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Abstract

Objectives

In this study we investigated the dynamics of meiofaunal and macrofaunal communities in

artificial water-filled tree holes. The abundances and, for the first time, biomasses and sec-

ondary production rates of these communities were examined. The experimental set-up

consisted of 300 brown plastic cups placed in temperate mixed forests and sampled five

times over a period of 16 months to determine the impact of (i) seasonal events, (ii) physico-

chemical parameters, and (iii) food resources on the tree hole metazoans.

Outcomes

Metazoan organisms, especially the meiofauna (rotifers and nematodes) occupied nearly

all of the cups (> 99%) throughout the year. Between 55% and 99% of the metazoan commu-

nity was represented by rotifers (max. 557,000 individuals 100 cm-2) and nematodes (max.

58,000 individuals 100 cm-2). Diptera taxa, particularly Dasyhelea sp. (max. 256 individuals

100 cm-2) dominated the macrofaunal community. Macrofauna accounted for the majority of

the metazoan biomass, with a mean dry weight of 5,800 μg 100 cm-2 and an annual produc-

tion rate of 20,400 μg C 100 cm-2, whereas for meiofaunamean biomass and annual produc-

tion were 100 μg 100 cm-2 and 5,300 μg C 100 cm-2, respectively. The macrofaunal taxa

tended to showmore fluctuating population dynamic while themeiofaunal dynamic was rather

low with partly asynchronous development. Seasonality (average temperature and rain inter-

vals) had a significant impact on both meiofauna and macrofauna. Furthermore, bottom-up

control (chlorophyll-a and organic carbon), mainly attributable to algae, was a significant fac-

tor that shaped the metazoan communities. In contrast, physicochemical water parameters

had no evident influence. 23.7% of organism density distribution was explained by redun-

dancy analysis (RDA) indicating a high dynamic and asynchrony of the systems.
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Introduction
Phytotelmata, “plant held waters,” are an inherent part of forest ecosystems, providing small
island-like refuges for aquatic and semi-aquatic organisms in an otherwise terrestrial environ-
ment. Water-filled tree holes are the globally most common phytotelmata and likely the most
frequent type in temperate forests [1,2]. Their high frequency in woodlands, the simple struc-
ture of their organismal communities, and their accessibility allow the interactions and pro-
cesses (e.g., food webs or the influences of specific parameters) of a whole system to be
monitored within a relatively small water body, which make phytotelmata highly interesting
for ecological research [2,3]. Nevertheless, investigations that include the whole metazoan
community, whether within tree holes or other types of phytotelmata, are rare as most studies
of these ecosystems have instead focused on the macrofauna (here defined as benthic inverte-
brates retained on a net with a mesh size of 1,000 μm), including diptera larvae (especially culi-
cids, chironomids, or ceratopogonids) and coleopteran larvae (mostly Scirtidae). All of these
organisms are typical inhabitants of water-filled tree holes in temperate forests [2,4,5].

Metazoan communities in tree holes are mainly dominated by rotifers and nematodes,
whose dozens of species reach cumulative densities of thousands of individuals cm−2 [2,4,6].
However, in aquatic systems the meiofauna (here defined as benthic invertebrates passing a
mesh size of 1,000 μm and retained on a net with a mesh size of 40 μm) is an essential link
between microbenthos (e.g., bacteria and algae) and macrobenthos and plays an important role
in the benthic food web [7–10]. These taxa enter water bodies mainly by wind or rain or via
incidental transport by larger animals (e.g., insects) and are able to colonize habitats within a
few days [6,11–13]. The ability of nematodes and bdelloidea to undergo anhydrobiosis within a
short time enables them to survive environmental extremes (e.g., desiccation or frost) [14–16].

Phytotelmata are highly dynamic systems that are subject to strong seasonal fluctuations
[17–19]. Cold seasons but also sustained warm weather may eliminate insect taxa from tempo-
ral waters, by frost and desiccation, respectively [17,20,21], or at least delay the development of
their larvae [22]. Perturbation by low precipitation reduces macrofaunal diversity, trophic
links, and food chain length [23]. Thus, not surprisingly, numerous studies have shown that
the water volume in phytotelmata is a crucial physicochemical factor for the survival of insects
[20,24,25]. Other physicochemical parameters, such as oxygen content, pH, and conductivity,
also shape the macrofaunal composition of these habitats—as evidenced by the preferences of
single insect taxa for specific water parameters [5]—and therefore larval development [26].
However, while seasonality and physicochemical parameters are important factors for the
macrofauna, they have little if any effect on the meiofauna [4,6].

