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 2 

ABSTRACT 1 

Background and Aims: AI-enhanced 12-lead ECG can detect a range of structural 2 

heart diseases (SHDs) but has a limited role in community-based screening. We 3 

developed and externally validated a noise-resilient single-lead AI-ECG algorithm that 4 

can detect SHD and predict the risk of their development using wearable/portable 5 

devices. 6 

Methods: Using 266,740 ECGs from 99,205 patients with paired echocardiographic 7 

data at Yale New Haven Hospital, we developed ADAPT-HEART, a noise-resilient, 8 

deep-learning algorithm, to detect SHD using lead I ECG. SHD was defined as a 9 

composite of LVEF<40%, moderate or severe left-sided valvular disease, and severe 10 

LVH. ADAPT-HEART was validated in four community hospitals in the US, and the 11 

population-based cohort of ELSA-Brasil. We assessed the model’s performance as a 12 

predictive biomarker among those without baseline SHD across hospital-based sites 13 

and the UK Biobank. 14 

Results: The development population had a median age of 66 [IQR, 54-77] years and 15 

included 49,947 (50.3%) women, with 18,896 (19.0%) having any SHD. ADAPT-HEART 16 

had an AUROC of 0.879 (95% CI, 0.870-0.888) with good calibration for detecting SHD 17 

in the test set, and consistent performance in hospital-based external sites (AUROC: 18 

0.852-0.891) and ELSA-Brasil (AUROC: 0.859). Among those without baseline SHD, 19 

high vs. low ADAPT-HEART probability conferred a 2.8- to 5.7-fold increase in the risk 20 

of future SHD across data sources (all P<0.05). 21 
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 3 

Conclusions: We propose a novel model that detects and predicts a range of SHDs 1 

from noisy single-lead ECGs obtainable on portable/wearable devices, providing a 2 

scalable strategy for community-based screening and risk stratification for SHD. 3 

 4 

Keywords: Structural Heart Disease; Mass Screening; Wearable Electronic Devices; 5 

Electrocardiography; Public Health  6 
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 4 

INTRODUCTION 1 

Early diagnosis of structural heart disease (SHD) enables the timely initiation of 2 

therapies that can improve disease trajectory and patient outcomes.1–6 While a majority 3 

of SHDs are characterized by a long presymptomatic phase,5–8 there is currently no 4 

systematic approach for detecting SHD before symptom onset. This challenge arises 5 

from the lack of feasible screening strategies that can be deployed at scale without 6 

requiring advanced imaging or detailed healthcare evaluation.9,10 Currently, the 7 

diagnosis of SHD requires referral for an echocardiogram or other advanced cardiac 8 

imaging, with no specific guidance on which asymptomatic patients should be 9 

referred.11 The increasing availability of wearable and portable devices, many of which 10 

can capture single-lead ECGs, provides a low-cost cardiac diagnostic modality for a 11 

broad population.12,13 Nonetheless, there are no discernible signatures for detecting 12 

SHD from portable single-lead ECGs. 13 

 The advent of artificial intelligence (AI) algorithms has enabled the detection of 14 

subtle, human-unreadable digital signatures of distinct SHDs using 12-lead 15 

electrocardiograms (ECG).14,15 While such advances in AI enable a new role for ECGs 16 

as a modality for SHD screening, reliance on 12-lead ECGs obtained in clinical settings 17 

limits the scale and impact of such a screening strategy.14,16 Specifically, this strategy 18 

excludes individuals who have not undergone such testing, either due to the absence of 19 

clinical indications or lack of access. Conversely, portable and wearable devices enable 20 

the acquisition of single-lead ECGs from a broader population.12,13 We have previously 21 

demonstrated that left ventricular systolic dysfunction (LVSD), a key SHD, can be 22 

accurately identified on a noisy lead I ECG obtainable on wearable and portable 23 
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 5 

devices.17 Nevertheless, detecting individual conditions in a community setting is 1 

challenging due to their low prevalence, with a high rate of false positives, even with 2 

high-performing models.16 This obstacle can be addressed by using single-lead ECGs 3 

to detect a composite of multiple SHDs, which would result in fewer false positives due 4 

to the higher overall prevalence of the composite SHD. This approach could represent 5 

an objective and scalable strategy for referral for cardiac imaging to detect SHD.  6 

