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Background & aims: Immune checkpoint blockade (ICB) has been approved for treatment of hepatocellular carcinoma (HCC).
However, many patients with advanced HCC are non-responders to ICB monotherapy. Cytotoxic chemotherapy has been
proposed to modulate the tumor microenvironment (TME) and sensitize tumors to ICB. Thus, we aimed to study the com-
bination of cytotoxic chemotherapy and ICB in an orthotopic HCC model.
Methods: Preclinical orthotopic HCC mouse models were used to elucidate the efficacy of 5-fluorouracil (5-FU) and ICB. The
mice were intrahepatically injected with RIL-175 or Hepa1-6 cells, followed by treatment with 5-FU and anti-programmed
cell death ligand 1 (PD-L1) antibody. Myeloid-derived suppressor cells (MDSCs) were depleted to validate their role in
attenuating sensitivity to immunotherapy. Flow cytometry-based immune profiling and immunofluorescence staining were
performed in mice and patient samples, respectively.
Results: 5-FU could induce intratumoral MDSC accumulation to counteract the infiltration of T lymphocytes and natural killer
cells, thus abrogating the anti-tumor efficacy of PD-L1 blockade. In clinical samples, MDSCs accumulated and CD8+ T cell
numbers decreased following transarterial chemoembolization.
Conclusion: 5-FU can trigger the accumulation of immunosuppressive MDSCs, impairing the response to PD-L1 blockade in
HCC. Our data suggest that the combination of specific chemotherapy and ICB may impair anti-tumor immune responses,
warranting further study in preclinical models and consideration in clinical settings.
Lay summary: Our findings suggest that some chemotherapies may impair the anti-tumor efficacy of immunotherapy.
Further studies are required to uncover the specific effects of different chemotherapies on the immunological profile of tu-
mors. This data will be critical for the rational design of combination immunotherapy strategies for patients with hepato-
cellular carcinoma.
© 2020 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
An immunosuppressive microenvironment plays a key role in
mediating immune tolerance and tumor evasion in cancer, which
may limit the benefits of immune checkpoint blockade (ICB).1

Cytotoxic chemotherapy has been proposed to enhance the ef-
ficacy of ICB by exerting immunomodulatory effects on the tu-
mor microenvironment (TME).2,3 In particular, several cytotoxic
drugs, including gemcitabine, 5-fluorouracil (5-FU), doxorubicin
and paclitaxel, were shown to deplete myeloid-derived
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suppressor cells (MDSCs) in TME.4–7 In the clinical setting,
various approaches combining cytotoxic chemotherapy and ICB
have been developed in a number of cancers. For example,
pembrolizumab in combination with chemotherapy was
approved for lung cancer treatment.8 For gastrointestinal can-
cers, the combination of oxaliplatin and 5-FU is currently being
investigated in clinical trials (NCT03626922 and NCT02375672).

For HCC, it is evident that unique and potent hepatic-specific
immune responses, including the accumulation and activation of
MDSCs, are present in the liver.9,10 Therefore, the approach of
combining chemotherapy and ICB used in other cancer types is
also potentially applicable to HCC and similarly proposed for
therapeutic development in HCC.11 In fact, clinical trials have
been initiated to test ICB in combination with cytotoxic chemo-
therapy, administered as systemic (NCT03092895) or regional
treatment (NCT03778957; NCT04340193; NCT04246177) in HCC.
However, the heterogeneous hepatic TME, arising from different
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etiologies, could lead to different treatment outcomes than those
observed in other solid tumors.12

To evaluate the therapeutic potential of ICB in combination
with a chemotherapeutic agent, we first carried out orthotopic
HCC mouse experiments using anti-programmed cell death
ligand 1 (PD-L1) antibody and 5-FU. 5-FU was chosen in the
current study because of its frequent use in regimens of systemic
or transarterial treatment for HCC.

Materials and methods
Cell lines and reagents
Murine hepatoma Hepa1-6 cell line was purchased from the
American Type Culture Collection and RIL-175 cell line with
stable luciferase expressionwas established by transduction with
retroviral vector carrying pBABE-luc-puro. 5-FU was purchased
from Cayman Chemical Company. Anti-mouse PD-L1 antibody
(10F.9G2), IgG2b control (LTF-2), anti-mouse Ly6G antibody
(1A8) and IgG2a control (2A3) were obtained from Bio-X-Cell.