Due to the lack of macrofaunal top-predators (e.g., odonata larvae or tadpoles) exerting top-
down control within Central European phytotelmata, bottom-up effects are particularly impor-
tant [2,5]. Specifically, the main food source for macrofauna comes from inputs of leaf litter
and stem flow, and both are thought to account for the observed bottom-up effects in phytotel-
mata food webs [1–3]. For example, for insect larvae [23,27] and the meiofauna [6] of Central
European phytotelmata, increasing carbon inputs result in an increase in species number,
abundance, and trophic links. In tank bromeliads, in addition to detritus, algae may be a rele-
vant resource for the food web [18,28] but its importance as a food source in water-filled tree
holes has yet to be investigated.

The importance of local and regional factors has been studied using artificial phytotelmata
[6,29–31]. In contrast to their natural analogues, artificial tree holes (cups) provide a standard-
ized experimental setting (e.g., opening diameter and height above the ground), sufficient repli-
cates, and the possibility to exclude specific factors (e.g., leaf litter inputs) [27,32]. In the
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present study, 300 cups were placed in different temperate mixed-forest sections over a period
of 16 months and sampled at five different times.

Our main aims were:

1. to investigate the population dynamics of the whole metazoan community and, for the first
time, to examine meiofaunal and macrofaunal abundance, biomass and production within
phytotelmata and

2. to define the regulators for the composition of organisms.

In detail, we hypothesized a permanent colonization by meiofaunal taxa showing low sea-
sonal fluctuations due to a continuously random input by passive dispersal their high repro-
ductive rate and the ability to survive adverse natural conditions. In contrast, it can be assumed
that macrofaunal organisms whose input is restricted to breeding season might have a fluctuat-
ing population dynamic which is significantly affected by seasonal events (e.g., temperature,
rainfall) and physicochemical parameters (water volume, oxygen, pH, and conductivity). The
food web in phytotelmata is primarily bottom-up controlled. For that reason, we expected that
food resources (leaf litter and algae) influence the occurrence and abundance of the community
depending on the taxa and therefore shape the metazoan composition in artificial water-filled
tree holes.

Material and Methods

Experimental sites
Our study was conducted between May 2012 and July 2013 at two natural heritage sites, Küh-
nauer-Heide and Oranienbaumer Heide, near Dessau (Saxony Anhalt, Germany) (Fig 1). Both
areas are in possession of the German Federal Environmental Foundation (DBU). Permissions
to enter the sites were granted by the public order offices Anhalt-Bitterfeld, Dessau-Rosslau
(Kühnauer Heide) and, Wittenberg (Oranienbaumer Heide).

The distance between the two areas is about 20 km. Both sites were army training grounds
until 1992. They are characterized by basophile sandy grasslands with patches of heath in their
centers, where pioneer woodlands mainly populated by Betula pendula Roth and Pinus sylves-
tris L. grow. Along the borders of the two areas are old stocks of Fagus sylvatica L., Quercus
robur L., Acer campestre L., and P. sylvestris. Especially the older tree on both sites contain nat-
ural water-filled tree holes. To cover a wide spectrum of forest types, within each heritage site
we selected one section (approximately 25 × 25 m) in pioneer woodland (= young forest) adja-
cent to open land (51°45’59.57’N, 12°22’11.99’E; 51°49’53.84’N, 12°7’4.83’E) and another sec-
tion, located approximately 600 m away, in an older tree stand (= old forest) (51°45’46.03’N,
12°22’45.23’E; 51°50’2.09’N, 12°7’4.83’E).