To fully leverage the promise of AI-ECG for transforming community-level ECG 7 

screening for SHD, we sought to develop and externally validate a noise-resilient deep 8 

learning algorithm to identify a range of clinically actionable SHDs spanning LVSD, 9 

moderate or severe left-sided valvular disease, and severe left ventricular hypertrophy 10 

(sLVH), using single-lead ECGs. We also explored the predictive role of this algorithm 11 

for the risk of incident SHD.  12 

 13 

METHODS 14 

Data Sources 15 

We developed the model using ECG paired with echocardiographic data from the Yale 16 

New Haven Hospital (YNHH) during 2015-2023 (Figure S1). YNHH serves a large and 17 

diverse population in New Haven, one of the most representative counties in the US, 18 

and across Connecticut.18 We accessed 2.0 million ECG waveforms containing raw 19 

voltage data from all 12 leads of a standard clinical ECG. The echocardiographic data 20 

consisted of 335,184 transthoracic echocardiograms (TTE) with structured reports. For 21 

external validation, we obtained data from four geographically distinct community 22 

hospitals in the Yale New Haven Health System, covering other towns and regions in 23 
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 6 

Southern Connecticut and Rhode Island. These include the Bridgeport Hospital, 1 

Greenwich Hospital, Lawrence + Memorial Hospital, and Westerly Hospital. To prevent 2 

any representation of the same patients across development and external validation 3 

datasets, we excluded patients from the external validation sites whose data had been 4 

used for model development. In addition to the hospital-based cohorts, we assessed the 5 

external validity of the model in the Brazilian Longitudinal Study of Adult Health (ELSA-6 

Brasil), the largest prospective population-based cohort in Brazil with protocolized ECG 7 

and TTEs.19  8 

To evaluate the predictive significance of the model, in addition to hospital-based 9 

cohorts, we included participants from the UK Biobank (UKB). UKB is the largest 10 

population-based cohort from the UK where participants underwent protocolized ECGs 11 

during 2014-2020 with linked data from the national death registry as well as the 12 

comprehensive electronic health records (EHR) data from the National Health Service 13 

England.20 14 

 15 

Study Population 16 

To develop the model and assess its external validity, we included individuals from the 17 

clinical sites and ELSA-Brasil. From the clinical sites, we identified patients with at least 18 

one pair of ECG-TTE occurring within a 30-day window. Each ECG was paired with at 19 

most one TTE, while each TTE could have been paired with multiple ECGs. In cases 20 

where multiple TTEs were obtained within 30 days of an ECG, only the TTE closest to 21 

the ECG was included. Conversely, if multiple ECGs were recorded within 30 days of a 22 

TTE, we included up to five ECGs per patient in the development set to avoid over-23 
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 7 

representation of patients with frequent health encounters. We excluded information 1 

from patients who had a history of cardiac procedures at the time of ECG, including 2 

coronary artery bypass grafting, aortic or mitral valve procedures, left ventricular assist 3 

device implantation, heart transplant, alcohol septal ablation, and ventricular myectomy 4 

(Figure S1). From ELSA-Brasil, we included all participants who underwent a 5 

simultaneous ECG and TTE at their baseline visit during 2008-2010. 6 

To assess the predictive role of the algorithm in predicting incident SHD, we 7 

included individuals from the clinical sites and the UKB. From the clinical sites, we 8 

identified patients with an ECG during 2013-2023 at YNHH and the four community 9 

hospitals. We excluded those with SHD based on TTE, heart failure based on diagnosis 10 

codes, or left-sided valve replacement or repair based on procedure codes before the 11 

index date (Table S1). In the clinical sites, diagnosis codes were recorded as the 12 