Cytotoxicity assay
Cells were plated in a 96-well plate and treated with 5-FU at
concentrations from 10 nM to 1 mM for 24, 48, and 72 hours.
Cytotoxicity was quantified by WST-1 assay (Abcam) according
to the manufacturer’s protocol.

Apoptosis assay
Apoptotic events upon drug treatment were determined by
Annexin-V/7-AAD labelling with subsequent flow cytometry
analysis. Both early (Annexin-V+/7-AAD-) and late (Annexin-V+/7-
AAD+) apoptotic eventswere included for cell death determination.

Mouse HCC tumor model
An orthotopic HCC tumor model was established by injecting
5x105 RIL-175 cells or 5x106 Hepa1-6 cells into the liver of
C57BL/6 mice. Tumor growth was monitored by in vivo imaging
every 5 days. Mice were randomized into different groups:
vehicle control; 5-FU (20 mg/kg); anti-PD-L1 (10 mg/kg); 5-FU
(20 mg/kg) plus anti-PD-L1 (10 mg/kg). Anti-PD-L1 and 5-FU
were administrated intraperitoneally every 5 days and 3 times
per week, respectively. Anti-Ly6G or IgG2a isotype was given
every 7 days via i.p. injection. This model has been established by
our group to study the efficacy of ICB in HCC and under the
approval of the Animal Experimentation Ethics Committee
(AEEC) at The Chinese University of Hong Kong.13

Flow cytometry analysis
Tumor, liver, spleen and blood of the mice were harvested at
endpoint and homogenised into single cell suspensions. Cells
were stained with a mixture of fluorescence conjugated anti-
bodies as follows: myeloid markers CD11b, Gr-1, Ly6C, Ly6G; T
cell markers CD3, CD4, CD8; leukocyte marker CD45. The cells
were then analyzed by flow cytometry using BD Aria Fusion.

Immunofluorescence staining
Sections of formalin-fixed paraffin-embedded tumor tissues
were collected from HCC patients at Prince of Wales Hospital,
Hong Kong. Written consent was obtained from all patients in
this study and approved by the Joint Chinese University of Hong
Kong-New Territories East Cluster Clinical Research Ethics
Committee. Antigen retrieval was performed with citrate buffer,
followed by blocking and incubation with primary antibodies
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against CD11b, CD14, CD15 and CD3, CD8. After washing and
incubation with fluorophore-conjugated secondary antibodies,
images were captured by Axio Observer Z1 (Carl Zeiss, Germany).

Patients
The clinical part of this study came from established HCC cohorts
from the Prince of Wales Hospital in Hong Kong.14,15 Approvals
by ethics committee were obtained for these 2 cohorts. The in-
clusion and exclusion criteria for both cohorts were reported
previously.14,15 To evaluate the impact of chemotherapy in this
study, patients with treatment of 5-FU-based transarterial che-
moembolizaion (TACE) and available baseline and post-
treatment tumor tissues were identified.

Statistical analysis
An unpaired t-test was used to compare 2 groups. One-way or
two-way ANOVA with Tukey’s post hoc tests were used for
comparison between multiple groups. Values were presented as
mean ± SD and were considered as statistically significant when
*p <0.05; **p <0.01, ***p <0.001 and ****p <0.0001.
Results
Chemotherapy offsets the anti-tumor effect of ICB by
counteracting infiltration of T cells and NK cells
Two murine hepatoma cell lines, RIL-175 and Hepa1-6 were
found to be sensitive to 5-FU treatment in vitro as indicated by
the cell viability and apoptosis assay (Fig. 1A-D). The in vivo ef-
ficacy of 5-FU in combination with PD-L1 blockade was further
examined using an orthotopic HCC model13,16 (Fig. 1E). Anti-PD-
L1 single treatment exerted the most significant anti-tumor ac-
tivity, as reflected by the retarded tumor growth rate and
decreased endpoint tumor weight. On the contrary, tumors did
not respond to 5-FU monotherapy, and strikingly, the significant
reduction of tumor growth by PD-L1 blockade was offset in mice
given combined treatment (Fig. 1F-H). Beyond tumor burden,
tumor apoptotic cells were assessed based on their negative
association with tumor size in our model and a similar trend was
found in the combined treatment group (Fig. 1I-J). These data
illustrated that 5-FU treatment abrogated the effectiveness of
PD-L1 blockade in HCC.

