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Abstract

Vaccine efficacy (VE) estimates are crucial for assessing the suitability of dengue vaccine

candidates for public health implementation, but efficacy trials are subject to a known bias to

estimate VE toward the null if heterogeneous exposure is not accounted for in the analysis

of trial data. In light of many well-characterized sources of heterogeneity in dengue virus

(DENV) transmission, our goal was to estimate the potential magnitude of this bias in VE

estimates for a hypothetical dengue vaccine. To ensure that we realistically modeled hetero-

geneous exposure, we simulated city-wide DENV transmission and vaccine trial protocols

using an agent-based model calibrated with entomological and epidemiological data from

long-term field studies in Iquitos, Peru. By simulating a vaccine with a true VE of 0.8 in 1,000

replicate trials each designed to attain 90% power, we found that conventional methods

underestimated VE by as much as 21% due to heterogeneous exposure. Accounting for the

number of exposures in the vaccine and placebo arms eliminated this bias completely, and

the more realistic option of including a frailty term to model exposure as a random effect

reduced this bias partially. We also discovered a distinct bias in VE estimates away from the

null due to lower detectability of primary DENV infections among seronegative individuals in

the vaccinated group. This difference in detectability resulted from our assumption that pri-

mary infections in vaccinees who are seronegative at baseline resemble secondary infec-

tions, which experience a shorter window of detectable viremia due to a quicker immune

response. This resulted in an artefactual finding that VE estimates for the seronegative

group were approximately 1% greater than for the seropositive group. Simulation models of

vaccine trials that account for these factors can be used to anticipate the extent of bias in

field trials and to aid in their interpretation.
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Introduction

An estimated 390 million people worldwide experience dengue virus (DENV) infections each

year, with approximately 96 million of those showing clinically apparent symptoms [1]. Only

one dengue vaccine (Dengvaxia, Sanofi Pasteur) has been licensed to date, although safety con-

cerns have limited its rollout [2]. Beyond Dengvaxia, 22 investigational dengue vaccines are at

various stages of development, with six of them in clinical trials [3]. Two tetravalent vaccines

have advanced to phase-III clinical trials to evaluate vaccine efficacy against symptomatic,

virologically-confirmed dengue disease [4,5]. In addition, 14 investigational Zika vaccines are

under development, some of which may also advance to late-phase trials [6]. Late-phase vac-

cine trials for dengue, Zika, and chikungunya—three viruses with a common mosquito vector

in Aedes aegypti—share a number of common challenges.

A major challenge for vaccine trials for these diseases derives from the observation that

their transmission is characterized by extensive spatial and temporal heterogeneity. For exam-

ple, epidemiological studies of dengue in both rural [7] and urban [8] settings in Thailand

showed that transmission tends to occur focally at spatial scales of 1 km or less and can be

much more intense at some times than others. Similar observations are being made for Zika

and chikungunya [9,10]. Some of the complications posed to vaccine trials by such strong spa-

tial and temporal heterogeneity include achieving balanced randomization with respect to

exposure across trial arms and correctly anticipating exposure rates in advance of a trial.

Another complication for vaccine trials for these diseases also derives from heterogeneity in

transmission, but at much finer scales. Field studies [11,12] have shown that patterns of Ae. aegypti
blood-feeding are extremely heterogeneous; i.e., most of the mosquito bites are concentrated on a

few, while other people are rarely bitten [13]. These heterogeneities apply to individuals within a

single household and become compounded even further [14] when layered on top of house-to-

house variation in Ae. aegypti densities [15] and complex patterns of human [16,17] and mosquito

[18] movement, which affect human-mosquito contact. This fine-scale variation results in hetero-

geneity in the number of DENV exposures that trial participants experience, which can lead to

bias in estimates of vaccine efficacy for susceptibility (VES) [19] for “leaky” vaccines, which confer

partial protection to all vaccinees rather than full protection to a subset [20]. This type of bias

applies to VES estimates derived using survival methods, such as Cox regression models, unless

trial participants experience homogeneity in exposure [21,22]. In the presence of heterogeneities

in exposure, frailty models have been proposed to reduce bias in VES estimates [21]. Measuring

exposure or collecting data on risk factors can also help in reducing this bias [22].

Because heterogeneity in exposure is known to induce bias in VES estimates for leaky vac-

cines and because there is so much heterogeneity in DENV transmission that would be nearly

impossible to account for explicitly in a trial, we used a simulation-based approach to assess

the extent to which heterogeneous exposure may bias VES estimates for dengue vaccines.

Leveraging detailed historical understanding of DENV transmission in Iquitos, Peru, we used

this model to explore plausible outcomes for hypothetical vaccine efficacy trials that were sim-

ulated as if they took place at a specific point in time during the past in Iquitos. This exercise is

an initial case study on which additional analyses can be developed for other specific settings

of interest as data from other vaccine trial sites become available and amenable to modeling.

Methods

Trial overview

We designed a hypothetical, individually randomized phase-III trial of a generic dengue vaccine.

The aim of the trial was to evaluate the vaccine efficacy for susceptibility (VES) as a measure of the
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protective effects of vaccination against the first symptomatic, virologically-confirmed case of den-

gue caused by any DENV serotype during simulated vaccine trials in Iquitos, Peru. A virologi-

cally-confirmed dengue case was defined as febrile illness with temperature� 38˚C for at least

two consecutive days and a positive result from a reverse-transcriptase polymerase chain reaction

(RT-PCR) from a blood sample. This endpoint has been used in phase-III dengue vaccine trials

and is recommended by the WHO [23]. We chose to simulate the trial in Iquitos because of its

long history of epidemiological studies of dengue, which provide a unique opportunity to parame-

terize and validate detailed models of DENV transmission [16,24–27]. Iquitos is a city of approxi-

mately 370,000 inhabitants, located in the Amazon Basin and accessible only by boat or airplane.