International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-13 

CM), and procedure codes were recorded as the International Classification of 14 

Diseases, Tenth Revision, Procedure Coding System (ICD-10-PCS) or Current 15 

Procedural Terminology 4 (CPT4). The index date was defined as the date of the first 16 

ECG acquisition at any time after one year from their first health encounter. This one-17 

year blanking period was included to ensure prevalent SHD was not misclassified as 18 

incident SHD. We also excluded those from YNHH whose data were used for model 19 

development. 20 

For predictive assessment in the UKB, we identified participants who received 21 

protocolized ECG during 2014-2021. We excluded those with a history of heart failure or 22 

left-sided valvular disease based on diagnosis codes, as well as those who had 23 
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 8 

undergone left-sided valve replacement or repair based on procedure codes, before 1 

their ECG acquisition (Table S1). Diagnoses were coded in the International 2 

Classification of Diseases, Ninth and Tenth Revisions (ICD-9 and ICD-10), and 3 

procedures were coded in the Office of Population Censuses and Surveys Classification 4 

of Interventions and Procedures, versions 3 and 4 (OPCS-3 and OPCS-4). This 5 

information was obtained from the linkage of the UKB with the national EHR, predating 6 

the UKB enrollment in 2006, to ensure complete capture of baseline SHD status. 7 

 8 

Study Covariates 9 

We defined SHD as the TTE-defined presence of a composite of LVSD, moderate or 10 

severe left-sided valvular disease, and/or sLVH. LVSD was defined as a left ventricular 11 

ejection fraction (LVEF) <40%. Moderate or severe left-sided valvular diseases were 12 

identified by the presence of any moderate or severe aortic regurgitation (AR), aortic 13 

stenosis (AS), mitral regurgitation (MR), or mitral stenosis (MS). We characterized sLVH 14 

by an interventricular septal diameter at end-diastole (IVSd) greater than 15 mm with 15 

concomitant moderate or severe left ventricular diastolic dysfunction (LVDD). All 16 

echocardiographic indices were measured according to the American Society of 17 

Echocardiography guidelines.11 IVSd and LVEF were measured objectively, while the 18 

severity of LVDD and valvular disease were graded by the reading cardiologist, based 19 

on the guidelines.11 LVEF was defined using three-dimensional echo, Simpson’s 20 

biplane, or visual estimation methods. The valvular component of SHD entailed 21 

moderate, moderate to severe, or severe stenotic or regurgitant disorders of aortic or 22 

mitral valves. We also evaluated an alternative definition for SHD that consists of LVSD 23 
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 9 

and sLVH, but included severe, instead of moderate or severe, left-sided valvular 1 

disease. 2 

 3 

Development of an Ensemble Noise-adapted Model  4 

We randomly split the included ECGs into training, internal validation, and held-out test 5 

sets with a ratio of 85:5:10 at the patient level to avoid train-test contamination. In the 6 

training set, we retained up to five random ECGs per patient to ensure the adequacy of 7 

training data, as noted above. However, the validation and test sets included only one 8 

random ECG per patient to avoid any artificial inflation or deflation of the model’s 9 

performance. Similarly, we included one random ECG per patient from the hospital-10 

based external validation sites. 11 

We employed a standard signal preprocessing strategy to extract the signal data 12 

from lead I - representing the standard lead captured by portable devices - of 12-lead 13 

ECG recordings in the YNHH development set. However, the lead I isolated from 14 

clinical 12-lead ECGs is often less noisy than real-world lead I ECGs acquired using 15 

portable and wearable devices.21 To account for these differences, we adopted our 16 

previously developed method to construct noise-resilient algorithms.17 Briefly, to 17 

conform clinical ECGs with portable ECGs, we augmented ECGs in the training set 18 

using random Gaussian noise, while we tested the model on clean ECGs that were not 19 

noised (Supplemental Methods). Algorithms trained using this approach have retained 20 

their performance when tested on lead I ECGs, even when augmented with real-world 21 

noise from portable devices.17 22 
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 10