Experimental design
We used brown one-liter polyethylene cups (bottom area 71 cm2) as artificial tree holes, as
described by Yanoviak and Fincke [31]. At each sampling site, we fixed five cups with polypro-
pylene rope (diameter 4 mm) around the trunk of 15 P. sylvestris individuals at 2 m above the
ground (= 300 cups, 15 trees × 5 cups × 2 sites × 2 forest types) (Fig 1). Additionally, we filled
the cups with 500 ml of distilled water. The cups had direct contact with the tree bark, which
allowed stem-flow inputs. Our experiment was started in March 2012. We obtained the meteo-
rological data (rainfall and temperature) for each day of the experiment from a weather station
in Dessau (51°47‘55‘N, 12°14‘46‘E; about 10 km away from the sampling sites).
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Sampling
We sampled the cups in May, August, and November of 2012 and in March and July of 2013.
For this purpose we removed one cup from each tree (number of replicates = 15) per sampling
time. We measured the volume, pH, O2 content, and conductivity of the water in each cup in
the field with probes (Hanna HI 9828). When the water was frozen (March 2013), we per-
formed the measurements (water volume, pH, and conductivity) in the laboratory after the
water had thawed at room temperature. We rinsed each cup using a washing bottle to collect
all organisms and algae from the inner walls. We carried out the whole sampling process of a
sampling date for all sites within one day.

In the laboratory, we brought the volume of each sample to one liter with water and abstracted
30 ml each (containing organisms, detritus, leaf litter and other organic material) with a sample
divider for ash-free dry mass (AFDM) and chlorophyll-a (Chl-a) measurements. We chopped
the particles within the sampling divider to enable a homogeneous separation. Finally, we sieved
the remaining volume (1-cmmesh size) to remove coarse particles, stained the samples with
Rose Bengal, and preserved them in 37% formaldehyde (final concentration 4%).

Chl-a content and AFDM
Wemeasured the Chl-a content (μg cm-2), as a proxy of algal biomass. For this purpose we fil-
tered the 30-ml subsamples onto glass-fiber-filters (Whatman; 25 mm diameter), which were
stored at -18°C until the analysis. We extracted the Chl-a with ethanol (90%) at 4°C in the dark
for 24 h. For the measuring and determining of Chl-a concentrations, we used spectrophotom-
etry and the pheophytin-uncorrected values [33].

Fig 1. Experimental sites (young and old forest areas) at Kühnauer Heide and Oranienbaumer Heide,
located near Dessau (Germany). Artificial tree holes (n = 75), in the form of brown plastic cups, were fixed
around the trunks of 15 P. silvestris (5 cups per tree trunk) at each site.

doi:10.1371/journal.pone.0133447.g001
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To obtain the AFDM as indicator of organic material, we filtered 15 ml of each subsample
onto pre-combusted (550°C, 7 h) glass-fiber-filters (Whatman; 25 mm diameter). We dried the
filters for 24 h at 105°C and then combusted them for 7 h at 550°C. Subsequently, we deter-
mined the AFDM (mg cm−2) based on the differences in weight.

Meiofaunal and macrofaunal abundances, classification, biomass and
secondary production rates
For determination of the meiofaunal (nematodes, rotifers, and tardigrades) and macrofaunal
(different dipteran larvae and coleopteran larvae) abundances in subsamples, we used a LEICA
L2 stereo-microscope (40× magnification). We identified the insect larvae at least to the family
level and considered the organisms contained in the extracted volumes for AFDM and Chl-a
measurements.

For biomass (dry weight) calculations, we measured the lengths, heights, and widths of 50
nematodes, rotifers, and tardigrades and the lengths of all insect larvae in each sample. We
grouped all taxa into specific size classes (Table 1). In addition, we dried 40 measuredMya-
thropa sp. larvae for 24 h at 80°C. We determined their dry weights by fitting the power func-
tion described by Benke et al. [34] to obtain the values of a and b. The specific methods used in
the biomass calculations of the different taxa are listed in Table 1.

To obtain a comprehensive description of metazoan community, we calculated the abun-
dances and biomasses as percentages and ratios (meifauna:macrofauna). The resulting descrip-
tions were not necessarily congruent because of the large variances in abundances and the fact
that some of the cups were settled only by meiofauna or macrofauna.

We estimated the mean annual secondary production (g m−2) based on the mean biomass (B,
g m−2) of the single taxa, the maximal individual biomass per taxon (Mmax, mg individual−1) and
the mean annual daily temperature (T, 10.1°C), according to Plante and Downing [35]:

Log ðproductionÞ ¼ 0:06þ 0:79 � LogðBÞ � 0:16 � LogðMmaxÞ þ 0:5 � T ð1Þ

Table 1. Size classes andmethods used for calculating the biomass as dry weight (DW).