We simulated the active phase of our hypothetical dengue vaccine trials comparable to previ-

ous and ongoing trials [5,28–32] (Table 1), such that ours consisted of regular contacts with

study participants for at least 13 months after completion of a full course of vaccination (two

doses, two months apart). Simulated trial participants were randomly assigned to a placebo or

vaccine arm in a 1:1 ratio. We assumed that the placebo conferred no protection against clinical

endpoints and that the vaccine conferred some level of protection defined as an input of the

model and estimated as VES with the data collected from the trial. In all simulations, we initial-

ized the trial on June 26, 2009. The period thereafter was characterized by a relatively high force

of infection of multiple DENV serotypes [27], which would have been ideal for a trial.

Vaccine model

We modeled a hypothetical vaccine with a per-exposure protection (PEP) that represents the

reduction in risk of disease that the vaccine confers to an individual following a single

Table 1. Characteristics of four vaccine trial designs for dengue vaccines, in addition to our virtual trial.

Variable Sanofi CYD14 [28] Sanofi CYD 15 [30] Takeda

[5,32]

Butantan

[4,31]

Virtual trial

Sample size 10,278 20,875 20,100 16,944 2,324�

Number of sites 12 22 Not specified Not specified 1

Vaccine:control

ratio

2:1 2:1 1:1 2:1 1:1

Power 0.90 0.90 - - 0.90

Control Placebo Placebo Placebo Placebo Placebo

Target efficacy 0.70 - - 0.80 0.80

Lower bound of

vaccine efficacy

0.25 0.25 - 0.25 0.30

Age groups 2–5,6–11, 12–14 9–11, 12–16 4–16 2–6, 7–17,18–59 5–17, 18–45

Primary endpoint Symptomatic virologically-

confirmed dengue disease

Symptomatic virologically-

confirmed dengue disease

Symptomatic virologically-

confirmed dengue disease

Symptomatic virologically-

confirmed dengue disease

Symptomatic virologically-

confirmed dengue disease

Vaccination

schedule

Months: 0, 6, 12 Months: 0, 6, 12 Days: 1, 90 Day 1 Days: 1, 60

Expected cases 57 57 120 24 68

Minimum

timeframe to

estimate VE

1 year 1 year 1 year 1 year 1 year

Statistical analysis Incidence density Incidence density Survival analysis Incidence density Survival analysis

Safety follow-up 5 years 5 years 4.75 years 5 years -

Test for baseline

DENV serology

Subset Subset Yes - Yes

�Baseline scenario

https://doi.org/10.1371/journal.pone.0210041.t001
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exposure to DENV. The vaccine reduces the risk of two separate events: successful DENV

infection conditional on exposure (RRinf|exp) and clinically apparent dengue fever conditional

on DENV infection (RRdis|inf), such that

PEP ¼ 1 � RRr

infjexpRR
1� r
disjinf ; ð1Þ

where RRinf|exp, RRdis|inf, and ρ are specified as inputs to the model. Our default assumption

was that the vaccine protects equally against infection conditional on exposure and against dis-

ease conditional on infection (ρ = 0.5). Our default assumptions about RRinf|exp and RRdis|inf

were that they both equaled 0.447, consistent with an exploratory PEP value of 0.8 as assumed

in planning for the ongoing Butantan trial [31]. In our model, the vaccine does not modify the

probability of progressing from symptomatic to severe disease, because the focus of our analy-

sis is on the primary endpoint of virologically-confirmed disease rather than the more severe

outcomes that can sometimes be associated with dengue. Even though dengue vaccines seem

to have heterogeneous effects in protection [29], we assumed constant protection with respect

to time since inoculation, serotype, and serostatus, to simplify the vaccine model and to isolate

the effect of heterogeneous exposure from the effect of heterogeneous vaccine protection.

Virtual trial procedures

Our virtual phase-III trial featured three main processes: recruitment, vaccination, and surveil-

lance. These processes comprise eight specific procedures, which are depicted in Fig 1. The

recruitment phase included (1) enrollment of participants and (2) serological testing to assess

for previous DENV infection. Vaccination included (3,4) administration of two doses of vac-

cine two months apart. Next, study personnel (5) captured cases during weekly phone calls to

Fig 1. Modeling framework and trial procedures. DENV is transmitted by individual mosquitoes that are found indoors. Humans move daily to

different types of locations within the city. Infectious mosquitoes transmit DENV through bites to individuals susceptible to the infecting serotype

who are present at a location at the same time as mosquitoes seeking a blood meal. The trial consists of eight procedures listed in the figure. The

top curve shows the timing of these procedures in reference to DENV transmission dynamics, and the bottom cartoon depicts each of the

procedures.

https://doi.org/10.1371/journal.pone.0210041.g001
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participants, and a proportion of (6) individuals with symptoms notified trial personnel. Con-

firmation of DENV infection (7) was attempted with a serotype-specific RT-PCR test, and (8)

confirmed cases were recorded in surveillance reports. The trial considers only the first case of

symptomatic dengue for each individual in estimates of VES.

Recruitment. We enrolled simulated trial participants during the first two months of the

trial. We randomly selected a subset of the simulated population who were 5–45 years old (y.

o.). The number of participants was consistent with the desired sample size to achieve a statisti-

cal power of 0.9[33], as described in S1 Text. Because DENV exposure differs between children

and adults, we recruited participants in such a way that half were children (5–17 y.o.) and half

were adults (18–45 y.o.). Within each of those two groups, each participant was randomly

assigned to the vaccine or placebo arm on a 1:1 basis. Next, a participant’s pre-existing sero-

positivity to DENV was recorded, which we assumed could be measured accurately for all trial

participants. Individuals without previous exposure to DENV were classified as seronegative

and individuals with previous exposure to any of the four DENV serotypes were classified as

seropositive, without specification of the number or type of the previous DENV infections.