The model development involved a two-step approach where we first trained 1 

separate deep learning algorithms to detect individual SHD components, and then 2 

combined their outputs with the patient’s age and sex to detect the composite SHD 3 

label. To train label-specific algorithms, we employed a convolutional neural network 4 

(CNN) architecture with excellent discrimination for detecting LVSD from single-lead 5 

ECG.17 Leveraging this architecture and transfer learning, we trained six distinct CNN 6 

models to predict LVSD, moderate or severe left-sided valvular disease, moderate or 7 

severe AR, moderate or severe AS, moderate or severe MR, and sLVH (Supplemental 8 

Methods). All models were trained using all ECGs in the training set. However, given 9 

the low prevalence of sLVH (<1%), we adopted a case-control training strategy with 10 

age- and sex-matching for the sLVH model to ensure learning specific ECG signatures 11 

of sLVH. For the sLVH training set, each ECG from patients with sLVH was matched 12 

with 10 ECGs from patients without sLVH, ensuring that they had the same sex and 13 

were within a 5-year age window. To further improve the model's ability to learn sLVH 14 

ECG signatures, we trained the sLVH model on extreme phenotypes, excluding 15 

intermediate ones. For training, positive cases were defined by the sLVH criteria (IVSd 16 

>15 mm and moderate or severe LVDD), and negative cases were defined by an IVSd 17 

<12 mm in the absence of moderate or severe LVDD. The model's performance was 18 

then assessed based on the presence or absence of sLVH. Therefore, while the sLVH 19 

model was trained on extreme phenotypes, it was tested against the full spectrum of 20 

phenotypes in the internal validation and held-out test sets.  21 

Leveraging an ensemble learning strategy, we developed ADAPT-HEART (AI 22 

Deep learning for Adapting Portable Technology in HEART disease detection) using 23 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.07.24314974doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.07.24314974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11

extreme gradient boosting to predict the composite SHD based on the CNN models' 1 

output probabilities, as well as the patient’s age and sex as predictive features (Figure 2 

1). The ensemble model’s performance was evaluated in the held-out test set and 3 

external validation sets. For the predictive assessment, we deployed the ensemble 4 

algorithm to obtain the probability of concomitant SHD from corresponding ECGs. 5 

 6 

Study Outcome  7 

The primary study outcome was the model’s discrimination for detecting the presence of 8 

composite SHD, measured by the area under the receiver operating characteristics 9 

curve (AUROC). The exploratory outcome was the model’s performance for predicting 10 

new-onset SHD in individuals without baseline SHD, measured by the hazard ratio (HR) 11 

of high- vs. low-risk groups. We defined the risk groups by the model output probability 12 

using the threshold for optimizing sensitivity at 90%. For the predictive assessment, 13 

incident SHD was characterized as TTE-defined SHD, heart failure hospitalization 14 

based on diagnosis codes, or left-sided valve replacement or repair based on procedure 15 

codes in YNHH and hospital-based external validation sites. In the UKB, due to the 16 

absence of serial imaging, incident SHD was characterized by hospitalization for heart 17 

failure, or the first recorded diagnosis code of left-sided valvular disease or procedure 18 

codes for left-sided valve replacement or repair (Table S1). 19 

 20 

Statistical Analysis 21 

Continuous and categorical variables were reported as medians and interquartile 22 

ranges (IQRs) and numbers and percentages, respectively. The model’s performance 23 
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 12

was presented using AUROC, along with sensitivity, specificity, positive predictive value 1 