We then investigated the underlying immunomodulatory
mechanisms in TME. Upon co-treatment, the increase in infil-
tration of CD8+ T cells and natural killer (NK) cells observed with
single anti-PD-L1 treatment was reversed (Fig. 1K-L). The num-
ber of intratumoral CD8+ T cells and NK cells positively correlated
with apoptotic tumor cell percentage (Fig. 1M-N) and negatively
correlated with tumor weight (Fig. 1O-P), illustrating that their
direct killing effect on tumor cells was the prominent factor in
eradicating HCC, a benefit which was abolished by 5-FU.

Recruitment of MDSCs by chemotherapy blunts the response
to immunotherapy
Next, we found that myeloid cells, CD11b+Gr-1+Ly6G+Ly6Cint

polymorphonuclear MDSCs (PMN-MDSCs) but not mononuclear
MDSCs (M-MDSCs) drastically increased in mice receiving 5-FU
in both monotherapy and combined treatment (Fig. 2A-B).
Given the well-known T cell suppressive activity of MDSCs, we
subsequently examined the association between myeloid cells
and immune effector cells and found that the abundance of CD8+

T cells was selectively influenced by PMN-MDSCs (Fig. 2C). To
functionally verify the involvement of MDSCs in attenuating the
2vol. 3 j 100224
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Fig. 1. Chemotherapy hindered anti-PD-L1 efficacy by inhibiting infiltration of immune effector cells. (A-C) Dose-response curves of 5-FU from RIL-175 and
Hepa1-6 murine hepatoma cell lines. (D) Apoptotic event was determined by Annexin-V/ 7-AAD co-staining with one-way ANOVA test. (E) Orthotopic HCC model
was established by intrahepatic injection of RIL-175 cells, followed by 5-FU (20 mg/kg), anti-PD-L1 (10 mg/kg) or combined treatment. Tumor growth was
monitored by in vivo imaging as shown. (F) Average luciferase intensity at each time point was calculated (n >6 per group) and analysed by two-way ANOVA. (G,
H) Endpoint tumor weight was measured with images displaying tumor morphology. (I) Percentage of apoptotic CD45- tumor cells under drug treatment was
determined with one-way ANOVA. (J) Correlation between tumor weight and percentage of apoptotic tumor cells were denoted using Pearson correlation co-
efficient test. (K, L) Proportions of CD8+ T cells and NK cells in overall CD45+ leukocytes were measured in tumor. (M-P) Percentages of tumor immune effector
cells were positively correlated with the percentage of apoptotic CD45- tumor cells and negatively associated with tumor weight. *p <0.05; **p <0.01; ***p <0.001;
****p <0.0001. 5-FU, fluorouracil; HCC, hepatocellular carcinoma; NK, natural killer; PD-L1, programmed cell death ligand 1.
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Fig. 2. 5-FU induces accumulation of myeloid cells in tumor. (A) Representative flow cytometry dot plots of myeloid cells frommice tumor were displayed. (B) Pro-
portion of PMN-MDSC among 4 groups of RIL-175 tumor-bearing mice and statistical significance was analysed by one-way ANOVA test. (C) Tumor-infiltrating PMN-
MDSCs were negatively associated with intratumoral CD8+ T cells using Pearson correlation coefficient test. (D) Orthotopic mouse model using Hepa1-6 cells was
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response to immunotherapy, PMN-MDSCs were depleted by
anti-Ly6G antibody after tumor implantation in an additional
Hepa1-6 orthotopic model (Fig. 2D).17 Consistent with the RIL-
175 tumor model, reduction of PMN-MDSCs by anti-PD-L1 was
counteracted by 5-FU in the co-treatment group (Fig. 2E) and the
proportion of PMN-MDSCs was negatively associated with CD8+

T cell numbers as well (Fig. 2F). Depleting PMN-MDSCs in the
mice given combination treatment remarkably restored the anti-
tumor effect of PD-L1 blockade compared to the co-treated mice
without MDSC depletion (Fig. 2G-H). This result revealed that
intratumoral 5-FU induced increased in PMN-MDSCs reduce the
sensitivity of HCC tumors to anti-PD-L1.