Vaccination. In the simulation, participants received the first dose of the vaccine or pla-

cebo on the day of enrollment. The vaccine conferred PEP defined by the vaccine model,

whereas the placebo conferred no protection against infection or disease. Each participant

received two doses of vaccine or placebo within sixty days of enrollment. This choice was inter-

mediate between two dengue vaccines currently in phase-III trials (Takeda: two doses 90 days

apart [32]; Butantan: one dose [31]). We assumed that the full PEP was conferred by the first

dose, its longevity boosted by the second dose, and that all trial participants received both

doses on schedule. Consistent with observations of modest efficacy despite high immunoge-

nicity in the only dengue vaccine for which efficacy has been assessed [34] and with assump-

tions of a model developed by a dengue vaccine manufacturer [35], we assumed that the

vaccine was leaky: i.e., partial protection applies uniformly to all vaccinees, as opposed to full

protection of a subset of vaccinees.

Surveillance. Surveillance started on the day on which the first dose of vaccine was

administered, but cases used for the VES analysis were restricted to those that occurred 28 days

or more after administration of the second dose, similar to the protocol for the CYD-TDV tri-

als [36]. The surveillance system captured symptomatic cases in two different ways: weekly

phone calls to trial participants by trial personnel and self-reporting. Weekly active surveil-

lance contacted participants to inquire about disease symptoms experienced since the last con-

tact with the surveillance system. Half of the individuals with symptoms of dengue fever

reported their symptoms during the weekly surveillance phone calls or sought care, which

allowed for laboratory diagnosis. Everyone with severe dengue reported their symptoms to the

surveillance system. The probability of self-reporting mild dengue cases was higher than esti-

mates of this probability under circumstances outside the context of a trial [37] (5–15%), given

that we expect that people would be more likely to use free healthcare provided as part of their

participation in the trial. Some DENV infections go undetected because they are asymptomatic

or are not virologically-confirmed by the surveillance system. Because these infections are not

detected by the surveillance system, their enrollment status in the trial remains unchanged. To

confirm the presence of DENV, we simulated an RT-PCR test in participants with two conse-

cutive days of symptoms and up to five days after symptom onset in agreement with current

guidelines [38].

To simulate virological confirmation of cases, we modeled the sensitivity of a RT-PCR test

as a function of time since symptom onset. To obtain such a function, we first obtained 3,000

simulated viremia trajectories from a model of viremia dynamics for primary and post-pri-

mary DENV infections that was fitted to data from individuals enrolled in a clinical study in

Biased efficacy estimates in dengue vaccine trials: A simulation study
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Vietnam [39]. We then applied a fixed limit of detection (LOD) of 10 cDNA copies per ml to

the simulated viremia trajectories and recorded the proportion of those 3,000 simulated trajec-

tories that exceeded that LOD at a given time since symptom onset, which we regarded as the

sensitivity of RT-PCR at a given time since symptom onset. We then fitted the function

SiðtÞ ¼
1

1þ e� ðbi1þbi2 tÞ
ð2Þ

to the simulated values of sensitivity t days after symptom onset in primary and post-primary

infections i using the optim function in R [40], obtaining curves depicted in S1 Fig. We assumed

that viremia trajectories corresponding to post-primary infections also applied to vaccinated indi-

viduals, given that both should exhibit an antibody response to DENV infection that would result

in a shortening of DENV infection and, thus, a shorter window of detectability by RT-PCR.

Statistical analyses

We used surveillance records resulting from a given virtual vaccine trial to estimate VES based

on the timing of when trial participants attained the primary endpoint as detected by the sur-

veillance system. The model simulated censored observations; i.e., some individuals dropped

out of the trial before being infected, whereas others finished the trial without being exposed to

DENV. Ignoring this feature of the data can result in overestimation of vaccine efficacy [19].

We estimated the vaccine efficacy for susceptibility (VES) as a measure of how protective the

vaccine was against disease [19]. VES was calculated based on three approaches: incidence

rates, survival methods, and transmission probability. Based on incidence rates, VES,IR was cal-

culated as

VES;IR ¼ 1 �
cv=yv
cp=yp

; ð3Þ

where c represents the number of cases detected in each arm of the study, y the number of per-

son-years within the trial, and the subscripts v and p represent the vaccine and placebo arms,

respectively [19]. To calculate VES based on survival methods, we estimated VES,Cox with a

Cox model in R [40] using the coxph function with default settings [41]. The survival model

was implemented with the data represented by the time to first event (or follow-up time) and a

binary variable for PCR positivity. In an attempt to account for heterogeneous exposure within

the trial, we also considered the addition of a frailty expression—in which heterogeneity in

exposure was defined as a random effect by a gamma distribution—to the Cox-regression

model and estimated VES,frailty using the same coxph function in R with an additional frailty

term specified as frailty(ID, distribution = "gamma").

The above methods do not require information about the level of exposure of individuals in

the trial. Such measures are often used in phase-III trials to measure VES because information

on exposure to infection may be unfeasible to obtain in field trials. This task is particularly dif-

ficult for mosquito-borne diseases, because individual mosquito bites would need to be

recorded to estimate the level of exposure of trial participants. Our model allowed us to record

the exact number of exposures that every individual experienced during the trial, defined as an

infectious bite received by a susceptible human. Knowledge on the exact number of exposures

allowed us to estimate VES based on the probability of transmission ‘p’, which should be robust

to heterogeneous exposure. The measure VES,p was defined as

VES;p ¼ 1 �
cv=nv

cp=np
; ð4Þ

Biased efficacy estimates in dengue vaccine trials: A simulation study
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where cv and cp represent the number of cases in the vaccine and placebo arm, respectively,

and nv and np represent the total number of exposures in the vaccine and placebo arms, respec-

tively [19]. Comparison between this and other VES measures was used to aid in the interpre-

tation of our results.

Model overview

We simulated vaccine trials using an agent-based model of DENV transmission that simulates

the transmission dynamics of DENV in a population of 200,000 in a core population area of

Iquitos, Peru [42,43]. Our model includes simulated daily human movement patterns cali-

brated to data from retrospective, semi-structured interviews of residents in Iquitos [44,45].