(PPV), negative predictive value (NPV), and F1 score of the model across the 2 

thresholds and specifically for the threshold corresponding to a sensitivity of 90% using 3 

the internal validation set. The 95% confidence intervals (CI) for AUROC were 4 

calculated using bootstrapping with 1000 iterations. We computed 95% CI for 5 

sensitivity, specificity, PPV, and NPV using the standard error formula for proportion. To 6 

quantify the model calibration, we calculated the Brier score, which is the mean squared 7 

difference between the predicted probabilities and the actual outcomes, ranging from 0 8 

to 1, with values closer to 0 representing good calibration.22  9 

For the predictive assessment, we fit age- and sex-adjusted Cox proportional 10 

hazard models with incident SHD as the dependent variable and the risk groups defined 11 

by the model output probability using the threshold for optimizing sensitivity at 90% as 12 

the key independent variable. These risk groups comprised those with a high probability 13 

of SHD but without SHD, false positives, compared with those with a low probability of 14 

SHD and without SHD, true negatives. We further adjusted the Cox models for baseline 15 

hypertension and diabetes mellitus. Additionally, we accounted for the competing risk of 16 

death using the Fine-Gray subdistribution hazard model.23 17 

All statistical analyses were executed using Python 3.11.2, and R version 4.2.0. 18 

Statistical tests were two-sided with the significance level set at 0.05. The Yale 19 

Institutional Review Board approved the study protocol and waived the need for 20 

informed consent as the study involves analyzing pre-existing data. Patients who opted 21 

out of research studies were not included in the study. Participants from ELSA-Brasil 22 
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and the UKB provided informed consent, and their de-identified data were analyzed in 1 

this study.19,20 We used the UK Biobank Resource under Application Number 71033. 2 

 3 

RESULTS 4 

Study Population 5 

The model was developed in 266,740 ECGs with paired TTE data from 99,205 unique 6 

patients with a median age of 66 [54-77] years. This included 49,947 (50.3%) women, 7 

13,503 (14.0%) non-Hispanic Black, and 7,832 (8.1%) Hispanic individuals (Table 1). In 8 

the development set, 60,096 (22.5%) ECGs were linked to a TTE with SHD, including 9 

25,552 (9.6%) with LVSD, 42,989 (16.1%) with moderate or severe left-sided valvular 10 

disease, and 1,004 (0.4%) with sLVH (Table 1). The training set included 261,228 11 

ECGs from 93,693 unique patients, while the validation and held-out test sets included 12 

5,512 and 11,023 ECGs, respectively, with one ECG drawn per person (Figure S1, 13 

Table S2). For external validation, we included 65,988 patients from four community 14 

hospitals and 3,014 participants from the ELSA-Brasil with diverse demographic 15 

backgrounds (Table 1, Figure S1). The prevalence of SHD varied from 20.2%-27.1% in 16 

hospital-based external validation sites compared with 2.9% in ELSA-Brasil (Table 1). 17 

 18 

Detection of Structural Heart Disease 19 

ADAPT-HEART demonstrated an AUROC of 0.879 (95% CI, 0.870-0.888) for detecting 20 

SHD on a single-lead ECG in the YNHH held-out test set (Figure 2A, Table S3). The 21 

model was well-calibrated for detecting the primary study outcome with a Brier score of 22 

0.083. ADAPT-HEART had higher discrimination (AUROC, 0.910 [95% CI, 0.900-23 
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0.920]) when the composite SHD label included severe, instead of moderate or severe, 1 

left-sided valvular disease (Figure 2B). The model’s probability threshold corresponding 2 

to a sensitivity of 90% for predicting SHD in the internal validation set was 0.190. At this 3 

probability threshold, in the held-out test set, ADAPT-HEART had a sensitivity of 90.9% 4 

(95% CI, 90.2-91.6), specificity of 61.8% (95% CI, 60.6-63.0), PPV of 54.6% (95% CI, 5 

53.4-55.9), and NPV of 93.1% (95% CI, 92.4-93.7) for detecting SHD. A higher 6 

probability threshold, aimed at optimizing the F1 score, had higher specificity and PPV 7 

(Figure 3, Table S4).  8 

ADAPT-HEART performed consistently across external validation cohorts, with 9 

the AUROC varying from 0.852 (95% CI, 0.845-0.859) at Bridgeport Hospital to 0.891 10 

