seen in these formulas, if either value

is low or close to zero, the mean value will be close to zero, and only when both
values are high, will the means be high. These are appropriate measures to check if
both precision and recall are attaining high values (remembering that precision and
recall are between 0 and 1).

Comparing FAST-IRES time-courses with intracranial traces. In order to assess
how close our estimated time-courses resemble true time courses, i.e. the time-course
of activity of underlying sources, an additional analysis was performed in one patient.
In this analysis the estimated time-course of activity from FAST-IRES were averaged
in the lateral anterior temporal region and the deep para-hippocampal cortex, where
intracranial electrodes were placed and were ultimately determined as SOZ. These
averaged time-courses were correlated to the averaged intracranial traces of these two
regions and an average correlation of 0.6 was achieved for both regions. This process
was repeated for all the three seizures that were analyzed in this patient and for every
EEG seizure, the extracted time-courses were compared to three randomly selected
seizures recorded by the iEEG electrodes. The analysis was done in the 1–5 Hz
frequency band which is the dominant frequency of this patient’s ictal activity. The
details of these analyses are presented in Supplementary Table 13 and Supplementary
Fig. 19, as well as Supplementary Movie 3.

While these results are positive and in line with our simulation results (that
underlying sources’ time-courses of activity can be estimated reliably), they are
limited by the fact that intracranial recordings and EEG recordings were not
recorded simultaneously. While these seizures are typical and on average should
represent similar spatiotemporal processes, further investigation are necessary to
determine the validity of this observation — a work we intend to undertake in our
future endeavors.

There is some preliminary evidence that such accurate estimations are possible. In
two recent publications5,6, estimated time-courses of activity from scalp measurements
were compared to deep intracranial recordings and moderate correlations (comparable
to our results) were shown. These two studies benefitted from simultaneous intracranial
and scalp recordings and are highly suggestive of the possibility to delineate underlying
sources’ activity even from deep tissues within the brain.

Statistical tests and reproducibility. To determine the statistical difference
among the performance metrics of spike and ictal imaging estimates, a permutation
test was employed. Given that the performance metrics studied here were less likely
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to have come from Normal distributions and that sample size was limited, we
preferred to use the permutation test. The two groups compared to each other were
the seizure analysis results and spike analysis results. In a shuffle of 104 times, the
labels (seizure or spike analysis results) of the normalized measures, i.e. precision,
recall, geometric mean, and harmonic mean, were shuffled and the difference of
their means were compared to the distribution of the 104 shuffled samples to
determine its relative position in the distribution71. The level of significance was set
at p < 0.05 in our study. We did perform other two-sided statistical test, such as
Welsh’s two-sample t-test and Wilcoxon rank sum test72, and were able to reach
similar results for observed differences in the geometrical mean of spike and
seizure-imaging analysis results, specifically in non-seizure-free patients (results are
not reported). The analysis was performed in MATLAB.

Weighting strategy for spike analysis. Some patients had multiple types of
spikes. Spike types were determined by the topographical potential scalp maps of
the spikes at their peak. When analyzing these types separately, different perfor-
mance metrics are observed for different spike types. For instance, a spike ipsi-
lateral to the affected side will have much better performance metrics (higher
precision and recall and lower localization error) compared to a spike on the
contralateral side. In order to report a single number for each patient (so as to
compare patients in a fair manner), we used the weighted average of the perfor-
mance measures obtained for each spike type. The weights were determined based
on the number of spikes in each group. For instance, if 100 spikes were detected in
a patient and 30 of these were type-I and the rest type-2 (naming is arbitrary),
when combining the performance measures of the two groups, group 1 measures
were weighted by 0.3 and group 2 measures were weighted by 0.7.

One question that emerges from our analysis is: how much do our results depend
on these particular weights? To answer this question and ensure that our results are
independent of this choice, we performed an analysis in which the weights were
randomly chosen in a uniform manner between 0 and 1 (weights are between 0 and 1
and should add up to 1). We repeated this process (comparing spike and seizure
results and obtaining a p-value) 10,000 times, and each time the statistical tests were
repeated with these new measures (or rather measures combined with new weights),
to obtain the distribution of these p-values. Results are depicted in Supplementary
Fig. 20, for two-tailed Welch’s t-test. As it can be seen in this figure, most of the p-
values calculated in this manner are skewed towards 0, and over 74% of the p-values
were smaller than our significance level of 0.05. This clearly shows that the obtained
results hold true, regardless of the choice of weight. While weighing the results based
on the relative number of occurrences seems intuitive, there is always the chance that
some spikes are missed and not counted, resulting in different weights from what we
have assigned (although this ratio is less likely to change once many spikes are seen).
In any case, this analysis clearly rejects the possibility of such effects.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. A reduced and de-identified subset of data that could be
safely shared is deposited in https://doi.org/10.35092/yhjc.11996931. A source data file is
provided for Figs. 2, 4c, 5c, and 6a, b and Supplementary Figs. 6c, 7a,b, 8, 9, 10, 11, and
20a–d.

Code availability
Scripts and codes used for analysis, with sample data, are available at https://github.com/
bfinl/FAST-IRES. Our developed scripts are written and developed in MATLAB (The
MathWorks, Inc., MA, USA), mainly on version 2013B and also tested on 2018a/b. We
employ CURRY 8 (Compumedics, NC, USA) and the EEG Lab toolbox (version 14.1.1b)
for visualization and some simple pre-processing analyses (https://sccn.ucsd.edu/eeglab/
index.php), as well as the eConnectome toolbox (version 1.0 beta) for connectivity
analysis (https://www.nitrc.org/projects/econnectome). Additionally, some MATLAB
plugins (freely available online) were used for visualization purposes; these include the
Egg Head Plot toolbox (https://education.msu.edu/kin/hbcl/software.html), the Bounded
Line toolbox (https://www.mathworks.com/matlabcentral/fileexchange/27485-
boundedline-m), and the NotBoxPlot toolbox (https://www.mathworks.com/
matlabcentral/fileexchange/26508-notboxplot).
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