This model has been demonstrated to reproduce the dynamics of all four DENV serotypes

[42] and was used to investigate the epidemiological impacts of hypothetical vaccination cam-

paigns to project the population-level impact of Dengvaxia [46,47]. Because a formal descrip-

tion of the version of the transmission model that was used here has been published elsewhere

[42], we provide an overview of its key features and assumptions in S2 Text.

Model calibration

We used parameter estimates from the literature wherever possible (Table 2) and calibrated

the values of unknown parameters so as to allow the model to generate patterns of transmis-

sion within the study area consistent with time-varying incidence of infection estimates from a

longitudinal cohort study [27]. Three sets of parameters were calibrated through this process:

(1) serotype-specific population immunity on 1 January 2000, when estimates of time-varying,

serotype-specific incidence of infection began; (2) time-varying, serotype-specific patterns of

unexplained infections from visitors to the study area or residents that were infected outside

the study area; and (3) constants for scaling mosquito population density at two different time

points during which mosquitoes were collected using different methods. We calibrated these

parameters using a particle filtering algorithm described in detail elsewhere (Table 3) [42].

Simulation experiments

Our primary goal was to quantify bias in VES estimates insofar as they relate to estimates of

individual protection afforded by the vaccine, as defined in our simulation model by PEP. This

individual-level interpretation is significant, because VES estimates from standard methods

represent a weighted average of vaccine effects at the population level. Therefore, whenever the

assumption of homogeneous exposure is not met, VES estimates are specific to exposure pat-

terns in the population where the vaccine was evaluated [22]. To the extent that VES estimates

made in this way might be used to inform projections of vaccination impact in other popula-

tions (due to what is usually a lack of a direct estimate of PEP), understanding the extent of

bias in estimates of PEP based on VES is important [22]. To address this driving question, we

performed three simulation experiments under different assumptions about heterogeneity in

DENV transmission patterns.

1. Baseline scenario. The trial design under the baseline scenario was described in the

Trial Overview and Sample Size sections. In this scenario, the attractiveness of humans to mos-

quitoes was proportional to the human’s body size [11]. The timeframe of the trial ranged one

to three years depending on when 68 virologically-confirmed symptomatic dengue cases were

captured. We simulated 1,000 replicates of this trial with an input PEP = 0.8 and quantified the

bias of the estimated VES relative to the input PEP. We also simulated the trial with an alterna-

tive assumption about the viremia of infected vaccinees, in which their viremia followed that

Biased efficacy estimates in dengue vaccine trials: A simulation study
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of someone experiencing a natural DENV infection. We quantified differences between esti-

mated VES and simulated PEP under both assumptions of viremia of infected vaccinees.

We computed the probability that the point estimate of VES was lower than a specified min-

imum product profile (MPP) below which the vaccine would not be licensed or further

Table 3. Calibrated parameters.

Parameter Reference

Serotype-specific population immunity on 1 Jan. 2000 Fitted to represent estimates of force of infection

[27]

Time-varying, serotype-specific patterns of imported

infections

Fitted to represent estimates of force of infection

[27]

Scaling of mosquito population density Fitted to represent estimates of force of infection

[27]

https://doi.org/10.1371/journal.pone.0210041.t003

Table 2. Fixed parameters of the model.

Parameter Value Reference

Mosquito daily movement probability to a

nearby house

30% [48]

Mosquito daily emergence rates Consistent with time-varying estimates of adult

mosquito death rates and spatiotemporal estimates of

Ae. Aegypti density in Iquitos.

[49,50]

Average interval between blood feeding

events (exponential distribution)

Temperature-dependent [51–53]

Probability of pathogen transmission to

susceptible human conditional on an

infectious mosquito bite

1.0 [54]

Incubation period in the mosquito

(lognormal distribution)

m ¼ f ðTÞ ; s ¼ 0:451754 [55]

Infectiousness—human symptomatic

primary infection
eð� 0:204ðt� ti � 5:538Þ2=0:999Þ [56]

Infectiousness—human symptomatic

secondary infection
eð� 0:383ðt� ti � 5:874Þ2=0:999Þ [56]

Infectiousness—human asymptomatic

primary infection
eð� 0:25ðt� ti � 5:585Þ2=0:999Þ [56]

Infectiousness—human asymptomatic

secondary infection
eð� 0:584ðt� ti � 4:883Þ2=0:999Þ [56]

Incubation period in humans Captured by time-varying infectiousness curve [55,56]

Human temporary immunity period

(Exponential distribution).

l ¼ 1

686
days� 1 [42,57]

Probability of developing symptoms given

primary infection

30% [56]

Probability of developing symptoms for

secondary infection

60% [56]

Probability of developing symptoms for

tertiary and quaternary infections

10% [56]

Probability of severe disease for primary

infection, given the apparition of symptoms

11% [56]

Probability of severe disease for secondary

infection, given the apparition of symptoms

20% [56]

Probability of severe disease for tertiary and

quaternary infections, given the apparition of

symptoms

5% [56]

Human demographic rates Consistent with U.N. estimates [58]

https://doi.org/10.1371/journal.pone.0210041.t002
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developed. We varied the value of MPP (0.1–0.7) and calculated this probability given a PEP

equal to the target product profile (TPP) (VE� 0.8). We varied the value of PEP (0.1–0.95)

and computed the proportion of trials resulting in VES falling below MPP = 0.3.

2. Effects of heterogeneous exposure due to heterogeneous biting. Heterogeneity in the

number of DENV exposures experienced by participants in each trial arm can affect trial

results. In our model, an exposure is defined as a bite from an infected mosquito that would

result in a human infection in the absence of vaccination. Hence, placebo participants can only

experience one exposure before developing infection. Conversely, participants in the vaccine

arm can experience multiple exposures before infection due to the assumption that the vaccine

is leaky. We simulated four scenarios about the nature of heterogeneous exposure, illustrated

in Fig 2, to investigate how different forms of exposure heterogeneity affect VES estimates.

