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A B S T R A C T   

The rising measure of waste produced from polyethene terephthalate (PET) and the interest in 
eco-accommodating energy storage arrangements have prompted escalated examination into 
reusing waste PET into supercapacitors. This review aims to provide a comprehensive overview of 
the most recent advancements in the recycling of polyethylene terephthalate waste (PETW), as a 
supercapacitor electrode precursor. The review looks at different methodologies for recovering 
PET from waste, including mechanical, chemical, enzyme, etc. It further explores the combination 
strategies for electrode materials produced using PET. Besides, PET-derived materials’ electro-
chemical performance in supercapacitor application is likewise broken down, with an emphasis 
on key electrochemical boundaries like capacitive behaviour, cyclic stability, and electrochemical 
impedance spectroscopy. The need for scalable and cost-effective recycling methods, the creation 
of eco-friendly electrolytes, and the improvement of the electrochemical performance of recycled 
PET-based supercapacitors are just a few of the issues and opportunities highlighted in this 
expanding eco-friendly industry. Overall, the goal of this review is to provide a comprehensive 
understanding of the cutting-edge developments in the use of recycled PETW as a precursor for 
supercapacitor electrodes, highlighting the eco-friendly energy storage solution’s potential and 
contributing to a sustainable future.   

1. Introduction 

Storing energy involves transforming it from challenging to easier forms. This is done using supercapacitors, thermal storage, 
pumped hydro, batteries, and other technologies. The main purpose is to balance supply and demand and improve power system 
reliability [1–3]. Supercapacitors use various materials, including waste materials, to achieve high energy and power densities. 
Waste-derived materials such as biomass, agricultural waste, paper, wood waste, industrial waste, electronic waste, textile waste, and 
plastic waste are being investigated for use as supercapacitor electrode materials with positive results [2,4,5]. 

Polyethylene terephthalate (PET) is a type of plastic commonly used in food and beverage containers and various packaging 
materials. The recycling of PET waste (PETW) has become an aspect of waste management due to the growing concerns surrounding 
sustainability. Managing PETW is an issue that requires sustainable recycling solutions in the long term [6–8]. PET is a plastic widely 
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utilized in products such as drink bottles, food containers and polyester fabrics. The challenge lies in the lasting nature of PET waste, 
which can take over 500 years to decompose naturally contributing to the accumulation of PETW in landfills, oceans and ecosystems 
[9–11]. Improper disposal and recycling practices further exacerbate this problem posing threats to wildlife, ecosystems and habitats 
[8,12]. With the increase in PETW production due to its use there is a pressing need for more efficient methods to recycle PETW bottles 
for both technological advancements and environmental protection reasons. Consequently, there is a growing demand for researchers 
to develop improved techniques, for recycling PETW bottles for sustainable development [13–15]. 

There are several significant reasons why PETW requires long-term recycling solutions. To begin with, recycling PETW reduces the 
requirement for virgin plastic, it also contributes to a decrease in the amount of fossil fuels, energy, and natural resources required to 
produce new plastic. Second, recycling PETW helps to reduce the environmental damage caused by plastic pollution, by keeping PET 
out of landfills and the environment, recycling PET effectively reduces rubbish and the negative effects it has on ecosystems and habitat 
species [16,17]. The process of recycling PET entails gathering, classifying, and turning wasted PET items into raw materials which can 
be used to create new products. This recycling process offers sustainable and affordable options, and ongoing research and ad-
vancements in PET recycling technology continue to support the development of creative approaches towards a more sustainable 
future [18,19]. This closed-loop method lessens waste production and saves resources, promoting a more resource-wise and sus-
tainable value chain circular economy [7,15,20]. 

The issue of PETW on a global scale has given rise to several projects and policies that support long-term recycling solutions. These 
include (i) recycling infrastructure improvements to improve the collecting, sorting, and processing of PETW. As well as investments 
by governments, businesses, and organizations in the building of dependable recycling facilities. Improvements to infrastructure make 
recycling more effective and encourage individuals to participate in recycling activities [19,21]. (ii) the use of public awareness and 
education to inform people about the value of recycling PET and the right ways to dispose of it. The amount of PETW that ends up in 
landfills and the environment can be greatly decreased by encouraging responsible consumer behaviour and recycling practises [18, 
22]. Researchers and industry professionals are investigating innovative recycling solutions to increase the effectiveness and efficiency 
of PET recycling. These include mechanical recycling, which entails melting PET and reforming it into new goods, as well as chemical 
recycling, which disassembles PET into its monomers for reuse [23–25]. Recycling PET finds usage in fabrics, packaging, and the 
textile sector. In films, it is also used to mould components for automobiles, electronics, energy storage and many other things [26,27]. 
With the use of porous carbon nanostructures derived from PETW, energy storage can meet the demand for trustworthy gadgets that 
have a rapid charge and slow discharge on a worldwide scale. 

There are numerous advantages to recycling PET waste into materials for use in supercapacitors. PETW is a readily available raw 

List of abbreviations including units and nomenclature 

(PET) Polyethene terephthalate 
(PETW) polyethene terephthalate waste 
(TPA) terephthalic acid 
(MEG) monoethylene glycol 
(DMT) dimethyl terephthalate 
(HC) hydrocarbon 
(NIR) near-infrared 
(DMC) dimethyl carbonate 
(MOFs) metal-organic frameworks 
(SC) supercapacitor 
(EDLCs) electrostatic double-layer capacitors 
(AC) activated carbon 
(KOH) potassium hydroxide 
(PVDF) polyvinylidene fluoride 
(SEM) scanning electron microscopy 
(XRD) X-ray diffraction 
(PANI) polyaniline 
(PPy) polypyrrole 
(PEDOT) poly(3,4-ethylenedioxythiophene) 
(ESR) Equivalent series resistance 
(HTC) Hydrothermal carbonization 
(LIG) laser-induced graphene 
(CV) cyclic voltammetry 
(GCD) Galvanostatic charge-discharge 
(CBMs) Carbon-based materials 
(TMOs) Transition metal oxides 
(CPBMs) Conducting polymer-based materials 
(PBMs) Perovskite-based materials.  
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material that can be engineered to have high surface area and porosity, which is essential for storing more charges. Materials derived 
from PETW exhibit good chemical stability, ensuring reliable performance over time. Additionally, PETW-derived materials are more 
commercially viable as they can be produced at a lower cost compared to high-performance materials such as metal oxides or gra-
phene. Apart from addressing environmental concerns, the use of PET waste-based materials in supercapacitors offers a dependable, 
high-performance, and reasonably priced alternative to conventional electrode materials. Therefore, they represent a viable choice for 
future energy storage technologies. 

There has been some research on converting PETW into supercapacitors, covering material development, scalability, safety, 
versatility, security, and performance optimization. Be that as it may, with the new technological advancements there exist a lot of 
chances for additional investigation around this area. By consolidating state-of-the-art methods for the different processes engaged 
with the transformation of PETW into supercapacitors, we can improve the productivity, adequacy efficiency and effectiveness of this 
process. The goal of this review is to provide a comprehensive assessment of the most recent developments and research in the 
recycling of PETW for use in supercapacitors. This incorporates looking at the present status of the PET recycling systems, super-
capacitor fabricating techniques, and the performance of PET-based supercapacitors. The review also included information on the 
performance of supercapacitors using recycled PET as feedstock for electrode material from published works. It also investigates 
various surface modification strategies, processing techniques, and hybrid material approaches to enhance the electrochemical per-
formance and stability of supercapacitor electrodes. In addition, it looks at the possible environmental advantages of recycling PETW 
for supercapacitors, pointing out any potential disadvantages and areas for improvement. 

2. PETW recycling processes and techniques 

PETW recycling entails a variety of techniques that convert discarded PET materials into valuable products. These techniques are 
roughly classified as mechanical recycling [26,28], chemical recycling [16,24], and depolymerization [23,29]. These recycling 
methods are critical in decreasing the environmental impact of PETW and supporting a circular economy. Although each recycling 
method has its advantages and disadvantages, the recycling strategy selected is determined by criteria such as the quality and type of 
PETW, the intended end products, and the availability of infrastructure and technologies for certain recycling processes [8,30]. 

Mechanical recycling of PETW entails physically separating, grinding, and melting PETW to create new products. It consists of 
several steps, including sorting, in which the PETW is sorted based on colour and resin type to remove contaminants and ensure a 
consistent feedstock [23,26,28]. The next step is shredding or grinding, in which the sorted PETW is shredded into flakes or granules, 
followed by the washing step where the shredded PET flakes undergo multiple washing steps to remove any impurities or residual 
contaminants such as dirt, labels, and adhesives. The washed flakes are then separated from impurities using techniques such as 
density separation or air classification in a separation step. The final step is melting and extrusion, in which the purified PET flakes are 
melted and extruded into pellets or granules that can be used as feedstock for various applications such as the production of new PET 
products or as precursors for other recycling processes [13,31]. Mechanical recycling is widely used in many recycling facilities, which 
have a well-established infrastructure, and use less amount of energy compared to other recycling processes. Due to its developed 
technique and established market for recycled PET products, it is often a cost-effective approach. Nevertheless, the mechanical 
recycling of PETW is also fraught with challenges. The quality of the recycled PET material is its main flaw, as it may deteriorate 
because of repeated melting and processing, which would limit its suitability for applications requiring high-quality PET. In addition, it 
is prone to contamination since contaminants and various plastics might impair the recycled PET’s quality. Furthermore, the avail-
ability of recycled PET in particular may be restricted by the sorting step in mechanical recycling [19,23]. 

Chemical recycling entails breaking down PETW into its chemical components via various chemical processes to produce fresh PET 
or other valuable chemicals. Glycolysis, hydrolysis, methanolysis, depolymerization, and pyrolysis are some popular chemical recy-
cling methods for PETW [32,33]. Glycolysis is the process of breaking down PETW into its monomers - terephthalic acid (TPA) and 
monoethylene glycol (MEG) - using a high-temperature glycol solution (typically ethylene glycol). To enhance the reaction between 
PET and glycol and produce bis(2-hydroxyethyl) terephthalate (BHET, an ester of terephthalic acid and ethylene glycol) and oligomers 
with different chain lengths, the glycolysis process is typically carried out between 180 ◦C and 240 ◦C. After the depolymerization 
process is finished, the reaction mixture is cooled and purified by filtration, crystallisation, or distillation, which is then recovered and 
used as feedstock to produce new PET or other chemicals [34–37]. Hydrolysis is a method that breaks down PETW into its constituent 
monomers by treating it with water or steam at elevated temperatures and pressures. The monomers can be refined further and used in 
PET production or other applications. Methanolysis is when PETW is treated with methanol in the presence of catalysts to produce 
dimethyl terephthalate (DMT) and ethylene glycol. The DMT can be then used for PET production [38,39]. In general, chemical 
recycling methods have the potential to generate high-quality recycled PET that is similar to virgin PET, the resulting monomers or 
chemicals can be used for various applications beyond PET production. The method can manage mixed waste streams, allowing for the 
recycling of PET with other plastics. However, chemical recycling processes face the challenges of greater complexity and lower 
technological maturity when compared to mechanical recycling. They are also faced with technical and economic challenges, 
requiring further development and optimization, and some may need significant energy inputs, especially those involving elevated 
temperatures and pressures [40]. Scaling up chemical recycling processes and making them cost-competitive with mechanical recy-
cling can be challenging. Efforts are being made to develop and optimize these recycling methods to improve the efficiency and 
sustainability of PETW recycling [40,41]. 