Taxon Size classes (mm) Method ×Reference

Nematodes <0.25; 0.25-<0.5;. . .3.75-<4 DWa [36,37]

Bdelloidea < 0125; 0.125-<0.25; 0.25-<0.5 DWb [37,38]

Tardigrades 0.125-<0.25; 0.25-<0.5 DWb [37,38]

Dasyhelea sp. <0.5; 0.5-<1;. . .6.5-<7 DWc [34]

Metriocnemus sp. <0.5; 0.5-<1;. . .14.5-<15 DWc [34]

Muscidae 0.25-<0.5;. . .6-<6.5 DWc [34]

Psychodidae sp. 4-<4.5; 4.5-<5; 5-<5.5 DWc [34]

Cheilosia sp. 0.25-<0.5;. . .6-<6.5 DWc [34]

Tabanidae 1-<1.5;. . .6-<6.5 DWc [34]

Scirtidae 1-<1.5;. . .22.5-<23 DWc [34]

Culex sp. 1-<1.5;. . .10-<10.5 DWd [39]

Myathropa sp. 1.5-<2;. . .21.5-<22 DWe [34]

a Width2 × length/1600000, using the specific gravity (1.13 g cm−3) and a dry/wet weight ratio of 0.25
b 0.8×length×width*height, assuming a dry/wet weight ratio of 0.25
c a × lengthb, where a and b are specific for the respective taxon
d 4.4×103*e0.8*length

e a × lengthb, where a = 0.0024 and b = 3.0651

doi:10.1371/journal.pone.0133447.t001
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Statistical analysis
We applied a canonical ordination analysis (CANOCO, version 4.5) to log(x+1)-transformed
data to assess the influence of environmental factors on the density distribution of meiofaunal
and macrofaunal organisms in the artificial tree holes over the five sampling times. We
regarded Chl-a content, AFDM, O2 content, conductivity, pH, water volume, days after last
rain, average daily rain, days after last frost and average daily temperature in the analysis.

Because the total inertia (1.47) measured by a detrended correspondence analysis (DCA)
was< 2.6, we expected a predominance of linear group response curves [40]. Therefore, we
used a redundancy analysis (RDA), in which the ordination axes were constrained to be linear
combinations of abiotic and biotic factors, to investigate the relationships between these factors
and the distribution of taxa. We listed the factors (conditional effects) according to the vari-
ances they explained individually (i.e., without eventual co-variability with other factors), as
given by their eigenvalues (λ). To test the statistical significance of the factors we used Monte
Carlo permutations (999 unrestricted permutations, α = 0.05).

Additionally, we performed Kruskal-Wallis tests to analyse the impact of the sampling date
on the abundances of the most common metazoan taxa.

Results

Metazoan population dynamics
From the initial 300 cups, 264 were examined; the remainders were lost during the field trial
due to frost, desiccation, and thunderstorms. The number of replicates per sampling site that
were finally investigated and the respective sampling times are listed in S1 Table. In March the
water was frozen whereas in May the contents of the cups were dried out to near desiccation.
Nonetheless, all of the artificial tree holes were settled by meio- and macrofaunal organisms
throughout the year, with the exception of two cups from the March 2013 sampling, in which
no metazoans were found.

Twelve different taxa colonized the artificial tree holes (S1 Table). The meiofauna (rotifers,
nematodes, and tardigrades) consisted of passively dispersed organisms. The macrofauna was
represented by one coleoptera taxon (Scirtidae) and eight diptera taxa (Dasyhelea sp.,Metrioc-
nemus sp., Culex sp.,Myathropa sp., Cheilosia sp., Muscidae, Tabanidae, and Psychoda sp.).

The most abundant organisms in the cups were bdelloid rotifers, which had a mean density
of 190,000 ind 100 cm2 (maximum density: 557,000 ind 100 cm2) in the young forest of Küh-
nauer Heide in July (Fig 2). Rotifer abundances varied greatly between the cups of a single sam-
pling time and among the four different sites. At least 82% of the artificial tree holes were
occupied by bdelloid rotifers during March, August, and November 2012 and July 2013. In
March 2013, fewer cups were settled (55–77%) and the mean number of bdelloid rotifers in the
cups of the old forests declined to less than 15 individuals per 100 cm2.