The different forms of exposure heterogeneity that we considered (Fig 2) come about

through:

A. Homogeneous hazard of exposure, in which mosquitoes are bypassed altogether and indi-

viduals are infected directly based on a time-varying rate of DENV infection.

B. Constant attractiveness, in which mosquitoes are equally attracted to all humans for blood

feeding at a location.

C. Attractiveness proportional to body surface area, in which mosquitoes are more likely to

bite humans with larger bodies [11].

D. Heterogeneous attractiveness, in which each individual’s attractiveness is drawn from a

gamma distribution with shape a ¼ 1:43 and rate b ¼ 1, as informed by data from de

Benedictis et al. [12].

In addition to heterogeneity in attractiveness to mosquitoes, heterogeneous exposure in the

transmission model results from spatial heterogeneity in contact between mosquitoes and

humans, due to spatial patterns of mosquito abundance and human mobility. This is true for

all scenarios except A. In scenario A, infections during a trial occur only by a time-varying haz-

ard of DENV infection. We adjusted this hazard to be the same as the force of infection in the

remaining three scenarios so that within the trial the AR would be comparable among scenar-

ios. We compared the distributions of VES estimates under these four scenarios by performing

1,000 simulations, with analogous simulations in each set that had the same sequence of ran-

dom number seeds to minimize differences due to chance across the four scenarios.

3. Effect of increased heterogeneity of exposure due to high transmission intensity.

We hypothesized that phase-III trials in sites with high transmission intensity yield more

biased vaccine efficacy estimates than trials performed with moderate to low transmission

intensity, due to an increased number of exposures in the vaccine arm. Our goal was to quan-

tify the potential magnitude of this effect in our simulated trials by computing bias in VES esti-

mates in a scenario with high transmission intensity. We achieved variation in transmission

intensity by varying mosquito emergence rates, which scale the overall density of adult mos-

quitoes and have a linear effect on the force of infection. Specifically, we doubled mosquito

emergence rates in the high-transmission scenario, and we calculated required sample sizes

separately for each trial to attain the same statistical power for VES estimates under both sce-

narios. With these specifications, we simulated 1,000 replicates for each scenario with paired

random seeds to allow the behavior of the simulations to be as comparable as possible.
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Results

1. Baseline scenario

Analysis of the baseline simulations showed a general pattern of VES underestimating the sim-

ulated value of PEP (0.8) when using VES,IR (0.71) and VES,Cox (0.71). Compared to VES,IR and

VES,Cox, the frailty model slightly reduced bias in its estimate of VES,frailty (0.73). Knowledge of

the number of exposures in each trial arm was associated with a slight overestimation of effi-

cacy by VES,p (0.81) (Fig 3A). Although these patterns held qualitatively across the full range of

assumptions about the extent to which the vaccine protects against infection versus disease

(modulated by the parameter ρ), the magnitude of bias in VES,IR, VES,Cox, and VES,frailty was

somewhat sensitive to ρ (S3 Fig). Specifically, these biases were stronger when protection

derived more from reducing the risk of infection conditional on exposure and less from reduc-

ing the risk of disease conditional on infection (i.e., ρ closer to 1). The slight upward bias of

VES,p by 0.01 was unexpected, because VES,p should be capable of fully accounting for bias due

to heterogeneous exposure [19]. We also noted that the extent of bias was different between

Fig 2. Four distinct assumptions about heterogeneous DENV exposure. Scenario A represents homogeneous

transmission of DENV ignoring mosquitoes and human movement patterns, leading to everyone experiencing the

same hazard of exposure to any serotype of DENV. In scenarios B, C, and D, DENV is transmitted by mosquitoes, and

human and mosquito movement patterns are considered. Scenario B represents homogeneous attractiveness of

different humans to mosquitoes at a given location. Scenario C represents human attractiveness to mosquitoes

proportional to human body size. Scenario D represents heterogeneous human attractiveness to mosquitoes based on a

gamma distribution with shape 1.43 and scale 1, regardless of their body size.

https://doi.org/10.1371/journal.pone.0210041.g002
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seropositive (Fig 3B) and seronegative (Fig 3C) groups. In particular, bias towards the null was

0.02 higher in the seropositive group for all VES measures (Fig 3B). Even though this was a

small difference, an upward bias in the seronegative group could partially mask the magnitude

of the bias due to heterogeneous exposure in the overall VES estimates.

After reviewing aspects of the simulation model that could have differed between seroposi-

tive and seronegative individuals, we hypothesized that a bias away from the null that is

Fig 3. Overall VES and VES with stratification estimated for 1,000 simulations of the baseline scenario for one site. In this scenario,

attractiveness of humans is proportional to their body size. VES is calculated with four different methods: VES,Cox, VES,IR, VES,CI, and VES,p.

Violin plots on the left panel show the shape of the distribution of VES,Cox estimates. Colored solid lines show the 25, 50, and 75 quantiles

for VES,Cox, VES,p, VES,IR, and VES,frailty (gray, blue, red, and green, respectively). Black solid line represents the true PEP = 1—RRinf|exp

RRdis|inf = 0.8. Left panel corresponds to the assumption of viremia in vaccinated individuals as secondary infections. Right panel

corresponds to the assumption of viremia in vaccinated individuals as a natural infection.

https://doi.org/10.1371/journal.pone.0210041.g003
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distinct from the bias due to heterogeneous exposure occurred as a result of the way in which

we simulated viremia trajectories in infections of vaccinated individuals. Because these infec-

tions were defined as secondary-like infections with shorter viremia periods (S1 Fig), fewer

primary infections in the vaccine arm were detected by the RT-PCR than in the placebo arm.