The depolymerization process involves chemically breaking down the polymer chains of PETW into their constituent monomers or 
smaller oligomers, which can be accomplished using a variety of methods such as chemical solvents [34], catalysts [42,43], or enzyme 
reactions [29]. Enzymatic depolymerization is when enzymes catalyse the breakdown of PET into monomers. This approach appears to 
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be promising, although it is still in its early phases of development. Pyrolysis, on the other hand, is the thermal degradation of PETW in 
the absence of oxygen. The procedure produces a mixture of products, including gases, hydrocarbon (HC) compounds, liquids, and 
char, a carbon-rich solid residue [44,45]. The HC product of pyrolysis can be used as a fuel or feedstock for chemical processes, the 
liquid and gas fractions can be refined further or used for energy generation, and the char can be used as a carbon source or converted 
into activated carbon for several applications, including energy storage devices such as supercapacitors [46–48]. Depolymerization 
methods have the potential to produce high-quality monomers that can be used for PET production and can generate a range of 
valuable chemical products beyond PET, offering diverse recycling opportunities. The process can manage PETW with various ad-
ditives and contaminants. However, depolymerization technologies are still in the early developmental stages and may require further 
research and optimization before commercial viability. Furthermore, the process may currently be more energy-intensive and 
expensive than other recycling methods, making them less economically viable. Enzymatic depolymerization, although promising, is 
currently limited by enzyme efficiency, reaction rates, and cost-effectiveness [49]. 

The conversion of PETW into raw materials for the manufacturing of chemicals or fuels is known as feedstock recycling, sometimes 
known as advanced recycling or chemical conversion. PETW can also be converted into syngas or liquid fuels using advanced recycling 
techniques such as gasification or hydrothermal liquefaction, which can then be processed or utilized in industrial operations [50]. 

2.1. Recent advancements in PETW recycling techniques 

The efficiency and sustainability of PETW recycling systems have seen some significant advancements, such as enhanced me-
chanical recycling, advanced chemical recycling, supercritical fluid recycling, etc [27,51–56]. Advanced and new sorting technologies, 
such as near-infrared (NIR) spectroscopy and hyperspectral imaging, have been developed to improve the accuracy and efficiency of 
PETW sorting, reducing contamination in mechanical recycling techniques [57]. Innovations in process optimization (grinding, 
cleaning, and extrusion processes) have led to improved quality of recycled PET and reduced energy consumption during mechanical 
recycling. The incorporation of additives, such as compatibilizers and chain extenders, into the recycling process, has shown promise in 
enhancing the mechanical properties of recycled PET, allowing for broader application possibilities [27,31]. 

Advanced solvent-based processes, such as dimethyl carbonate (DMC) and ionic liquid methods, have been explored to efficiently 
depolymerize PETW, achieving high-quality monomers for PET production [16,39]. Innovative catalytic conversion processes using 
various catalysts, including zeolites and metal-organic frameworks (MOFs), have shown potential to improve the efficiency of 
chemical recycling by reducing energy requirements and enhancing product yields [40,58]. Microwave-assisted depolymerization 
techniques have been investigated as a rapid and energy-efficient method to break down PETW into valuable chemicals [43,47,54,59]. 
Moreso, there are ongoing research efforts focused on developing enzymes with improved efficiency, stability, and specificity for PET 
depolymerization [45]. Protein engineering techniques, such as directed evolution and computational design, are being employed to 
create enzymes with enhanced performance [44,49,60]. Scientists are also working on optimizing reaction conditions, such as tem-
perature, pH, and reaction time, to improve the enzymatic depolymerization efficiency and reduce the cost of the process. At the same 
time, strategies are being explored to recover and reuse enzymes, improving the overall sustainability of enzymatic depolymerization. 

The use of supercritical fluids, such as supercritical CO2, offers a solvent-free and energy-efficient method for PETW recycling, 
allowing for the selective recovery of high-quality PET and other valuable components are also being explored [61,62]. Innovative 
pyrolysis techniques, such as microwave-assisted pyrolysis and catalytic pyrolysis, are being developed to improve the yield and 
quality of the pyrolysis products obtained from PETW [48]. 

There are also sustainability initiatives which include increasing emphasis currently placed on conducting life cycle assessments 
(LCAs) to evaluate the environmental impacts of different PET recycling methods. This helps to identify areas for improvement and 
optimize recycling processes. Collaborative efforts between stakeholders in the value chain, including PET producers, recyclers, and 
consumers, are also being pursued to establish closed-loop systems that promote the collection, recycling, and utilization of PETW [21, 
59]. These recent advancements are aimed at making PETW recycling more efficient, sustainable, and economically viable, 
contributing to the transition towards a circular economy and reducing the environmental footprint of PET production and 
consumption. 

3. Supercapacitor principles and applications 

Supercapacitors (SCs) are gaining attention as useful alternatives to batteries and fuel cells in many fields like hybrid cars and 
portable electronic devices. This is owing to their extraordinary electrochemical characteristics, for instance, high specific power, 
excellent cycle stability, and a quick charge-discharge process [63–65]. In supercapacitors, energy is stored and released by 
ion-reversible desorption and adsorption processes at the electrode-electrolyte interface, making them effective energy storage devices 
[66,67]. It operates more effectively and has a higher energy density than a conventional capacitor, which has a lower energy density 
despite having a higher cell voltage and better specific power [63,68,69]. In contrast to regular capacitors, which store energy 
electrostatically in an electric field between two conducting plates, supercapacitors, store energy using electrochemical processes. 
Supercapacitors store electrical energy between double layers at the electrolyte-electrode interface. They have a large surface area and 
a small separation between plates, allowing for high capacitance [70,71]. To generate positively and negatively charged ions in an 
electrolyte solution, activated charcoal is applied to metal plates via porous or nanoscale materials. When a voltage is supplied to the 
plates, ions aggregate on their surfaces, forming an electrostatic double layer that operates as two capacitors connected in series [72, 
73]. 

Supercapacitors provide several benefits, including excellent performance, the ability to be easily coupled in series with batteries 
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(to provide higher voltages needed by power-demanding equipment), and the ability to produce high load currents due to their high 
specific power and low resistance. They are constructed in tiny, lightweight packages that make them easy to install in confined lo-
cations, and they are very reliable with higher charging rates, longer service lives, and longer cycling durations than batteries [73–75]. 

Although supercapacitors have some advantages, their fundamental disadvantage is that they have a lower energy density than 
batteries. Moreso, due to their low voltage limits and fast self-discharge rates, SCs need series connections to attain high voltage. SCs 
have the highest dielectric absorption when compared to other types of capacitors, and the complete energy spectrum cannot be used 
due to the linear discharge of voltage. This limits their ability to store large amounts of energy for long periods [73–75]. SCs are being 
improved to have higher energy density and meet challenges for better performance because they offer a good alternative to batteries 
for high-power and long-lasting applications. 

The components of a supercapacitor are a porous membrane separator (that allows ions to travel between the electrodes), an 
electrolyte, and two electrodes shown in Fig. 1. These electrodes are responsible for the 1000 times greater capacitance of SCs 
compared to ordinary capacitors, although they have the same charge-discharge mechanism [64,66]. Supercapacitors’ unique 
structure enables them to share characteristics with both electrochemical batteries and ordinary capacitors. To attain high perfor-
mance and improved capacitance, SCs made of nanomaterials have larger electrode surfaces [76,77]. 

The electrodes are commonly made from activated carbon or carbon nanotubes, which have a high surface area and a large contact 
area for electrolyte ions. Supercapacitors are significant due to their exceptional properties, which make them valuable for a large 
range of applications [64,69]. The energy and power density are determined by the electrolyte’s stability and the utilization of 
electroactive compounds. When evaluating the usefulness of supercapacitors in actual applications, several different criteria, including 
cell capacitance, voltage window, power density, impedance, time, and energy density, are taken into consideration. Alongside, safety, 
device stability, reduced heating, flexibility, and light weight, and some crucial features of SCs are given [33,66]. 

Supercapacitors have emerged as a compelling option for applications that demand high-power bursts, due to their quick energy 
supply and absorption capabilities. These devices can expediently release energy on demand, thanks to their faster charging and 
discharging speeds relative to traditional batteries [77]. Additionally, supercapacitors exhibit remarkable resilience and durability 
compared to batteries, withstanding hundreds of thousands to millions of charge-discharge cycles without significant deterioration. 
With very high charge/discharge efficiencies, they minimize energy loss during operation and optimize energy retrieval [72,73]. 
Furthermore, supercapacitors demonstrate impressive temperature tolerance, operating effectively across a broad range of temper-
atures. Their superior safety profile, without the risk of thermal runaway or explosion, sets them apart from batteries [78]. Never-
theless, sufficient voltage and current management is a prerequisite for safe operation. Supercapacitors can synergistically operate 
with batteries to provide an effective buffer for high-power requirements. During low-power periods, they can efficiently recharge, and 
during peak loads, they can quickly deliver power, enhancing overall system performance and extending battery life. Supercapacitors 
have diverse applications in several fields, including transportation (electric, hybrid, and regenerative braking), renewable energy 
systems (grid stabilization, smoothing intermittent energy sources), consumer electronics (portable devices, wearables), aerospace 
(emergency power backup, aerospace systems), and others [73,77,79,80]. 