Nematodes colonized 91% of the cup-contained water bodies. The mean abundance widely
varied, between 11 ind 100 cm−2 and 5,280 ind 100 cm−2, with higher densities during summer
(August 2012 and July 2013, Fig 2). In single replicates, nematode densities were as high as
58,000 individuals per 100 cm2. Among the macrofaunal taxa, Dasyhelea sp. (Ceratopogoni-
dae) was the most common and abundant, as it settled in a mean 67% (± 23.6% SD) of the sur-
veyed cups and its mean density was in the range of 3–42 ind 100 cm−2, reaching a maximum
abundance of 256 individuals 100 cm−2. In May 2012 and March 2013, Dasyhelea sp. densities
were lowest (Fig 2). All other insect taxa in the artificial tree holes were represented by only a
few (< 5) individuals per cup (Fig 2), with the exception of Muscidae larvae, which in August
2012 showed mean abundances of 16–39 individuals 100 cm−2.
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The metazoan community was strongly dominated by meiofauna (83.4% ± 26.4%, mean
±SD) (Fig 3), with mean densities of 15,000 ind 100 cm−2 (± 60,000 ind 100 cm−2 SD) compared
to 31 ind 100 cm−2 (± 46 ind 100 cm−2 SD) for the macrofauna. In August 2012 and March 2013,
meiofaunal percentages declined at all sampling sites to 51%. By contrast, during these months
macrofauna represented the major part of metazoan biomass (81% ± 33.9%, mean ± SD) (Fig 3),
with mean dry weights of 5,800 μg 100 cm−2 (± 14,600 μg 100 cm-2 SD) compared to 100 μg
100 cm−2 (± 400 μg 100 cm−2 SD) for meiofauna (S2 Table). Annual secondary production was
20,400 μg C 100 cm−2 and 5,300 μg C 100 cm−2 for macrofauna and meiofauna, respectively.
The taxa with the greatest contribution to production wereMyathropa sp. (42.7%), nematodes
(16.1%), and Dasyhelea sp. (13.7%). The most abundant group, rotifers, contributed 4.5%.

Factors impacting the organism density distribution
A RDA analysis was performed for the 264 artificial tree holes from the four forest sites to
investigate the influence of seasonal effects (rain, drought, temperature), physiochemical

Fig 2. Mean abundances of Bdelloidea, Nematodes, andDasyhelea sp. and other insect larvae per 100 cm2. The SD’s are listed in S1 Table. The data
are given for the four sampling sites, K-O (Kühnauerheide, old forest), K-Y (Kühnauerheide, young forest), O-O (Oranienbaumer Heide, old forest), and O-Y
(Oranienbaumer Heide, young forest), at the five sampling times. Note the differences in the y-axes. The p-values (Kruskal-Wallis test) indicate the overall
impact of the sampling date on the taxon.

doi:10.1371/journal.pone.0133447.g002
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factors (O2, water volume, conductivity, pH) and food resources (Chl-a and AFDM) (S3 Table)
on community composition and taxonal abundances. Chl-a (λ 0.15), the number of days after
the last rain event (λ 0.04), AFDM (λ 0.02), and the average daily temperature (λ 0.02) had the
most significant impacts (Monte Carlo permutation test, p< 0.05) on organismal density dis-
tribution (Table 2).

Axis 1 of the RDA explained 20.8% of the organism density distribution (species environmen-
tal correlation = 0.59), based on the positive correlation with Chl-a and AFDM (Table 3). Axis 2
explained 2.1% of the organismal density distribution, reflecting a negative correlation with the
number of days after the last rain and positive correlations with the averaged daily rain and the
number of days after the last freezing event. Overall, 23.7% of the organismal density distribution
was explained by the RDA. None of the other physicochemical factors (O2 content, pH, conduc-
tivity) had a significant impact on the metazoans, and nor did water volume.

Thus, in the interpretation of the RDA biplot shown in Fig 4, for the organisms on the right
side the density distributions were positively influenced by bottom up effects (algae and
AFDM) and, especially in the lower right corner, the higher temperature and rainy conditions.