This resulted in VES estimates being approximately 0.01 higher on average than they would

have been if the viremia trajectories in primary vaccinee infections had been the same as they

were in unvaccinated individuals (Fig 3C and 3F). This bias increased to 0.06 (S2C and S2F

Fig) in a scenario in which RT-PCR was used up to seven days after symptom onset, in con-

trast to the baseline of five days. This effect was apparent for seronegative individuals (for

whom there were differences in RT-PCR sensitivity between vaccinated and unvaccinated) but

not for seropositive individuals (for whom RT-PCR sensitivity was equal for vaccinated and

unvaccinated) (Fig 3B and 3C). We interpret this bias to have occurred because differences in

RT-PCR sensitivity among seronegative trial participants resulted in vaccinated individuals

being perceived to experience an artificially low number of infections. As expected under this

interpretation, this bias disappeared in simulations in which we assumed that RT-PCR sensi-

tivity was the same for vaccinated and unvaccinated individuals (Figs 3F and S2F). Further-

more, these individuals were also protected from infection later in the trial, which was

perceived to result from vaccination but in reality resulted from heterotypic immunity follow-

ing natural infection. Assumptions about viremia did not affect VES estimates for the seroposi-

tive population (Fig 3B and 3E), because their viremia curves were the same for vaccinated and

unvaccinated individuals.

Because differential detectability resulted in a bias away from the null under the baseline

scenario, it had the effect of slightly reducing our estimate of the extent to which heteroge-

neous exposure induced bias toward the null. VES estimates from the seropositive group were

unaffected by the bias due to differential detectability and, therefore, provided a clearer indica-

tion of the extent of bias due to heterogeneous exposure. Across all four measures of VES that

we examined, bias was approximately 0.01 more toward the null in the seropositive group than

in the trial as a whole (Fig 3F vs 3A). This relatively small difference between the overall VES

estimate and the VES estimate for the seropositive group can be attributed to the majority of

trial participants being seropositive (0.6, CI = [0.57,0.63]) and the majority of the cases coming

from seropositive individuals (0.66, CI = [0.55, 0.76]). Consequently, the extent to which bias

away from the null due to differential detectability counteracts bias toward the null due to het-

erogeneous exposure would be expected to differ in trials in which the proportion of seroposi-

tive trial participants differs from our simulations. In summary, using conventional measures

of VES that do not account for these biases (i.e., VES,Cox and VES,IR), analyses of our simula-

tions with PEP = 0.8 resulted in VES estimates that were biased toward the null by approxi-

mately 0.09 due to heterogeneous exposure. Estimates of VES were biased away from the null

by as much as 0.01 due to differential detectability of primary infections between vaccinated

and unvaccinated individuals.

As one way to place these biases into context, we examined the proportion of simulated tri-

als in which the vaccine would not have been licensed on the basis of the VES point estimate

falling below the minimum product profile (MPP). For an MPP of 0.3, this probability

depended on the VES measure used at different values of PEP. This probability was always

lower for the VES,p measure, compared to the other three measures used (Fig 4). For instance,

for PEP = 0.4, the vaccine would not have been licensed in nearly 40% of simulated trials on

the basis of the point estimates of VES,Cox, VES,frailty, and VES,IR. It would not have been

licensed in almost all simulated trials if the lower bound of the confidence interval of the VES

estimates were used as a criterion for licensure. For PEP = 0.4, the probability of a vaccine not

being licensed on the basis of the point estimate of VES,p was only around 0.2, and around 0.8
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when based on the lower bound of the confidence interval. Across these and other instances,

there was a lower probability of rejecting a vaccine with PEP exceeding MPP whenever PEP

was farther away from MEP and when bias toward the null was less severe.

2. Effects of heterogeneous exposure due to heterogeneous biting

The scenario with homogeneous hazard of exposure was associated with less bias toward the

null compared to the three scenarios that allowed for some form of heterogeneous hazard of

exposure (Fig 5A compared with Fig 5B–5D). When the hazard of exposure was homoge-

neous, VES,p and VES,frailty were approximately equal to PEP (VES,p = 0.8, VES,frailty = 0.79),

and the other two measures slightly underestimated it (VES,Cox = 0.77, VES,IR = 0.77) (Fig 5A).

As in the baseline scenario described above, overall estimates of VES reflect a combination of

distinct VES estimates for the seropositive and seronegative groups, due to a bias away from

the null resulting from differential detectability of primary infections among vaccinated and

unvaccinated individuals. Among seropositive individuals, VES,p was the only measure that

Fig 4. Probability of not licensing a vaccine with MPP = 0.3 at different input PEP values. Solid lines represent the

probability of rejection calculated as the proportion of simulations where the lower bound of the confidence interval of

VES was below MPP. Dotted lines represent the probability of rejection calculated as the proportion of simulations

where the mean estimate of VES was below MPP.

https://doi.org/10.1371/journal.pone.0210041.g004
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appeared to be unbiased (blue in Fig 6A). The other three measures exhibited some bias

toward the null (red, gray, green in Fig 6A), because a homogeneous hazard of exposure still

results in some degree of heterogeneity in the numbers of exposures that individuals experi-

ence (S4 Fig). Among seronegative individuals in the vaccinated group, the downward bias of

heterogeneous exposure canceled out with the upward bias of lower detectability of primary

infections and VES,Cox and VES,IR showed unbiased estimates of VES, while VES,p and VES,frailty

displayed bias away from the null for this group (Fig 6E).