We validated this immunomodulation in HCC samples from
patients treated with TACE. A slight decrease in CD3+CD8+ T cells
was detected in tumor specimens of patients given TACE (n = 17)
in comparison to those not receiving TACE (n = 10). Consistently,
PMN-MDSCs were enriched in TACE-treated tumors relative to
non-TACE-treated tumors (Fig. 2I-K). Taken together, chemo-
therapy was shown to induce accumulation of immunosup-
pressive MDSCs and reduce CD8+ T cells in the TME.

Discussion
In the current study, we demonstrated that 5-FU induced tumor
cell apoptosis in vitro but not in an orthotopic mouse model.
Such disparity implied that treatment response could be
remarkably altered by immune stimulation in the TME. We
showed that an elevation in immune effector cells by ICB is
critical for anti-tumor immunity, yet this benefit was offset when
co-treated with chemotherapy. Detailed analysis of the mecha-
nisms underlying the adverse effects of 5-FU revealed that 5-FU
increased PMN-MDSC numbers in the tumor site, leading to
suppression of T cells and thereby diminishing the anti-tumor
immunity elicited by PD-L1 blockade in combination treatment.

Previously, a number of chemotherapeutic agents have been
reported to enhance anti-tumor immunity through elimination
of immunosuppressive cells.18 Unlike our results, a study found
that gemcitabine and 5-FU depleted MDSCs in EL4 tumors.5 In
fact, discrepancies were identified between various studies
regarding immunomodulation of 5-FU. For instance, 5-FU de-
pletes MDSCs in the context of FOLFOX (folinic acid, 5-FU, and
oxaliplatin), whereas such an effect is reversed in FOLFIRI (folinic
JHEP Reports 2021
acid, 5-FU and CPT11).3 Besides, it is notable that MDSC depletion
by 5-FU in the EL4 tumor model was transient, with MDSC
elevation occurring soon after tumor growth. The fact that our
results were obtained at a relatively late time point reflecting
advanced HCC, may explain why different immunoregulatory
effects were obtained with the same chemotherapeutic agent.

Conventional chemotherapy most often causes toxic side ef-
fects, whereas low-dose metronomic chemotherapy mediates
moderate antineoplastic activity.19,20 However, the capability of
5-FU to trigger immunogenic cell death (ICD) remained contro-
versial, as it promoted non-histone chromatin-binding protein
high-mobility group box 1 release yet failed to induce endo-
plasmic reticulum stress and subsequent chaperone calreticulin
exposure.21 In our study, the dosage of 5-FU, at 20 mg/kg, was
well-tolerated with no observable side effects and the equivalent
dose in humans is known to be asymptomatic as well.22 In this
scenario, though 5-FU was insufficient to induce significant ICD,
we may exclude the possibility of ICD in causing TME alteration.

Two caveats should be considered when analyzing these re-
sults. First, only 5-FU was used in our experiments. Our findings
on MDSCs may not directly apply to other chemotherapeutic
agents. More studies are needed to evaluate the impact of other
chemotherapeutic agents on the immune environment of HCC.
Second, the sample size of the clinical cohort was relatively small
due to the difficulty in identifying patients with tumor tissues
obtained after TACE procedures. Based on our findings, it is
possible that agents that help diminish PMN-MDSC populations
in the regimen of combinational 5-FU and ICB may improve anti-
tumor efficacy. For example, sunitinib or gemcitabine have been
shown to counteract MDSCs.23–25 Further studies in HCC are
needed to support the feasibility of this additional combination
approach.

Taken together, this study uncovered a novel immunosup-
pressive role of a chemotherapeutic agent in HCC which
adversely effected the efficacy of a combination immunotherapy
approach. In order to achieve optimal therapeutic efficacy in
HCC, it is essential to clarify the precise immunomodulation
caused by an individual drug candidate before testing in clinical
trials. As we observed similar immune alterations in clinical
samples, ICB should be used with caution in chemotherapy-
pretreated patients.
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