3.1. Types of supercapacitors 

Electrostatic double-layer capacitors (EDLCs), pseudocapacitors, and hybrid capacitors make up the three clusters of super-
capacitors based on how they store charge. As shown in Fig. 2, EDLCs keep their charge by forming an electrical double layer on the 
electrode surface without engaging in any irreversible chemical reactions [65,81]. The performance of the EDLC can be affected by the 
electrical attributes of the protecting dielectric material. Each electrolyte experiences an electric field when a voltage is applied across 

Fig. 1. Schematic diagram of a supercapacitor system.  
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the terminals, resulting in its polarization. The particles accordingly navigate the dielectric to the permeable terminals, where they 
create inverse charges. An electric double layer is formed on each electrode as a result, increasing the surface area and decreasing the 
distance between them. It is crucial that the electrical properties of the insulating dielectric material can significantly impact the 
performance of the supercapacitor. In this manner, the choice of a suitable dielectric material is essential in amplifying the proficiency 
and life expectancy of the EDLC supercapacitor [65,81,82]. 

Pseudocapacitors, also known as faradaic supercapacitors, utilize conducting polymers, such as polyanilines, polypyrroles, poly-
thiophenes, and metal oxides, such as MnO2 and RuO2, as electrode materials that are redox active. These electrodes store charge near 
the electrode or at the electrode surface, where charges are transferred across the metal-electrolyte interface, employing reversible 
faradaic reaction mechanisms [65,68,83] (see Fig. 3). 

Hybrid capacitors shown in Fig. 4, are comprised of electrodes with diverse properties depending on chemical and electrical 
principles and feature both the EDLC and pseudo capacitor technologies. As a result, one electrode exhibits electrostatic capacitance 
while the other exhibits electrochemical capacitance. The benefits include a greater working voltage, larger capacitance, and a higher 
energy density [72,79,85]. 

3.2. Factors influencing the performance of supercapacitor 

Some of the numerous factors influencing the capacitive behaviour of supercapacitors include the following [78,86,87].  

i. The capacitance of the material is directly influenced by the electrode’s surface area. 

Fig. 2. Schematic representation of electric double-layer capacitors.  

Fig. 3. Schematic representation of pseudocapacitor. adapted from [84].  
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ii. The pore structural parameters of pore size, shape, and distribution affect the ion and charge transport mechanism, which in 
turn alters the electrode’s capacitance.  

iii. The electrochemical response of the electroactive substance is enhanced by the conductivity of the electrode and the addition of 
a conducting substance with binding properties.  

iv. The resistance of the electrolyte and ions diffusing towards and away from the electrode are the main determinants of capacitor 
resistance.  

v. The supercapacitor self-discharges due to current leakage caused by an unclean electrode or electrolyte.  
vi. The capacitance is increased by structural flaws in the electrodes, such as vacancies, defected surfaces, and basal edges, which 

act as electroactive sites for the adsorption of ions. The electrode’s porosity also produces excellent performance because the 
energy is stored on the electrode surface.  

vii. Ionic liquids are more resistant to the redox process than organic and aqueous electrolytes. Aqueous electrolytes are relatively 
more stable than organic and ionic.  

viii. The ability of materials to retain energy considerably increases by having well-defined, ideally crystalline, facets. 

3.3. Common electrode materials used for supercapacitor applications 

Supercapacitors’ electrochemical performance is influenced by the electrolyte system, operating conditions, device configuration, 
and electrode materials in addition to those factors. The choice of electrode material relies on the needs of the application, such as 
specific capacitance, energy density, power density, cycling stability, cost concerns and environmental effects [88–90]. Several 
electrode materials are frequently used in supercapacitor applications, each material has its advantages and limitations. 

3.3.1. Carbon-based materials (CBMs) 
Carbon-based materials (such as activated carbon, carbon nanotubes, carbon fibres, carbon foams, structural graphite, graphene, 

etc.), are widely used in supercapacitor applications because they generally exhibit high specific capacitance due to their large surface 
area and porous structure, good conductivity, and electrochemical stability. Carbon materials offer high specific capacitance, good 
cycling stability, and relatively low cost [68,91,92]. PETWs are turned into activated carbon because it has a higher capacitance value 
than other classic carbon materials like graphene and carbon nanotubes in both organic and aqueous electrolytes. They can have 
excellent cycling stability, showing minimal degradation over numerous charge-discharge cycles, and typically exhibit good rate 
capability, enabling fast charge-discharge processes [77,93]. Carbon-based materials can be cost-effective compared to some other 
electrode materials, and the specific capacitance is not always precisely proportional to the surface area of the carbon electrode, this 
nonlinear relationship was deduced from different activated carbons with varied pore diameters in different electrolytes [76,92]. 

They have high specific capacitance, great electrical conductivity (enabling supercapacitor devices to charge and discharge 
quickly), good electrochemical stability, are abundant, and are easily accessible from a variety of sources. They can also be processed 
using scalable and affordable manufacturing processes like spray coating, screen printing, or inkjet printing. They also demonstrate 
good compatibility with both aqueous and organic electrolytes (allowing for a wide range of electrolyte choices in supercapacitor 
systems) [72,94]. Improvements to their electrode architectures, specific capacitance, and energy storage performance are all being 
worked on through research and development, along with the investigation of novel carbon materials and fabrication methods. To 
further improve the capacity for energy storage and the general effectiveness of carbon-based supercapacitors, researchers are also 
looking at hybrid architectures or composites [85]. 

Fig. 4. Schematic representation of hybrid SC.  
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3.3.2. Transition metal oxides (TMOs) 
Transition metal oxides (such as RuO2, MnO2, NiO, IrO2, In2O3, Fe2O3, Co2O3, SnO2, V2O5, MoOx, Bi2O3, NiCo2O4, BiFeO3, etc.) 

have gained significant attention for their potential use in supercapacitors due to their capacity for undergoing faradaic reactions, 
which entail reversible redox processes (with protons that freely intercalated into the oxide lattice and out of the lattice for reduction 
and oxidation states respectively) [95–99]. TMOs offer high specific capacitance through redox reactions and pseudocapacitive 
behaviour. TMOs have a wide operating potential range, which enables supercapacitor devices to have a wider voltage window, this 
increases their energy storage capacity and power density. Generally speaking, they have strong electrochemical stability, allowing 
them to withstand repeated charge and discharge cycles without noticeably degrading their performance, hence the long cycle life and 
dependability [100]. TMO-based supercapacitors offer pseudocapacitance due to their redox reactions leading to higher energy 
storage capacity than purely double-layer capacitors [101]. They often have comparatively higher specific capacitance than 
carbon-based materials (which enables further charge storage beyond electrostatic double-layer capacitance) but lower than pseu-
docapacitive materials. Their cycling stability can vary for different transition metal oxides, with some exhibiting good stability and 
others showing degradation over multiple cycles. TMOs may have moderate rate capability, with the charge-discharge performance 
affected by their electronic and ionic conductivity, and oxidation states which coexist in the continuous range without changing the 
phase. TMOs can be more expensive than carbon-based materials and may have limited stability in aqueous electrolytes, restricting 
their use in specific environments [102–105]. TMO-based supercapacitors offer flexibility in electrolyte selection based on unique 
application needs because they can be used with both aqueous and non-aqueous electrolytes, as such, their performance and energy 
storage properties can be optimised due to this compatibility. 

While there are many benefits to TMO-based supercapacitors, there are also certain issues that need to be resolved, such as low 
electrical conductivity, volume changes during cycling, and delayed reaction kinetics. Even so, ongoing research aims to raise their 
specific capacitance, boost their ability to handle high charge/discharge rates and enhance their electrochemical stability. Expanding 
the accessible surface area of TMOs, analysing nanostructured TMOs, and devising methods for better ion and electron transport in 
TMO-based electrodes are some of the research goals that should be targeted. 

3.3.3. Conducting polymer-based materials (CPBMs) 
Conducting polymers, also referred to as intrinsically conducting polymers (ICPs), are organic polymers that conduct electricity. 

These active components in supercapacitor electrodes, such as phenylene, naphthalene, anthracene, polypyrrole (PPy), polyaniline 
(PANI), and poly(3,4-ethylenedioxythiophene) (PEDOT), are made of aromatic rings connected by single carbon-carbon bonds 
[106–108]. Conducting polymers, offer pseudocapacitive behaviour and good flexibility and tunable properties. Conducting polymers 
exhibit relatively high specific capacitance, surpassing carbon-based materials but lower than some transition metal oxides. Cycling 
stability can vary for different conducting polymers, with some showing good stability and others suffering from degradation over 
extended cycles [109,110]. Conducting polymers generally have lower rate capability compared to carbon-based materials due to 
slower charge transfer kinetics. Conducting polymers offer pseudocapacitance due to redox reactions, contributing to their enhanced 
energy storage capacity. Conducting polymers can be solution-processable, allowing for facile electrode fabrication on various sub-
strates. Conducting polymers can experience conductivity loss upon extended cycling and may require the use of specific electrolytes 
[109,111,112]. 

Due to their pseudocapacitive behaviour, CPs often have high specific capacitance and high energy storage capacity. They also have 
inherent electrical conductivity, which allows for effective charge transfer inside the electrode material and quick charge and 
discharge rates. They may be chemically changed and doped to adjust their properties (such as capacitance, stability, and charge 
storage processes), and they are compatible with both aqueous and non-aqueous electrolytes, giving flexibility in electrolyte selection 
based on specific application needs [109,111]. Even though conducting polymer-based supercapacitors has several benefits, issues like 
their low energy density in comparison to other supercapacitors and their restricted long-term stability must be resolved. 

3.3.4. Metal-organic frameworks (MOFs) 
MOFs are porous materials composed of metal ions or clusters coordinated with organic ligands. MOFs have drawn interest lately as 

the active elements in their electrodes due to their adaptable qualities, large surface areas, and porous nature (providing a large 
number of active sites for charge storage), which facilitates high capacitance and energy storage capacity. MOFs’ tuneable porosity 
provides a wide range of opportunities for customising their properties (such as charge storage mechanisms, electrochemical per-
formance, and stability) [113,114]. They have high charge mobility because of the good electronic and ionic conductivity they exhibit 
(facilitating efficient charge transport within the electrode material). The cycling stability of MOFs can vary widely, with some ma-
terials showing good stability and others experiencing degradation over cycles due to structural changes or solvent effects [115]. MOFs 
may have limited rate capability due to slow ion diffusion within their porous structure. MOFs offer the advantage of tuneable porosity, 
allowing for guest molecule interactions and potential pseudocapacitive behaviour. MOFs face challenges related to their stability in 
aqueous electrolytes and long-term durability [116–118]. 

3.3.5. Perovskite-based materials (PBMs) 
These are a promising class of electrodes that utilize perovskite materials as active components in energy storage devices. 

Perovskite materials have shown promise in supercapacitor applications due to their high dielectric constant and charge carrier 
mobility. Due to the possession of high dielectric constants and excellent electronic conductivity, they can achieve high energy density 
and exhibit fast charge/discharge rates. The perovskite structures allow the tailoring of their properties to optimize the performance 
(capacitance, stability, and electrochemical performance) in supercapacitor applications, by varying the cation and anion 
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compositions, as well as their crystal structures [70,119,120]. 