Fig 5. Vaccine efficacy in four scenarios about heterogeneous exposure to DENV for seropositive and seronegative individuals. Violin

plots show the shape of the distribution of VES,Cox estimates. The colored solid lines show the 25, 50, and 75 quantiles for VES,Cox, VES,p, VES,

IR, and VES,frailty (gray, blue, red, and green, respectively). Black solid line represents the individual input of vaccine efficacy: VE = 1 –PEP = 1

—RRinf|exp RRdis|inf = 0.8. The left panel corresponds to VES in seropositives and the right panel corresponds to the VES in seronegatives.

https://doi.org/10.1371/journal.pone.0210041.g005
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The scenarios with heterogeneous hazard of exposure resulted in a larger bias toward the

null when using VES,Cox, VES,IR, and VES,frailty than when using VES,p (blue closer to PEP than

gray, red, or green in Fig 5B–5D). These estimates were all within approximately 0.01 of each

other under all three scenarios that allowed for heterogeneous attractiveness of humans to

mosquitoes (right three columns in S5 Fig), as opposed to a difference of approximately 0.05

between the homogeneous scenario and each of the three heterogeneous scenarios (left three

columns in S5 Fig). This indicates that a substantial degree of heterogeneity in exposure

derives from spatial heterogeneity in mosquito density among different houses and

Fig 6. Vaccine efficacy in four scenarios about heterogeneous exposure to DENV for seropositive and seronegative individuals. Violin

plots show the shape of the distribution of VES,Cox estimates. The colored solid lines show the 25, 50, and 75 quantiles for VES,Cox,

VES,p, VES,IR, and VES,frailty (gray, blue, red, and green, respectively). Black solid line represents the individual input of vaccine

efficacy: VE = 1 –PEP = 1—RRinf|exp RRdis|inf = 0.8. The left panel corresponds to VES in seropositives and the right panel corresponds

to the VES in seronegatives.

https://doi.org/10.1371/journal.pone.0210041.g006
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heterogeneity in how individual humans sample that heterogeneity through their movement

patterns, whereas relatively little derives from heterogeneous blood feeding within a single

house. Examination of the distribution of the number of exposures experienced by trial partici-

pants further supports this conclusion, with higher variance in the number of exposures under

the three heterogeneous scenarios than under the homogeneous scenario (S4 Fig).

3. Effect of increased heterogeneity of exposure due to high transmission

intensity

Higher transmission intensity increased the bias in VES estimates even further toward the null

because of a higher chance of repeated exposure in the population at risk, which increased het-

erogeneity in the number of exposures. This increased heterogeneity also affected the scenario

with homogeneous hazard of infection (Fig 7A), because homogeneity in the hazard of expo-

sure does not ensure homogeneity in the number of exposures that individuals experience dur-

ing the trial. Some individuals in this scenario were exposed up to five times during the trial

(S6 Fig), compared to a maximum of three exposures under the baseline transmission intensity

assumptions (S4 Fig). Under the homogeneous hazard scenario, the frailty model did a rela-

tively good job of reducing bias toward the null (VES,frailty = 0.77, compared with VES,Cox =

0.64, VES,IR = 0.64), but it was less successful at doing so under the three heterogeneous hazard

scenarios (VES,frailty = 0.69, compared with VES,Cox = 0.66, VES,IR = 0.66) (Fig 7B–7D).

Accounting for exposure with VES,p resulted in unbiased estimates.

Discussion

Our results indicate that, under the assumption of a leaky vaccine (i.e., provides partial protec-

tion to all vaccinated individuals), VES is consistently underestimated by standard measures

that do not account for the repeated, heterogeneous nature of DENV exposure. For instance,

heterogeneity in exposure violates an assumption required by the Cox model to ensure unbi-

ased estimates of VES [22]. Heterogeneous exposure has the effect of reducing efficacy because

some individuals are highly protected from infection in both arms of the study, which makes

the placebo arm of the study more similar to the vaccine arm. Under the default assumptions

and scenarios that we examined, we observed that the extent of bias toward the null as a result

of heterogeneous exposure could be as great as 21% of the value of simulated PEP, depending

on the extent to which the vaccine protects against infection or disease. Depending on the sim-

ulated value of PEP and how close it was to MPP, we found that different methods for estimat-

ing VES have implications for the possibility of not licensing a vaccine that has desirable

properties but is not perceived as such due to bias from heterogeneous exposure.

One possibility for mitigating bias due to heterogeneous exposure that we examined was

incorporating a frailty expression, which accounts for unmeasured heterogeneity as a random

effect [21], into our Cox survival analysis of simulated trial data. This step did help reduce VES

bias, particularly under scenarios in which heterogeneity was more extreme. Although our

results indicate that incorporation of a frailty term into estimation of VES from dengue vaccine

trial data could help reduce bias toward the null, a caveat is that biased estimates of VES can

still be obtained when the frailty distribution is not accurately specified [21]. Also, at high

degrees of censoring, non-identifiability of the model parameters can be an issue with frailty

models [21].

Another possibility for mitigating bias due to heterogeneous exposure is to incorporate

information about the number of exposures in each trial arm. This approach successfully elim-

inated bias due to heterogeneous exposure in our simulations. A disadvantage, however, is that

additional information pertinent to the number of exposures in each trial arm must be
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collected. In a real trial, doing so would amount to obtaining estimates of the total number of

bites by infectious mosquitoes on all individuals in each trial arm. Even as an average across

many individuals in a trial arm, estimating entomological risk of DENV infection is not

straightforward [59]. Challenges to doing so include significant spatiotemporal heterogeneity

in DENV transmission activity [7], shifting hotspots of mosquito density over timescales

Fig 7. Overall VES estimates from 1,000 simulations of each setting with different assumptions about heterogeneous exposure in a

high-intensity setting. Sample size was adjusted to 800 participants to achieve 90% statistical power in a higher transmission setting. Each

row represents an assumption about heterogeneous exposure to DENV: homogeneous hazard of exposure, constant attractiveness of

humans, attractiveness of humans based on body size, and attractiveness of humans based on a gamma distribution (shape = 1.43 and

scale = 1). VES is calculated with four different methods: VES,Cox, VES,IR, VES,CI, and VES,p. Violin plots on the left panel show the shape of

the distribution of VES,Cox estimates. Colored solid lines show the 25, 50, and 75 quantiles for VES,Cox, VES,p, VES,IR, and VES,frailty (gray,

blue, red, and green, respectively). Black solid line represents the true PEP = 1—RRinf|exp RRdis|inf = 0.8. Right panel corresponds to the

number of cases captured in the trial.

https://doi.org/10.1371/journal.pone.0210041.g007
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shorter than a trial [15], and the fact that individuals are subject to mosquito bites and DENV

exposure at the numerous locations they visit during their daily routines [60]. Unfortunately,

these are precisely the forms of heterogeneity that our results indicate contribute most to bias

in VES estimates, rendering VES,p an ideal, but impractical, solution to mitigate bias due to het-

erogeneous exposure.