Rotifers, which represented the major part of the metazoan community in the tree holes,
clustered together with Chl-a and AFDM. Nematodes and Dasyhelea sp. were also located on

Fig 3. Mean percentages of meiofaunal (black areas) andmacrofaunal (gray areas) abundances (left
column) and biomasses (right column).Data are given for the four sampling sites, K-O (Kühnauerheide,
old forest), K-Y (Kühnauerheide, young forest), O-O (Oranienbaumer Heide, old forest), and O-Y
(Oranienbaumer Heide, young forest), at the five sampling times.

doi:10.1371/journal.pone.0133447.g003
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the right side of the plot but with a wider spread, and more closely linked to higher temperature
and more frequent precipitation. Muscidae scored in the lower right area, near the zero-point
of axis 1, indicating no affinity for larger amounts of resources. Unlike the other frequent taxa,
both Syrphidae Cheilosia sp. andMyatropa sp. tended to prefer lower temperatures and dryer
environments, respectively, and were negatively impacted by greater resource availability.

During the study period, there were no verifiably differences between the four sampling
sites with respect to organismal density distributions, whereas clear seasonal influences were
observed. The Kruskal-Wallis tests indicated significant impact (P< 0.016) of the sampling
date on all common taxa (bdelloidea, nematoda, Dasyhelea sp. and the other insect larvae)
(Fig 2). In the RDA biplot the 264 samples clustered within the five sampling times and were
well separated (Fig 5). Samples fromMay 2012 and March 2013, when temperature and rainfall
were lowest, placed in the upper left of the RDA biplot whereas samples from August 2012 and
July 2013 plotted roughly ahead of resource availability and warmer conditions. The November
2012 samples scattered around the zero point and along with AFDM.

Discussion
We documented the development of the metazoan community in artificial water-filled tree
holes within a temperate forest ecosystem over a period of 16 months. All of the taxa detected

Table 2. Results of a redundancy analysis testing the effects of environmental factors on the density distribution of invertebrate taxa in 264 artifi-
cial tree holes.

Marginal effects Conditional effects

Variables λ Variables λ P

Chl-a 0.15 Chl-a 0.15 0.001

Avg. daily rain 0.09 Last rain 0.04 0.001

AFDM 0.07 Avg. daily temperature 0.02 0.005

Last rain 0.06 AFDM 0.02 0.017

Avg. daily temperature 0.06 O2 content 0.01 0.158

Last frost 0.05 Avg. daily rain 0 0.145

O2 content 0.03 Last frost 0 0.274

Water volume 0.01 Conductivity 0 0.768

Conductivity 0

pH 0

Sum of all λ 0.24

The factors are listed by their eigenvalues (λ). For the calculation of p-values we used the Monte Carlo permutation test (999 iterations).

doi:10.1371/journal.pone.0133447.t002

Table 3. Statistical summary of the redundancy analysis of 264 artificial tree holes and seven environmental factors.

Axes 1 2 3 4 Total variance

Eigenvalues 0.208 0.021 0.004 0.002 1.0

Species-environment correlations 0.588 0.385 0.164 0.167

Cumulative percentage variance of

Species data 20.8 23 23.4 23.6

Species-environment relation 88.6 97 99.9 99.7

Sum of all eigenvalues 1.0

Sum of all canonical eigenvalues 0.24

doi:10.1371/journal.pone.0133447.t003
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Fig 4. Redundancy analysis biplot of the 12 identified taxa and eight relevant environmental factors.
Significant predictors of the organism density distribution are shown in bold (Monte Carlo permutation test,
p < 0.05). Abbreviations: Last rain = number of days after the last rain; Last frost = number of days after the
last frost; Chla = chlorophyll a; Cond = conductivity. Sum of all canonical eigenvalues: 0.237 (axis 1: 0.208;
axis 2: 0.021).

doi:10.1371/journal.pone.0133447.g004

Fig 5. Redundancy analysis biplot of the 264 artificial tree hole communities and eight environmental
factors. Significant predictors of the organismal density distribution are shown in bold. Samplings made on
the same date are framed. For an explanation of the environmental factor abbreviations, see Fig 2. Sum of all
canonical eigenvalues: 0.237 (axis 1: 0.208; axis 2: 0.021).

doi:10.1371/journal.pone.0133447.g005
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during the field trial and the values of the physicochemical parameters corresponded to those
reported in studies of natural water-filled tree holes from central Europe [2,4,5].