3.3.6. Other waste-derived materials (WDMs) 
Supercapacitors can benefit from various waste materials, not just PET waste. The production of activated carbon from waste 

materials has increased recently due to its affordability, ease of use, and perceived effectiveness in addressing the environmental 
problem of waste management. Waste materials such as biomass, used tyres, electronic waste, and textile waste are now viable options 
for the first component of activated carbon in supercapacitor performance due to the composition of various wastes. To transform these 
materials into appropriate electrode materials, processing usually entails multiple processes [2,4,121–127]. Their utilization provides 
high-performance and dependable materials for energy storage applications in addition to addressing environmental concerns. 

PET electrodes are a sustainable and scalable option for supercapacitors, despite having lower capacitance than some carbon 
materials. Transition metal oxides have higher capacitance but lower cycling stability and are more expensive. Carbon-based 
supercapacitors have higher power density and cycling stability than TMOs. PET-derived electrodes are affordable and have higher 
cycle stability than TMOs. Conducting polymers are flexible, but carbon-based supercapacitors have better stability and lower costs. 
PET-based electrodes are stable and scalable, while MOF-based supercapacitors have high specific capacitance but low conductivity. 
Perovskite-based supercapacitors have high energy density and rapid charging, but PET and carbon-based supercapacitors are more 
cost-efficient and stable with better cycling. 

4. Recycling PET for supercapacitor applications 

Recently, researchers and academics have examined the potential for recycling waste PET for use in supercapacitor (SC) appli-
cations. The environmental impact of disposing of PET can be lessened while protecting priceless resources like petroleum by recycling 
used PET for supercapacitor applications [128,129]. With the growing demand for portable electronics, electric vehicles, and 
renewable energy sources, recycling PETW has become an economical solution to both environmental concerns and the increasing 
need for energy storage. PETW materials can be efficiently recycled through various methods, generally, the chemical recycling 
process is used mainly for supercapacitor applications [1,130,131]. The procedures used to produce electrode materials for SC 
application from used PET bottles are shown below in Fig. 5. 

To create a homogeneous feedstock, PET materials are gathered and sorted based on their resin type and colour. During the 
depolymerization process, the sorted feedstock is broken down into its monomer components, namely ethylene glycol and terephthalic 
acid [33]. To ensure high-quality depolymerized monomers, contaminants and byproducts are removed. The clean monomers are then 
carbonized (heated in an oxygen-free environment) and activated (through physical or chemical processes) to create 
supercapacitor-compatible carbon-based electrode materials. This improves their electrochemical performance by increasing surface 
area and porosity [132,133]. The carbon-based components extracted from PET are combined with binders and conductive additives 
to increase mechanical stability and electrical conductivity [134]. The resultant slurry is then placed onto a current collector and 
allowed to dry to create the electrode. Finally, a supercapacitor device is assembled using the manufactured electrodes and submerged 
in an electrolyte solution after the electrodes have been separated by a separator. This enables ion transport and charge storage within 
the supercapacitor [72,134–136]. 

There are numerous benefits to recycling used PET for supercapacitor applications. In terms of sustainability, recycling PETW 
lessens the need for virgin materials, protects natural resources, and lessens the environmental damage caused by disposing of PET. 
Recycling PETW reduces the need for crude oil and other raw materials used to make virgin PET. For sustainable development, the 
preservation of non-renewable resources is essential. Generally speaking, recycling PET waste uses less energy than the entire virgin 
PET production cycle. PETW offers a lower-cost feedstock than conventional carbon precursors, making its use as a precursor for 
supercapacitor electrodes potentially economically viable [93,137–140]. The properties of the carbon-based electrode materials can 
be tailored throughout the recycling process by adding dopants, functional groups, or other additives, which improves the electro-
chemical performance [76,93,141]. Because PETW is widely accessible, recycling may be scaled up to satisfy the rising demand for 

Fig. 5. PETW conversion to electrode materials.  
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supercapacitor applications. 

4.1. Significance of PETW recycling in energy storage 

Supercapacitors (SCs) stand out as an energy storage technology because of their extraordinary mix of high-power density, fast 
charge-discharge qualities, and long-life cycles. They effectively bridge the gap between batteries and conventional capacitors [63,66, 
67]. Due to their fascinating physical, chemical, and electrical properties, which have piqued the curiosity of scientists and researchers 
worldwide, the conversion of PETW into carbon-based electrode materials is essential for the development of high-performance 
supercapacitors from PETW [1,142,143]. The fact that carbon has distinct properties when compared to other elements because of 
its hybrid orbitals, which enable it to make numerous bonds with itself, is the primary reason that PETW is converted into carbon-based 
products. The hybridized bond made by get-together nuclear orbitals s and p brings about a new mixture of orbitals sp2 and sp3, which 
cause various carbon allotropes going from 0 to 3 elements of carbon [87,144]. 

Reusing PETW for supercapacitor applications permits us to transform waste into useable energy storage devices. This increases 
energy proficiency while diminishing reliance on customary energy sources that utilize petroleum derivatives. Reusing PET can be 
more feasible than cycling virgin materials because it eliminates the need for costly natural ingredient extraction, handling, and 
refining. Additionally, the production of supercapacitors may be less expensive with recycled PET [6,23]. Due to their longer lifespan, 
improved efficiency, and lower reliance on toxic components, supercapacitors are regarded as being better for the environment than 
conventional batteries. Recycling PETW for supercapacitor applications could enhance the environmental benefits of these energy 
storage devices and promote sustainable energy storage research and development [25,145]. 

Supercapacitors have several positive environmental effects that can help reduce ecological impact and promote sustainability. 
They provide increased energy efficiency, decreased reliance on hazardous materials and superior integration of renewable energy 
sources, decreased greenhouse gas emissions, waste reduction, and higher safety [146]. Since they are frequently easier to recycle than 
batteries, their extended operational life minimises maintenance needs and related environmental effects, helping to reduce the 
amount of electronic waste produced [147]. The likelihood of contaminating land and water is reduced because many supercapacitors 
are constructed of carbon-based materials, which are more environmentally benign, and don’t use heavy metals or dangerous elements 
[77,92,93,137]. Rapid energy storage and release is perfect for integrating intermittent renewable energy sources into the grid, sta-
bilising it, reducing power fluctuations, and boosting the dependability of renewable energy systems [146,148,149]. By enhancing the 
effectiveness of energy storage and utilization, they help reduce greenhouse gas emissions. Regenerative braking and improved energy 
management can lower pollutants and increase fuel efficiency in electric and hybrid vehicles [72,73]. Because of these benefits, 
supercapacitors are a desirable choice for environmentally friendly energy storage systems. 

5. Synthesis of PET-derived electrode materials for supercapacitor electrodes 

The transformation of PET (polyethene terephthalate) waste into suitable precursors for supercapacitor electrodes typically in-
volves a multi-step process; depolymerization (which comprises collection and sorting, depolymerization and purification of PETW 
materials), conversion into carbon-based materials with desirable electrochemical properties (via carbonization and activation) and 
electrode fabrication. It is noteworthy that specific parameters, such as carbonization temperature, activation method, and electrode 
formulation, hold significant influence over the electrochemical performance of electrode materials derived from PET [150,151]. It is 
imperative to consider certain factors that may significantly impact the said performance and, thus, the effectiveness of the product. As 
such, depending on the desired properties of the supercapacitor electrodes and the available resources, optimization and fine-tuning of 
these parameters are essential to achieve the desired properties for efficient supercapacitor applications. 

5.1. Carbonization and activation processes to convert PET into carbon-based materials 

PET is converted into AC by a critical physical and chemical activation process in a two stages process: (i) carbonization in an N2 
environment; and (ii) activation with air, CO2, or steam. The properties of activated carbon, which can be generated from a variety of 
polymers, are determined by the carbon precursors and the synthesis procedure [152]. The carbonization process involves heating the 
purified PET monomers in an oxygen-free environment at high temperatures (typically 400–900 ◦C), to break down the organic 
molecules and remove volatile compounds, leaving behind a carbon-rich material [133,153]. The duration of heating necessary to 
achieve specific properties in the final carbon material is subject to variability. Carbonized PET can yield either amorphous carbon or 
carbon black, both of which can be subjected to activation to enhance their surface area and porosity, ultimately improving the 
performance of supercapacitor electrodes. 

Activation is a pyrolysis-based process that converts industrial carbonaceous materials, or industrial waste, into active materials 
through high-temperature exposure in an inert or low-oxygen environment [131,154]. Activation involves further treatment to 
introduce additional pores and increase the material’s reactivity which can be achieved through physical or chemical methods. The 
activation process to produce activated carbon (AC) can either be physical or chemical. Physical activation which frequently follows 
pyrolysis involves the use of a physical agent (such as steam or CO2, or mixes of these gases) to create pores in the carbonized PET 
material by exposing the carbon material to the agent at high temperatures (800–1000 ◦C) [155,156]. At these high temperatures, the 
physical agent reacts with the carbon structure, creating pores and increasing the surface area. To remove bulky volatile components, 
the carbon source is heated between 400 and 900 ◦C in an inert atmosphere during the physical activation process. An oxidising gas is 
then used in partial gasification at temperatures between 350 and 1000 ◦C. The activating agent’s active oxygen first burns away the 
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tarry pyrolysis by-products lodged in the pores to unlock certain clogged holes. Second, a microporous structure forms as the oxidising 
agent burns away more reactive carbon framework regions, generating CO and CO2 [22,154,156]. Physical activation methods are 
frequently employed in industrial applications due to their low production cost. However, when compared to chemical activation 
methods, physical activation methods yield lower activation results and less pore development. This is due to the insufficient diffu-
sibility of the activating agent into the core regions of particles as well as microdomains of carbon materials. As a result, chemical 
activation methods may be more effective for achieving higher activation yields and pore development in carbon materials. The 
diffusibility of the activating substance and the degree of pore creation however can be increased using a novel pressurised physical 
activation approach [154,156]. 