We also found an unexpected source of bias for seronegative individuals. This bias comes

from our assumption of shorter viremia periods in primary infections for vaccinated com-

pared to unvaccinated individuals. This assumption resulted in fewer detected cases between

follow-up visits in the vaccine arm than in the placebo arm. As a consequence, estimates of

VES in the seronegative group were biased away from the null. This bias was relatively small

when the RT-PCR was used up to five days after symptom onset, as advised by the Centers for

Disease Control and Prevention [38]. Not adhering to these guidelines could, however, result

in larger bias away from the null, which we observed when we allowed use of RT-PCR up to

seven days after symptom onset. Ignoring this type of bias could result in reducing the magni-

tude of the bias toward the null from heterogeneous exposure. Doing so may be acceptable

from the perspective of estimating overall VES, but it has the potential to bias estimates of VES

for seronegatives above that of seropositives. For biological reasons [61], estimates for Deng-

vaxia indicate that VES is higher for seropositives than seronegatives [29]. If analyses of Deng-

vaxia trial data are subject to this bias from differential detectability, that would indicate that

the estimated difference in VES between seropositives and seronegatives could be somewhat

greater than currently thought.

There are also sources of bias other than heterogeneous exposure and differential detect-

ability that could manifest in dengue vaccine trials. For instance, infections among trial partici-

pants that go undetected could result in bias toward the null. This could occur if analyses of

symptomatic endpoints fail to consider that unobserved infections in the placebo arm differen-

tially reduce person-time at risk, increasing the apparent similarity between outcomes in vac-

cine and placebo arms [62]. This effect may have been moderated in our analyses because

conditions that promote it—protection deriving from blocking infection rather than amelio-

rating disease, high baseline hazard—were not in effect to a large degree. Nonetheless, unde-

tected DENV infections are common [63] and can cause other problems for the interpretation

of dengue vaccine trial data [64]. Heterogeneity in susceptibility is a related source of bias that

causes bias toward the null for reasons similar to why unobserved infections do [65]. Although

pre-enrollment serological testing could be used to classify individuals as seropositive or sero-

negative for any dengue vaccine trial, it is likely that the serotype(s) to which an individual is

susceptible would be undefined, which could be considered a potential source of unmeasured

heterogeneity in susceptibility.

Recent decades have seen great elaboration of theory for vaccine trial design and analysis

[19], which has increasingly embraced heterogeneity in data-generating processes such as

exposure. This growing body of literature has resulted in a number of principles about poten-

tial sources of bias in VES estimation, highlighted through simulation experiments that have

tended to make use of relatively simple models [66]. Because our primary goal in this study

was to quantify the extent of a known bias for a specific disease, we opted for an agent-based

model that uses highly detailed data to realistically simulate effects of heterogeneous exposure.

In addition to achieving this explicit goal of our study, we uncovered an unexpected source of

bias that could have implications for interpretation of Dengvaxia trial data. This discovery

emerged from our analyses as a result of including detail in model structure beyond what was

minimally necessary to meet our primary goal of quantifying bias due to heterogeneous expo-

sure. This work adds to a growing list of applications of dynamic transmission models to
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planning for dengue vaccine trials (this study), interpreting their results [35,61], and making

projections of their impacts when deployed at the population level [42,46,47,61].
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S1 Fig. Sensitivity as a function of time since symptom onset for primary and post-primary
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S2 Fig. Overall VES and VES with stratification estimated for 1,000 simulations of the base-

line scenario for one site with RT-PCR up to 7 days after symptom onset. Attractiveness of

humans is proportional to their body size. VES is calculated with four different methods: VES,

Cox, VES,p, VES,IR, and VES,frailty (gray, blue, red, and green, respectively). Left panel shows

results under the assumption that viremia in vaccinated individuals is similar to that in sec-

ondary infections. In the right panel, viremia in vaccinees is the same as a natural infection.

Violin plots show the shape of the distribution of VES,Cox estimates. Colored solid lines show

the 25, 50, and 75 quantiles for VES. Black solid line represents the individual input of PEP = 1

—RRinf|exp RRdis|inf = 0.8.
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S3 Fig. Sensitivity of overall VES to changes in the proportion of protection from infection.

Each panel shows VES estimates across different values of the parameter p. Dots show the esti-

mates for each of the four VES measures: VES,Cox, VES,p, VES,IR, and VES,frailty. The black line

shows the regression obtained with a generalized additive model and the dark-gray band

shows the 95% confidence interval. In all scenarios, PEP is represented by the black dotted line

and is defined as PEP = 1 –RRinf|exp RRdis|inf = 0.8. The proportion of protection from infec-

tion, p, is defined such that RRinf = (1 –PEP)ρ, and RRdis|inf = (1 –PEP)1 –ρ
.

(EPS)

S4 Fig. Distribution of exposures within the vaccine group of the trial for each of four

assumptions of heterogeneity of exposure. The height of the bars represents the relative fre-

quency of the number of exposures in the vaccine arm for a specific realization of the virtual

trial. The four simulations used the same random number seed to increase comparability

among simulations.

(EPS)

S5 Fig. Pairwise difference of VES,Cox between different scenarios about heterogeneous

exposure. Each scenario was simulated 1,000 times with the same sequence of random number

seeds to minimize differences caused by stochastic effects.

(EPS)

S6 Fig. Distribution of exposures within the vaccine arm of the trial under different sce-

narios about heterogeneous exposure with high transmission intensity. The height of the

bars represents the relative frequency of the number of exposures in the vaccine arm for a
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specific realization of the virtual trial. The four simulations used the same random number

seed to increase comparability among simulations.
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