There have been only a few comprehensive studies of freshwater ecosystems in which both
meiofaunal and macrofaunal abundance, biomass, and secondary production were docu-
mented. The metazoan abundances in the artificial tree holes were certainly within the scope of
similar studies on lentic [41–43] and lotic [44] waters. The clear predominance of meiofauna
resulted in a meiofauna:macrofauna ratio of 491:1. While Anderson and De Henau [41] and
Nalepa and Quigley [42] determined ratios typically between approximately 10:1 and 80:1 for
different lakes, single deviations up to 812:1 were recorded. In our study, the high densities of
rotifers, up to 56 million individuals m−2 (mean 20 millions m−2), shows that the artificial tree
holes can be quickly colonized by rotifers, but based on densities up to 5.8 million m−2, nema-
todes can also be considered as good colonizers. In fact, only in the periphyton of three Swedish
lakes, in the sediment of the volcanic lake in Galapagos, and in the sediment of Lake Constance
were a greater number of nematodes recorded [10,45,46].

By contrast, in the artificial tree holes, metazoan biomass, and especially meiofaunal bio-
mass (accounting in some samples for< 10%), was relatively low. This amount is consistent
with observations in larger water bodies [9,41,42]. The calculated dry weight biomass of the
meiofauna and macrofauna in the artificial tree holes was 10 mg m−2 and 584 mg m−2, respec-
tively. The ratio of macro- to meiofauna was 1:55. In Lake Brunnsee, meiofaunal and macro-
faunal biomass was 110 mg m−2 and 1180 mg m−2, respectively, resulting in a ratio of 1:11.
This study as well as those of Ptatscheck and Traunspurger [6] and Devetter [4] demonstrated
that the meiofauna in water-filled tree holes in Middle Europe mostly consists of rotifers and
nematodes (> 90%). However, the contribution of rotifers to biomass is much smaller than
that of organisms such as oligochaetes, copepods, and ostracodes [43,47]. These taxa are
known to colonize tree holes in Europe but their main distribution ranges are the tropics
(reviewed by Kitching, [2]), where meiofaunal biomasses are likely to be accordingly higher.

Bergtold and Traunspurger [9] calculated annual meiofaunal and macrofaunal production
rates of 1.6–1.7 g C m−2 and 3.1–6.7 g C m−2. These values correspond to a ratio of macro- to
meiofauna between 1:2 and 1:4. In this study, annual secondary production in water-filled tree
holes was 0.58 g C m−2 for meiofauna and 2.04 g C m−2 for macrofauna. Both values are
roughly one-third of the production in Lake Brunnsee [9], but the ratio (1:3.5) is very similar.

Interestingly, the contribution of nematodes to total annual metazoan secondary production
(16.1%) was quite high and in contrast to the< 3.5% reported for nematodes in larger aquatic
systems [44,48]. Thus, the importance of meiofauna to the metazoan community in phytotel-
mata has clearly been underestimated.

Secondary production rates will differ depending on the method used. The numerous
approaches can generate misleading results (reviewed by [49,50]). It is also possible that in
other types of phytotelmata (e.g., tank bromeliads or pitcher plants) meiofaunal and macrofau-
nal composition, and therefore secondary production, will differ. Nonetheless, this study is the
first to provide basic information on the metazoan community in water-filled tree holes and
comparisons with other aquatic systems.

In accordance with our hypothesis the results clearly show that seasonality effects (related
to temperature and precipitation), on the one hand, and bottom-up effects, on the other, were
the fundamental factors that shaped the metazoan communities within the artificial tree holes.
In contrast to our expectation, not only the macrofauna but also the meiofauna were signifi-
cantly influenced by season.

Additionally, both the metazoan density distribution and the percentage of meiofauna and
macrofauna indicated synchronous, seasonal shifts in both forest areas. This was particularly
the case for insects. Temperature-induced extremes such as almost total desiccation or frost
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reduced both the number of cups settled by single insect taxa (up to their elimination) and
insect abundances, as reported previously [4,21,22]. The annual population dynamics of nema-
todes and rotifers tended to be low and in some cases were even asynchronous, consistent with
the observations of Devetter [4] and confirming our hypothesis. Although some of the most
common taxa temporarily disappeared over the course of the study period, the cups were
almost continuously colonized by metazoans especially by meiofaunal taxa as we had expected.
This observation has important implications for small bodies of water in terms of their subse-
quent recolonization [21].