Chemical activation is a process that entails combining a carbon source with various chemical agents, including alkalis, carbonates, 
chlorides, acids, or a combination thereof. The chemical activation process occurs within a temperature range of 450 ◦C–900 ◦C, and it 
involves impregnating the carbonized PET material with the chemical agents, followed by heating the material to the reaction tem-
perature range [157,158]. The reaction between the carbon and the chemical agent results in an increase in the surface area and the 
formation of pores within the material. However, chemical activation is a process that is limited by the amount of water required to 
remove the contaminants produced by the process and the need to manage tainted water. Despite this limitation, chemical activation 
using potassium hydroxide (KOH) as an activating agent is a highly promising technique [159,160]. This is because KOH has a low 
activation temperature, quick activation time, higher yields, a well-defined micropore size distribution, and ultrahigh-specific surface 
area of the resulting porous carbons. These characteristics are crucial in charge storage and have the potential to enhance the per-
formance of various energy storage applications. In summary, chemical activation is a promising technique for creating porous carbons 
with high surface areas and well-defined micropore size distributions. While the process is limited by the need to manage contaminated 
water, the use of KOH as an activating agent has the potential to improve energy storage applications [46,161,162]. 

The selection of physical and chemical activation methods, either individually or in combination, is influenced by the desired 
characteristics of the final carbon-based material. The resultant properties of the material are significantly impacted by the choice of 
activation method and specific parameters such as temperature, time, and agent concentration. Both methods elicit porosity and 
increase surface area, thereby enhancing the material’s electrochemical properties and performance. However, chemical activation 
facilitates better control regarding the distribution of pore sizes. 

5.2. Thermochemical conversion 

The thermochemical conversion of solid polymer waste into activated carbon is an effective technique with numerous benefits. By 
breaking down polymeric waste into low-molecular-weight compounds that slowly evaporate when heated in the air at 360 ◦C, this 
method boasts a higher conversion rate, larger surface area, and complete conversion of organic components into carbon-based 
products [67,163,164]. These advantages make it an environmentally friendly solution for the treatment of waste materials. The 
carbonized and activated PET can be further processed and utilized as a precursor for supercapacitor electrodes, or in other appli-
cations that require high surface area, electrical conductivity, and electrochemical performance of carbon-based materials [75,165]. 
Various methods can be used to improve the electrochemical performance of activated carbons, including ultrasonic radiation 
treatment (to alter the Fermi level position), an oxidation process (to modify the surface), the incorporation of heteroatoms (such as S, 
O, and N), or the formation of a composite electrode by incorporating polymers into the carbon substrate [72,79]. Overall, the 
conversion of solid polymer waste into activated carbon through thermochemical means is a well-suited technique for businesses and 
organizations looking to improve their environmental impact, while also creating valuable products. 

5.3. Electrode fabrication 

The PET-derived carbon-based materials are then processed into electrode structures suitable for supercapacitors by mixing with 
binders, to improve mechanical stability and electrical conductivity (often termed mixing and binder addition) [134]. This mixture is 
then coated onto a current collector, such as a metal foil or mesh, using techniques like doctor-blading, dip-coating, or spray-coating. 
This forms a uniform and well-adhered electrode layer on the collector. The coated electrode is dried to remove any solvent or 
moisture, to form the electrode, which may undergo compression to improve its density and adhesion to the current collector [72,92]. 

5.4. Electrode testing and assembly of supercapacitor 

The fabricated electrode is characterized using various techniques, such as scanning electron microscopy (SEM), X-ray diffraction 
(XRD), and electrochemical measurements, to evaluate its morphological, structural, and electrochemical properties. Finally, the 
electrodes are assembled into a supercapacitor device by sandwiching them between separators (which allow ion transport) and 
immersing them in an electrolyte solution. The electrolyte facilitates charge storage and ion exchange within the supercapacitor [72, 
92,166]. 

5.5. Doping and functionalization strategies to enhance electrochemical performance 

Doping and functionalization techniques are commonly utilized to enhance the electrochemical performance of carbon-based 
materials employed in supercapacitor electrodes. These techniques entail the incorporation of foreign elements or functional 
groups into the carbon structure to modify its properties. Either strategy or a combination of both can be employed to tailor the 
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electrochemical properties of carbon-based materials for specific supercapacitor applications [87]. The selection of a strategy is reliant 
on the desired performance characteristics and the specific requirements of the application. 

Doping refers to the intentional introduction of foreign atoms or ions (like nitrogen (N), phosphorus (P), sulfur (S), and various 
transition metals) into the carbon lattice, to alter the electronic structure, conductivity, and surface chemistry of the carbon material 
[167,168]. Nitrogen doping introduces nitrogen atoms into the carbon lattice, leading to enhanced pseudocapacitance and improved 
electrochemical performance, because nitrogen atoms can modify the electronic properties of carbon, increase the surface area, and 
provide additional active sites for charge storage [169,170]. Phosphorus and sulfur doping can also improve the electrochemical 
performance of carbon materials, however, while phosphorus doping increases the conductivity and capacitance, sulfur doping 
generally enhances the capacitance and stability of the carbon material [171,172]. Doping of carbon materials with transition metals, 
such as iron (Fe), cobalt (Co), or manganese (Mn), can significantly enhance their electrochemical properties. The transition metals 
introduce redox-active sites, promote charge transfer kinetics, and increase the specific capacitance of the carbon material [102]. 

Functionalization involves attaching functional groups or molecules to the carbon surface, in a bid to modify the surface chemistry, 
introduce new functionalities, and enhance the electrochemical properties of the material. Introducing oxygen-containing functional 
groups such as hydroxyl (-OH), carbonyl (C=O), or carboxyl (-COOH) groups, can improve the wettability, increase the active surface 
area, and enhance the electrochemical performance of carbon materials [173,174]. Introducing heteroatoms (heteroatom function-
alization), such as oxygen (O), nitrogen (N), or sulfur (S), as functional groups can alter the electronic properties and surface chemistry 
of carbon materials. Heteroatom functionalization enhances the pseudocapacitive behaviour, increases the charge storage capacity, 
and improves the stability of supercapacitor electrodes [87,174,175]. 

5.6. Electrode binders 

In an electrode system, while the active materials have the greatest influence on supercapacitor capacitance, the binder materials 
play a vital role in electrode manufacturing, providing mechanical support and flexibility. Salleh et al. [134] discussed the variety of 
binders and their unique characteristics, which have a significant impact on supercapacitor electrode performance in a recent review. 
Polymer binders are crucial for improving supercapacitor electrodes, as they enhance performance and flexibility by acting as a glue 
between the active materials and current collectors, preserving the mechanical integrity of the electrode [134]. 

Surface coating of the carbon material with conductive polymers, such as polyaniline (PANI), polypyrrole (PPy), or poly(3,4- 
ethylenedioxythiophene) (PEDOT), can also be used to enhance the electrochemical performance of the material [112,176]. This 
provides additional redox-active sites, thereby, increasing the electrical conductivity, and improving the stability of the electrode 
material [111,135]. 

5.7. Exploration of novel approaches for synthesizing PET-derived electrode materials 

The exploration of novel approaches for synthesizing PET-derived electrode materials is an active area of research aimed at 
developing sustainable and efficient energy storage solutions. A few emerging techniques have shown promising results including 
hydrothermal carbonization, solvothermal conversion, microwave-assisted pyrolysis, and electrochemical conversion [177–179]. 
These techniques are still under investigation, and their feasibility and scalability for large-scale PETW conversion into electrode 
materials are subjects of ongoing research. Additionally, the specific parameters and conditions for each technique may vary 
depending on the desired properties of the final electrode material. 

Hydrothermal carbonization (HTC) is a technique that involves the carbonization of biomass or organic waste materials at mod-
erate temperatures between 150 and 400 ◦C and high-pressure conditions in the presence of water [179,180]. Hydrothermal 
carbonization techniques offer greater yields and more adjustable shape and porosity of carbon products as compared to pyrolysis and 
chemical activation. However, this method needs time-consuming post-processing to produce the desired outcome. This approach has 
been explored for converting PETW into carbonaceous materials. The process promotes the polymer decomposition and carbonization 
of PET, resulting in the formation of carbon-rich materials with enhanced surface area and porosity [179,181,182]. The HTC process 
can be further modified by adding catalysts or dopants to tailor the properties of the resulting carbon materials. 

The creation of activated carbon-based materials sometimes requires a combination of soft and hard templates or a blend of both in 
template-based assisted carbonization [183]. The hard template-based method is a useful technique for producing macroporous 
structures with the aid of hard particles such as zeolites, metal-organic frameworks, mesoporous silicas, and clay materials acting as a 
sacrificial structure controller. This methodology enables the fabrication of highly organized structures, and the process is advanta-
geous in producing carbonaceous materials for use in supercapacitor applications from industrial waste. However, the technique’s 
effectiveness is limited by the structure collapse, instability, and pore blockage that occur during template etching or in the case of a 
soft template [181,184]. In this method, the voids created by colloidal particles are filled with fluid-like carbon raw materials that 
permeate the templates and later solidify. Upon conversion of the solid fillers into a solid carbon framework in an inert atmosphere, the 
sacrificial templates around the air holes left in the starting positions of the solid particles are subsequently eliminated by the pyrolysis 
process or by chemical etching [114,165,181]. To create an ordered porous carbon structure doped with heteroatoms, a 
heteroatom-rich chemical is made to interact with the precursor. Subsequently, KOH activation is done to produce a hierarchically 
porous carbon structure [152,160]. 

The soft template-based technique is also a desirable strategy because it offers desirable advantages like the capacity to create 
carbon-based materials with various morphologies in less demanding experimental conditions, using block copolymers and organic 
molecules [185]. Structure-directing agents and carbon material precursors in solution are assembled during the inter-assembly of 
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organics to create mesoporous carbon materials with the desired size. When opposed to hard templates, soft template systems are less 
stable. Additionally, the heteroatom-rich compound can be used to create the ordered porous carbonaceous material that is doped for 
use as a supercapacitor electrode [181,186]. An effective strategy for achieving high electrochemical performance in supercapacitors 
will involve the integration of soft and hard template methods to produce hierarchical porous carbon-based materials with mesopores 
and macropores. Such templates typically comprise triblock copolymer micelles and hard particles, where soft templates fill the voids 
of the hard templates during preparation. Notably, the macropore-based ordered porous carbon supercapacitor electrode excels in 
facilitating ion transport and electrolyte access, thereby enhancing the loading and dispersion of electroactive components [142,169]. 
The use of macropore-based materials could be a promising avenue for developing high-performance supercapacitors. 

Ionic liquids are the starting point for the ionothermal carbonization process, which produces high-quality carbon functional 
materials from polymers with large specific surface areas and pore volumes [187]. The ionothermal method provides some advantages 
over traditional carbonization techniques, including the flexibility to modify the composition and processing conditions of the ionic 
liquid to alter the carbon structure and properties. It also exhibits substantially superior electrochemical performance than ordinary 
carbon materials and enables the straightforward manipulation of the porosity of synthetic porous carbon materials by varying the 
sizes of anions without the need for templates or additives [181,188,189]. This strategy may be effective in addressing the issue of pore 
structure collapse during carbonization. 

By functionally inducing in-situ doping, surface modification, and structural adjustment during additive-assisted carbonization, it 
is possible to change the size and surface properties of carbon materials [181]. Continuous carbonization, thermal stabilization, and RF 
resin penetration of the carbon material are all part of this process to maximise particular electrical conductivity and cycling ability 
[153,190]. By exposing polymer films to an infrared CO2 laser under the right circumstances, a technology known as CO2 laser 
carbonization can be used to convert them into porous graphene or laser-induced graphene (LIG) in a two-step process [181,191–193]. 

Microwave-assisted pyrolysis is a process that uses microwave radiation to rapidly heat the starting material and encourage its 
thermal decomposition [48,178]. PETW can be transformed into carbon-based materials through microwave-assisted pyrolysis. The 
pyrolysis process can be precisely controlled thanks to the rapid and effective heating provided by microwaves, which results in the 
production of carbon materials with the desired properties. This approach has the potential for high return and energy productivity 
[48,178,194]. 

Solvothermal conversion uses high temperatures, high pressures, and the presence of solvents to convert starting materials into the 
required products [195]. PETW can be exposed to solvothermal treatment utilizing solvents like ethylene glycol or other natural 
mixtures. The interaction advances the depolymerization of PET and ensuing carbonization, prompting the development of 
carbon-based materials appropriate for supercapacitor electrodes [177,195]. PETW can also be converted into electrode materials via 
electrochemical techniques, with the PET generally electrolyzed in a suitable electrolyte solution as part of the process. The elec-
trochemical cycles convert the PETW into carbonaceous materials, which can then be further processed and used as cathode materials 
for supercapacitors [196,197]. Electrochemical conversion offers the upside of exact command over the response conditions and the 
potential for versatile combination. 

5.8. Difficulties reported during the synthesis of PET-derived electrode materials 

The overall performance of the supercapacitor device relies on the properties of PETW, which can vary depending on its source and 
previous use, leading to inconsistencies in the performance of the electrode materials. This is often due to the presence of pollutants 
and impurities in the PETW, which can diminish the quality of the final electrode material [1,142,198,199]. As such it can be difficult 
to achieve a consistent electrochemical performance in batches of materials made from PETW. By improving the methods for sorting 
and cleaning to lower contamination and variability in PETW feedstock, this can be avoided. Creating supercapacitor electrodes with 
the necessary high surface area and ideal pore size distribution can be challenging. The activation process often involves chemicals, 
leading to complexity and environmental concerns for proper handling and disposal. However, the processes of breakdown and 
activation can be energy-intensive and may counteract some of the environmental advantages of utilizing waste PET [93,155,200]. 

Furthermore, obtaining the desired qualities (such as high capacitance, low resistance, and long cycle life) for supercapacitors using 
PETW-derived electrode materials necessitates thorough optimization, and precise control over temperature, atmosphere, and timing. 
Utilizing eco-friendly activation techniques and reducing the use of dangerous chemicals as well as creating and applying methods for 
PET conversion that are based on renewable energy sources and energy efficiency will boost sustainable chemical use in a circular 
economy [180,201]. Moreso, high processing costs can hinder widespread implementation, especially when transitioning from lab-
oratory to industrial-scale production. Offering financial rewards and assistance to encourage the expansion of sustainable practices 
can increase their economic feasibility. Moreso, using innovative materials derived from recycled plastic may face resistance due to 
concerns about their durability, performance, and long-term stability. Putting in place guidelines and quality assurance procedures to 
guarantee PETW-derived materials operate safely and consistently, as well as fostering market acceptability and demand by raising 
awareness can boost acceptance of sustainable materials and technologies for a circular economy [9,18,56]. Therefore, to create 
electrode materials from recycled PET, these challenges must be addressed to ensure the process is effective, profitable, and of high 
quality. Achieving this requires ongoing research and development with the aid of technological advancements and a greater emphasis 
on sustainable materials. 
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6. Performance of PET-derived supercapacitors 

6.1. Electrochemical performance of PET-derived supercapacitors 

The electrochemical performance of PET-derived SCs relies upon a few variables, including the properties of the PET-derived 
cathode materials, the electrolyte utilized, and the gadget setup. Specific capacitance, rate capability, cycling stability, electro-
chemical impedance, energy density, power density, and electrolyte compatibility are some important factors that also affect the 
electrochemical performance [202–204]. Specific capacitance, cycling stability, rate capability, and impedance analysis are critical 
considerations when evaluating the electrochemical performance of supercapacitor electrode materials. These limits provide crucial 
information about the materials’ long-term stability, charge-move energy, charge-storing limit, and charge-release behaviour [68,91, 
205]. Choosing the best electrode materials for various supercapacitor applications can be made easier with a better understanding of 
these evaluations. 

The charge storage limit per unit mass or unit surface region of the cathode material is estimated by the specific capacitance. Since 
it shows whether a material can store electrical energy, it is a pivotal variable in deciding how successful supercapacitors are at putting 
away energy. Different electrochemical strategies, for example, cyclic voltammetry (CV) or galvanostatic charge-release (GCD) tests, 
can be utilized to work out the specific capacitance. High-explicit capacitance electrode materials produced using PET can store more 
charge and convey more energy [174,175,206]. The charge stored can be determined from equation (1), while the capacitance is 
influenced by the permittivity of the dielectric medium (€), the spacing between the conductors (d), and the active area (A) of the 
capacitor conductor ((as estimated by the number of plates) [33]: 

Q=CV (1)  

Where: Q is the charge (C), C is the capacitance and V is the supplied voltage (v) 

C=
€A
d

(2) 

The term “fast charge-discharge rates” refers to a supercapacitor’s rate capability, which evaluates an electrode material’s per-
formance in high-current density environments. It is essential for applications that require rapid energy supply and storage. Rate 
capability can be computed by examining the variations in the material’s specific capacitance and voltage responsiveness at different 
current densities. At large current densities, a material with good rate capacity shows little loss in capacitance and voltage efficiency. 
High electrical conductivity and superior ion diffusion qualities of PET-derived electrode materials allow for effective charge transfer 
and ion transport, which improves the supercapacitor’s performance at high current densities [71,135,205]. 

The cycling stability of a supercapacitor reflects its ability to maintain consistent electrochemical performance over multiple 
charge-discharge cycles without significant degradation. It is evaluated by subjecting the electrode to repeated cycles of charging and 
discharging and monitoring any changes in specific capacitance or voltage profiles [181]. High cycling stability indicates the mate-
rial’s durability and reliability over extended usage. PET-derived electrode materials with good structural stability and resistance to 
degradation can exhibit excellent cycling stability, ensuring the long-term durability and reliability of the supercapacitor [179]. 

The electrochemical impedance of a supercapacitor is characterized by parameters such as equivalent series resistance (ESR), 
charge transfer resistance, and double-layer capacitance, which can be determined with the help of impedance analysis. Impedance 
analysis, typically performed using electrochemical impedance spectroscopy (EIS), provides insights into the electrical properties and 
charge transfer kinetics of an electrode-electrolyte interface [180,182]. EIS involves applying a small AC signal to the electrode and 
measuring the resulting impedance response. Lower values of ESR and charge transfer resistance indicate better conductivity and more 
efficient charge transfer kinetics, leading to improved electrochemical performance. Impedance analysis also enables the identification 
of different components contributing to the total impedance, such as solution resistance, electrode-electrolyte interface resistance, and 
diffusion processes [207,208]. By fitting the impedance data to appropriate equivalent circuit models, the individual contributions of 
these components can be quantified and analysed. 

The two main measures for supercapacitors are energy density and power density. Power density quantifies the speed at which 
energy may be provided or retrieved, whereas energy density refers to the quantity of energy stored per unit mass or volume of the 
supercapacitor [63,73,209]. PET-derived electrode materials with good ion diffusion properties, low equivalent series resistance, and 
high specific capacitance will allow higher energy and power densities. The choice of electrolyte also plays a significant role in the 
electrochemical performance of PET-derived supercapacitors. The electrolyte should have good compatibility with the electrode 
materials, provide sufficient ionic conductivity, and enable stable electrochemical reactions. Commonly used electrolytes include 
aqueous solutions (such as alkaline or acidic solutions) or organic electrolytes (such as acetonitrile or propylene carbonate) with 
suitable additives [175,186,210]. 

To enhance the electrochemical performance of PET-derived supercapacitors, various strategies can be employed, such as doping or 
functionalizing the carbon-based electrode materials, optimizing the electrode structure, exploring novel electrolyte systems, and 
engineering the device configuration. These strategies aim to improve specific capacitance, rate capability, cycling stability, and 
overall energy storage performance. Extensive research and development efforts are ongoing to explore new materials and techniques 
to enhance the electrochemical performance of PET-derived supercapacitors and advance their practical applications. 
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6.2. Evaluation of the electrochemical properties of PET-derived electrode materials 

The electrochemical properties of PET-derived electrode materials can be evaluated through several characterization techniques 
and electrochemical measurements. The evaluation of electrochemical properties is typically performed in conjunction with other 
material characterization techniques, such as X-ray diffraction (XRD), Raman spectroscopy, and elemental analysis. This is to gain a 
comprehensive understanding of the PET-derived electrode materials’ composition, structure, and electrochemical behaviour. The 
most used methods for evaluating the electrochemical properties include cyclic voltammetry, galvanostatic charge-discharge (GCD) 
and electrochemical impedance spectroscopy (EIS) measurements, specific capacitance, electrochemical stability, as well as surface 
morphology and structure analysis [82,161]. 

Cyclic voltammetry (CV) is a typical technique for assessing the electrochemical behaviour of supercapacitor terminals. It is based 
on a quick voltage scan technology that reverses the direction of the scan across a chosen voltage range when a potential is applied to 
the working electrode in both forward and reverse orientations. The resulting current can be measured as a single cycle or several 
cycles and the electrode material’s soundness, redox conduct, and capacitance are estimated. The state of the CV curves can uncover 
the presence of faradaic responses and twofold layer capacitance [207,211]. The voltage response of the supercapacitor electrode is 
tracked over time during GCD tests with a constant current. Significant elements like explicit capacitance, energy thickness, power 
thickness, and rate ability can be determined by estimating the release curve. GCD estimations additionally shed light on the 
charge-storing processes and the capacitive way of behaviour of the electrode [82,176,212]. 