Physicochemical parameters (water volume, oxygen, pH, and conductivity), however, had
no important influence on these metazoans, not even on the macrofauna as initially assumed.

It should be noted that the standardized experimental design using artificial tree holes
might led to a low variance of the physicochemical parameters in comparison to natural ana-
logues. For that reason the observed values were possibly too narrow to capture conditions that
might impact metazoan.

In our study, it was not the water volume, as often shown [20,24,25], but rather the interval
between rain events that was decisive in determining the organism density distribution. Stem-
flow, defined as rain water running down the tree surface, contains small metazoans, bacteria,
algae, and nutrients that are washed into tree holes, thereby enriching their communities or
serving as resources [11,26,51]. In addition, the flushing effects of stem-flow affect the milieu
already established within the phytotelmata [52]. Indeed, our RDA analysis showed that Chl-a
content was higher with shorter rain intervals, suggesting an input by precipitation. Further-
more, the Chl-a content changed during the 16 months of the study, with declines caused by
freezing and drought. Both Chl-a content and AFDM were highest in July 2013, coinciding
with the densities of Bdelloidea and Dasyhelea sp.

This is the first study to show that, along with the amount of leaf litter, algae are an impor-
tant food resource in the water-filled tree holes of temperate forests, as previously reported for
tank bromeliads [18,28,53]. As a potential algal feeder, bdelloidea correlated well with Chl-a
content [54,55] (Fig 3).

Among the insect fauna found in middle European tree holes, saprophagous species, feeding
on leaf litter, are the most common [2,5]. Both the leaf litter itself and its breakdown products
promote the growth of bacteria and fungi which are consumed by the insect larvae and bacter-
iovorus nematodes that predominate in water-filled tree holes [6,18,28,52]. Thus, the abun-
dance, diversity, and number of trophic levels of macrofauna and meiofauna increased with
higher amounts of leaf litter [6,23]. This is not the case for the syrphid larvae ofMyathropa sp.
and Cheilosia sp., which, as previously noted by Schmidl et al. [5], seem to prefer less produc-
tive containers.

The variances in organismal abundances and in local parameters were unexpectedly high
given that the artificial tree holes were initially identical. Indeed, 23.7% of the organismal
density distribution could be explained by a multivariate statistic. The remaining, unexplained
variance is indicative of the wide-ranging dynamics of these small aquatic systems and the
asynchronous development of phytotelmata communities [17–19].

Other important factors shaping the composition of phytotelmata communities are coloni-
zation events [17]. Thus, while adult insects mainly respond to the breeding season in the
placement of their eggs, nematodes and rotifers enter these small refuges continuously,
deposited by wind and rain [11–13]. Small organisms (e.g., rotifers) are fast and ubiquitous dis-
persers without spatial limitations [56,57] while the asynchronous changes in nematode abun-
dances (Fig 2) suggest random colonization

Although our study did not include an analysis of predator-prey interactions between meio-
fauna and macrofauna, that both rotifers and nematodes serve as prey for insect larvae has
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been reported in several studies [7,28,58,59]. While an examination of meiofaunal population
dynamics determined on a species level can reveal the impact of colonization, as achieved in this
study, the top-down influence of the macrofauna on the meiofauna remains to be investigated.

Nonetheless, our study provides a comprehensive documentation of the meiofauna and
macrofauna that inhabit artificial water-filled tree holes over the course of the year and a pre-
liminary comparison of metazoan biomass and secondary production between this and other
aquatic systems. We demonstrated a synchronous development for the macrofaunal organisms
while the meiofauna that colonized nearly all cups showed rather asynchronous and less fluctu-
ating population dynamic. However, we also identified seasonality (daily temperature and rain
intervals) and bottom-up effects as fundamental factors that determine organismal density dis-
tribution of the whole meatazoans. While leaf litter is well known to be the main food source in
phytotelmata, we identified algae as a second food-web pathway. The measured physicochemi-
cal parameters had no significant impact on the meiofauna and surprisingly not even on the
macrofauna. Our investigation contributes to a better understanding of metazoan communities
in the phytotelmata within temperate forests.
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