The specific capacitance of PET-derived electrode materials can be determined from the CV or GCD estimations utilizing the 
accompanying equation [82,212,213]: 

Specific Capacitance (Csp)=
∫

(I dV)
/

(2πνmΔVm) (3)  

where I is the current, V is the potential, νm is the scan rate, and ΔVm is the potential window. 
The charge transfer kinetics and electrical characteristics of supercapacitor electrodes can be studied well with EIS. It entails 

passing a weak AC signal across the electrode and determining the response’s impedance. The electrode-electrolyte interface’s 
capacitance, charge transfer resistance, and equivalent series resistance (ESR) can all be unveiled by EIS. The various elements 
contributing to the total impedance can be determined by fitting the impedance data to relevant equivalent circuit models [207]. The 
electrochemical stability of PET-derived electrode materials can be evaluated by performing long-term cycling tests or voltage-holding 
tests. Voltage holding tests entail providing a steady voltage to the electrode and tracking the stability of the potential over an extended 
period, whereas continuous cycle testing by periodically charging and discharging the supercapacitor electrode will evaluate its 
stability and degradation over time [90,112,204]. 

Surface morphology and structure analysis such as SEM, FESEM, XPS, TEM, and BET, etc., can be used to examine the morphology 
and microstructure of PET-derived electrode materials [214,215]. These techniques provide information about the porosity, particle 
size, and distribution of the carbon-based material, which can influence the electrochemical performance. 

6.3. Experimental results highlighting the performance of PET-derived supercapacitors 

PET-derived electrode materials have demonstrated potential in supercapacitor applications because of their composition rich in 
carbon and their potential for high specific surface area. To simultaneously address the recycling and energy storage challenges, 
several authors have shown how to employ PETW to create high-performance, low-cost carbons with better qualities for SCs (shown in 
Table 1). To turn PET into carbon nanomaterials (CNMs), Kigozi et al. [129] used a thermal-hydrothermal method. The CNMs, when 

Table 1 
Summary of some experimental works on the use of PETW for SC application.  

PETW-derived Material specific capacitance (F/g) energy density (Wh/kg) power density (W/kg) Ref 

PTNANO 277.8/457.05 (cv) 34.83 999.9 [129] 
ACs 106-197 (aq. elect.) 

69-98 (apr. medium) 
3–4 2635 [216] 

PCS-MnO2 composites 210.5 – – [133] 
MMPC 191.4 – – [217] 
PAC/MoS2–C 183/241 (CV) 

214/288 CGCD) 
30/36 364/469 [218] 

NMC 230 (CV)/295 (GCD) – – [136] 
Cu-MOF 104.8 18.2 825 [115] 
NiOx@NPC nanocomposite 581.30/291 (in device) – – [128] 
NiCo2O4@nitrogen-doped carbon NCs 890 (CV)/913 (GCD) – – [219] 
HPC 413 25  [140] 
AC-K 325 – 91.86 [131] 
AC 36.2 – – [130] 
ACs 220 36.9 61.1 [150] 
PCNS 169,135,121 30.6 – [138] 
3D N-doped graphene nanosheets 405 68.1 558.5 [220]  
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tested for supercapacitor performance with a symmetric fabrication, revealed a specific capacitance of 277.8 F/g, an energy density of 
34.83 Wh/kg, and a power density of 999.9 W/kg. After 10000 cycles, the SC device demonstrated great cycle stability and high 
capacitance retention of 96.8 % with a current density of 1.5 A/g. Domingo-Garcia et al. [216] compared PET-based activated carbons 
(Acs) made for use as supercapacitors using various synthesis techniques. The PET-derived activated carbons exhibit specific capac-
itances at low current densities between 106 and 197 F/g in aqueous electrolyte and from 69 to 98 F/g in an aprotic medium, following 
the general patterns for extremely porous carbons. High performance has additionally been attained at high current densities, thanks in 
part to specific oxygen surface functions that facilitated quick redox reactions (pseudo-capacitance). 

Mu et al. [133] researched carbonising PETW, to create three-dimensional (3D) porous carbon nanosheets (PCS) that could be 
combined with MnO2 nanoflakes to create PCS-MnO2 composites. The final composite displayed a 210.5 F/g specific capacitance. It 
also had outstanding cycle stability. PETW was also successfully transformed into 3D porous carbon by Chen et al. [217], using 
MgO-templated pyrolysis with chemical activation, which produced carbon with a high capacitance of 191.4 F/g and excellent rate 
capability (86.3 % retention from 0.5 to 10 A/g) for supercapacitors. PET-derived activated carbon prepared via carbonization and 
subsequent activation under various conditions has performed well electrochemically as a supercapacitor active material. The material 
was proven to have high retention rates at high charge-discharge rates and good durability according to research by Jung et al. [91]. 
Sangeetha et al.’s [218] usage of PETW as an activated carbon source to synthesise carbon-doped MoS2, greatly increased the power 
density. They created supercapacitor electrodes that were symmetric and hybrid and that produced a greater energy density of 36 
Wh/Kg and a higher power density of 469 W/kg. The porosity network of the synthetic material and doping was attributed to this 
performance. 

Ubaidullah et al. [136] also studied supercapacitor electrodes made of PET-based carbonaceous porous materials (such as activated 
carbon, nanosheets and MOFs). Using the MOF-5 fabrication technique, they created high surface area nitrogen-doped mesoporous 
carbons that exhibited improved specific capacitance of 230 F/g and 295 F/g when tested using galvanostatic charge-discharge (GCD) 
at 0.5 A/g and cyclic voltammetry (CV) at 5 mV/s, respectively and evaluated it in super-capacitor assembly. Additionally, the GCD 
stability test revealed a retention rate of 98 % after running 400 segments. Using a hydrothermal method, Dubey et al. [115] created 
MOFs from PETW and electrochemically evaluated them. Among them, Cu-MOF (104.8 F/g at 0.5 A/g) outperformed its rivals in terms 
of capacitance, diffusion contribution (78.4 %) and good cycle stability. Additionally, Cu-MOF solid-state symmetrical supercapacitor 
devices outperformed the competition with an energy density of 18.2 Wh/kg at a power density of 825 W/kg and a cyclic stability of 
87 % after 10,000 charge-discharge cycles. This is likely because it has a larger surface area and a greater contribution from diffusion 
than its competitors. 

Al-Enizi et al. [128] were able to create PET-derived MOFs based on NiOx nanoparticles embellished with porous carbon that 
contained nitrogen (NiOx@NPC nanocomposite). The nitrogenous porous carbon improved the charge relocation process for better 
supercapacitor device performance in addition to improving electrical conductivity and stability, demonstrating an excellent 581.30 
F/g specific capacitance. Furthermore, the manufactured symmetric supercapacitor device showed a specific capacitance of 291 F/g, 
with outstanding cyclic stability. Bimetallic NiCo2O4@nitrogen-doped carbon nanocomposites with high specific capacitance of 890 
F/g by CV and 913 F/g by GCD were created by Alhokbany et al. [219] using waste PET. These materials displayed good electro-
chemical performance, excellent retention capacity (99 %) and good cyclic stability. 

Liu et al. [140] looked into the development of hierarchical porous carbon structures from PET using the co-etching effect of 
sp2/sp3 hybridized carbons, which were then activated to produce hierarchical porosity. While the conventional microporous carbon 
exhibits a low capacitance of 142 F/g, the derived Hierarchical porous carbons (HPCs) based electrode reaches an exceptional 
capacitance of 413 F/g. The symmetric supercapacitor created had a high energy density of 25 Wh/kg. 

PETW was converted into carbon material by Zhang et al. [131] via pressure pyrolysis and post-activation. With a low ESR and 
strong cyclic stability, the activated pyrolytic carbon hierarchical porous structure demonstrated an exceptional specific capacitance of 
325 F/g. Mirjalili and colleagues also produced electrochemical active carbon material from PETW with enhanced pseudo capacitance 
using an electrospinning fibre production method [130]. Dedek et al. [150] successfully converted PETW into activated carbons with 
competitive electrochemical performance, showing 220 F/g specific capacitance, 61.1 Wh/kg and 36.9 kW/kg energy and power 
densities, and excellent cycling stability. 

The individual synthesis procedures, activation strategies, and device designs employed in various research can have an impact on 
the performance of supercapacitors made from PETW, as shown in the reported studies. To further improve the electrochemical 
performance of PETW-derived SCs, research should look at optimizing these synthesis procedures, study innovative electrode designs, 
and investigate advanced doping or functionalization techniques. 

7. Challenges and future directions 

PETW reuse must be implemented as a workable method as part of naturally conscious practices. Eco-friendly combination stra-
tegies, which ensure proper removal or recycling methods, should be the focus in every scenario. With the continual advances in 
material combination, device designing, and framework reconciliation, supercapacitors produced using PETW hold the possibility to 
act as eco-accommodating energy-storing choices for many applications. Further research should address concerns related to adapt-
ability, energy density, cycling stability, ecological effect, and adding novel materials and functions to further advance the perfor-
mance of PET-derived supercapacitors. To guarantee the commercial feasibility of these supercapacitors, procedures that transform 
PET waste into high-performance, reasonably priced electrode materials are necessary. However, it is important to remember that PET- 
derived supercapacitors have a lower energy density when compared to conventional energy-storing techniques like batteries. 

The use of polyethene terephthalate waste (PETW) as a material for supercapacitor applications is hampered by some intrinsic 
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issues. Impurity content, heterogeneous composition, decreased energy density, limited control over structure and porosity, scalability 
and cost-effectiveness, stability and degradation, environmental impact, and compatibility with current systems are a few of these. 
Moreover, effective source segregation techniques can be applied at the waste generation site to minimize PETW contaminants, 
through advanced separation to ensure feedstock homogeneity. This should be accompanied by advanced chemical treatments, pu-
rification methods and real-time process monitoring techniques. The collaboration between academia, industry, and government can 
also foster creative and ecologically beneficial recycling methods. 

Hybrid systems and composite materials are gaining attention as promising methods to improve the performance of super-
capacitors and should be investigated further as they can yield both economic and environmental benefits. These systems provide a 
flexible platform to optimize supercapacitor performance for different applications by adjusting composition, structure, and interface 
properties. They provide enhanced energy storage capacity, by combining electrostatic and pseudocapacitive properties of different 
materials to provide high specific capacitance and high-rate capability, resulting in improved overall performance. The materials can 
be functionalized, doped, or have their composition changed to improve their electrochemical properties and increase their attrac-
tiveness for particular uses. By closely analysing the interactions between various energy storage techniques and materials, high- 
performance PETW supercapacitors can be produced. 

There are several crucial aspects to consider when evaluating the viability of recovering PET waste for use in supercapacitors. The 
competitive environment, long-term partnership and finance, material quality and consistency, energy and resource efficiency, market 
demand and application possibilities, cost-effectiveness, scalability, and regulatory and environmental factors are some of these. It is 
essential to compare the cost of the recycling process to the value of the commodities generated to assess whether recycling PET waste 
is economically feasible through life-circle assessments. Recycling PET waste for use in supercapacitors necessitates cooperation with 
industry partners, process optimization, quality control, and a thorough grasp of market dynamics. Furthermore, the use of waste 
materials can aid in diversifying the supply chain and reducing the dependence on rare or expensive raw materials, ultimately 
decreasing the overall manufacturing costs of supercapacitors. To realize their maximum economic potential, businesses must strike a 
balance between cost-effectiveness, material quality, market demand, and environmental concerns. A circular economy approach can 
then be realized through continuous innovation, stakeholder engagement, and government involvement. 

All things considered, PET-derived supercapacitors have a great deal of promise as environmentally friendly energy storage op-
tions, but there are currently a lot of issues that need to be watched out for. These challenges incorporate adaptability, energy density, 
cyclic stability, and the synchronisation of innovative materials and functionalities. Furthermore, future research should concentrate 
on innovative electrode materials, device designs, and electrolyte framework enhancement that will address electrode deterioration, 
structural stability, and electrolyte compatibility. Research and developmental efforts in material synthesis and modification, process 
optimization, and system integration, utilizing cutting-edge techniques must continue to meet these difficulties. 

8. Implications of the review and opportunities 

This review explores the potential of using PETW recycling for supercapacitor applications, and considerable promise exists for 
industrial applications, policy development, and commercialization The research has the potential to bring about revolutionary im-
provements across various industries by addressing environmental concerns and providing financial benefits. Using PETW-derived 
materials in supercapacitors has the potential to improve overall performance and efficiency, reduce emissions, and increase en-
ergy storage capacity. These improvements are crucial for renewable energy systems, electric and hybrid vehicles, regenerative 
braking systems, and auxiliary power sources. The use of PETW in supercapacitors could also lead to improved lifespan and perfor-
mance in consumer electronics such as wearables, computers, smartphones, and power backup systems. Additionally, PETW super-
capacitors can contribute to efficient energy management and peak load handling in industrial machines. 

The competitiveness of PETW-based products on the market and their prospects for commercialization can be increased by 
developing cost-effective recycling processes and supercapacitor production techniques. Demonstrating the feasibility of PETW 
recycling and supercapacitor production can attract financing and foster industry acceptance. Growing consumer and governmental 
demand for sustainable products may drive the market for PETW-based supercapacitors and other recycled items. PETW recycling 
solutions can help businesses meet their CSR commitments while also enhancing their sustainability reputations. Applications for 
PETW may become more appealing and practical as long as recycling methods and supercapacitor performance advance technolog-
ically. Productive integration of PETW-derived materials into existing production processes can facilitate smoother market penetration 
and commercialization. 

Governments can provide financial incentives and subsidies to companies that invest in PETW (Polyethylene Terephthalate Waste) 
recycling technologies and applications. They can also enforce strict regulations on the management of plastic waste to ensure 
appropriate gathering, sorting, and recycling of PETW. Additionally, increasing funding for PETW recycling research and develop-
ment, and its application in other high-tech industries, such as energy storage, is important. Encouraging collaborations between 
corporations, academic institutions, and public and private organizations can further the development and commercialization of PETW 
recycling technologies. Initiatives to educate the corporate community and the general public about the financial and environmental 
benefits of recycling PETW are essential. Furthermore, introducing regulations to influence consumer behaviour to promote recycling 
and support products made from recycled materials would be beneficial. 

9. Conclusion 

After reviewing PETW recycling for supercapacitor applications and a summary of the major discoveries and developments, we 

L.U. Okonye and J. Ren                                                                                                                                                                                              



Heliyon 10 (2024) e35285

18

conclude that the reuse of PETW is a successful technique for controlling resources and getting electrode materials for supercapacitors 
in a practical way. The utilization of waste PET to create sustainable supercapacitors provides an exceptional opportunity to address 
both waste management and sustainable energy storage in a simultaneous and mutually beneficial fashion. PET reusing additionally 
decreases the volume of delivered waste and limits the ecological effect of its removal. The utilization of reused PET for supercapacitor 
electrodes is a financially savvy choice since it takes out the requirement for unrefined substance extraction and handling. PET 
supercapacitors are a strong contender for real-world applications because studies have shown that they can provide reasonable 
specific capacitance and energy storage capacities. The review outlines future research paths and challenges, new ideas for improving 
the performance of PET-based supercapacitors, and areas that require additional investigation. The general evaluation underlines the 
potential for reusing waste PET for supercapacitor applications, featuring its benefits concerning asset preservation, natural sup-
portability, energy productivity, and cost viability. The development of eco-friendly supercapacitors using recycled PET has the po-
tential to significantly contribute to a landscape of energy storage that is both sustainable and mindful of the environment. 
Additionally, PETW recycling is feasible and scalable for large-scale production, and its worldwide availability makes it a viable source 
of electrode materials. In any case, with persistent advances in PET reusing, innovation and supercapacitor improvement, there is huge 
potential for PETW in sustainable supercapacitor advancement. 

To fully realize the wider environmental preservation, energy efficiency, and sustainable future benefits this field can provide, 
more research and development is necessary. Investing in this area can be a significant step towards achieving our goals of a greener 
and more sustainable future. Continued research and development in this field are of the utmost importance as the world increasingly 
shifts toward renewable energy sources, and effective and sustainable energy storage technologies become increasingly paramount. 
Additionally, it fosters a circular economy by emphasizing the importance of recycling and reusing waste materials, reducing waste 
output, and supporting long-term sustainability. In Conclusion, this review aims to encourage researchers, engineers, and policy-
makers to invest in innovative solutions for PETW management while providing a comprehensive review of PETW recycling for 
supercapacitor applications. By adopting this approach, we can move towards a more sustainable future while contributing to the 
creation of effective and sustainable energy storage devices. 
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[216] M. Domingo-García, J.A. Fernández, M.C. Almazán-Almazán, F.J. López-Garzón, F. Stoeckli, T.A. Centeno, Poly(ethylene terephthalate)-based carbons as 

electrode material in supercapacitors, J. Power Sources 195 (2010) 3810–3813, https://doi.org/10.1016/j.jpowsour.2009.12.090. 
[217] S. Chen, S. Fang, A.I. Lim, J. Bao, Y.H. Hu, 3D meso/macroporous carbon from MgO-templated pyrolysis of waste plastic as an efficient electrode for 

supercapacitors, Chemosphere 322 (2023) 138174, https://doi.org/10.1016/j.chemosphere.2023.138174. 
[218] D.N. Sangeetha, M.S. Santosh, M. Selvakumar, Flower-like carbon doped MoS2/Activated carbon composite electrode for superior performance of 

supercapacitors and hydrogen evolution reactions, J. Alloys Compd. 831 (2020) 154745, https://doi.org/10.1016/j.jallcom.2020.154745. 
[219] N. Alhokbany, J. Ahmed, M. Ubaidullah, S. Mutehri, M.A.M. Khan, T. Ahamad, et al., Cost-effective synthesis of NiCo2O4@nitrogen-doped carbon 

nanocomposite using waste PET plastics for high-performance supercapacitor, J. Mater. Sci. Mater. Electron. 31 (2020) 16701–16707, https://doi.org/ 
10.1007/s10854-020-04224-7. 

[220] N.A. Elessawy, J. El Nady, W. Wazeer, A.B. Kashyout, Development of high-performance supercapacitor based on a novel controllable green synthesis for 3D 
nitrogen doped graphene, Sci. Rep. 9 (2019) 1129, https://doi.org/10.1038/s41598-018-37369-x. 

L.U. Okonye and J. Ren                                                                                                                                                                                              

https://doi.org/10.1016/j.jcis.2019.09.081
https://doi.org/10.1039/D1CC02823E
https://doi.org/10.1039/B813846J
https://doi.org/10.1016/j.electacta.2020.136109
https://doi.org/10.1016/j.est.2023.106850
https://doi.org/10.3390/technologies11020038
https://doi.org/10.3390/technologies11020038
https://doi.org/10.1016/j.electacta.2016.09.126
https://doi.org/10.1016/j.colsurfa.2020.125750
https://doi.org/10.1016/j.jelechem.2019.113636
https://doi.org/10.1039/C9RA04882K
https://doi.org/10.1016/0013-4686(95)00416-5
https://doi.org/10.1016/j.cej.2017.09.077
https://doi.org/10.1016/j.jpowsour.2009.12.090
https://doi.org/10.1016/j.chemosphere.2023.138174
https://doi.org/10.1016/j.jallcom.2020.154745
https://doi.org/10.1007/s10854-020-04224-7
https://doi.org/10.1007/s10854-020-04224-7
https://doi.org/10.1038/s41598-018-37369-x

	A comprehensive review of PETW recycling for supercapacitor applications
	1 Introduction
	2 PETW recycling processes and techniques
	2.1 Recent advancements in PETW recycling techniques

	3 Supercapacitor principles and applications
	3.1 Types of supercapacitors
	3.2 Factors influencing the performance of supercapacitor
	3.3 Common electrode materials used for supercapacitor applications
	3.3.1 Carbon-based materials (CBMs)
	3.3.2 Transition metal oxides (TMOs)
	3.3.3 Conducting polymer-based materials (CPBMs)
	3.3.4 Metal-organic frameworks (MOFs)
	3.3.5 Perovskite-based materials (PBMs)
	3.3.6 Other waste-derived materials (WDMs)


	4 Recycling PET for supercapacitor applications
	4.1 Significance of PETW recycling in energy storage

	5 Synthesis of PET-derived electrode materials for supercapacitor electrodes
	5.1 Carbonization and activation processes to convert PET into carbon-based materials
	5.2 Thermochemical conversion
	5.3 Electrode fabrication
	5.4 Electrode testing and assembly of supercapacitor
	5.5 Doping and functionalization strategies to enhance electrochemical performance
	5.6 Electrode binders
	5.7 Exploration of novel approaches for synthesizing PET-derived electrode materials
	5.8 Difficulties reported during the synthesis of PET-derived electrode materials

	6 Performance of PET-derived supercapacitors
	6.1 Electrochemical performance of PET-derived supercapacitors
	6.2 Evaluation of the electrochemical properties of PET-derived electrode materials
	6.3 Experimental results highlighting the performance of PET-derived supercapacitors

	7 Challenges and future directions
	8 Implications of the review and opportunities
	9 Conclusion
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