(95% CI, 0.877-0.904) with good calibration across clinical sites (Figure 2, Table S3). In 11 

the prospective ELSA-Brasil that had protocolized paired ECGs and TTEs, ADAPT-12 

HEART retained high discrimination and good calibration with an AUROC of 0.859 (95% 13 

CI, 0.816-0.895) (Figure 2). The model’s performance was comparable across key 14 

demographic subgroups of age, sex, and race and ethnicity in the held-out test set and 15 

external validation sites (Figure 4, Tables S5-10). Individual label-specific models 16 

demonstrated consistent performance in the YNHH held-out test set and external 17 

validation sites (Tables S11-16, Figure S2) 18 

 19 

Predictive Performance of ADAPT-HEART 20 

For the predictive assessment, we identified 127,547 individuals from YNHH, 105,992 21 

from hospital-based external validation sites, and 41,800 from the UKB (Table S17). 22 

Over a median follow-up of 4.0 [1.7-6.4] years, 5,353 (4.2%) patients developed new-23 
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onset SHD in YNHH compared with 5.6% to 8.1% across hospital-based external 1 

validation sites with the median follow-up ranging from 2.4 to 4.7 years (Table S17). In 2 

the UKB, 413 (1.0%) participants had new-onset SHD over a median follow-up of 3.0 3 

[2.1-4.5] years. A screen-positive single-lead ECG defined by ADAPT-HEART was 4 

associated with a 4-fold higher hazard of incident SHD in YNHH (adjusted HR, 4.03; 5 

95% CI, 3.71-4.37), with a consistently elevated risk across hospital-based cohorts 6 

(Table 2). In the UKB, a positive AI-ECG portended a nearly 3-fold hazard (HR: 2.82; 7 

95% CI, 2.13-3.74) for incident SHD, with a modified definition that did not include serial 8 

imaging. The risk of SHD was consistently observed with a positive AI-ECG screen, 9 

independent of additional adjustment for cardiovascular risk factors of hypertension and 10 

diabetes mellitus, and also the competing risk of death (Table 2). 11 

 12 

DISCUSSION 13 

We developed and externally validated ADAPT-HEART, a noise-adapted deep learning 14 

algorithm that detects and predicts SHD from single-lead ECGs obtainable on portable 15 

and wearable devices, using a large and diverse population. Our novel noise-adapted 16 

strategy for single-lead ECGs demonstrates robust discrimination and calibration for 17 

detecting a composite of multiple clinically significant SHDs, including LVSD, left-sided 18 

valvular disease, and sLVH, using age, sex, and a single-lead ECG recording as the 19 

only inputs. ADAPT-HEART performed comparably across external validation cohorts 20 

and key demographic subgroups. Depending on the prevalence of SHD in the target 21 

screening population, the screening strategy informed by ADAPT-HEART requires 2-12 22 

individuals to undergo TTE to find one case with any SHD. Additionally, individuals 23 
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without baseline SHD but with high ADAPT-HEART probability were three to six times 1 

more likely to develop SHD. 2 

ADAPT-HEART builds upon the current literature by providing a scalable strategy 3 

for SHD screening in the community using single-lead ECGs acquired on portable and 4 

wearable devices.16,24–26 The advantages of using single-lead ECGs compared with 12-5 

lead ECGs for SHD screening are two-fold; first, the feasibility of obtaining single-lead 6 

ECGs on portable devices expands the scale of screening from healthcare settings to 7 

broader communities, and second, it allows targeting individuals regardless of their 8 

access to healthcare. Additionally, ADAPT-HEART leverages our previous work to 9 

retain robust performance despite the noisy acquisition of real-world portable 10 

ECGs.14,15,17 We also employed an ensemble learning strategy that enables the learning 11 

of granular ECG signatures for individual SHDs, resulting in superior performance 12 

compared with a single multi-label CNN model for detecting the composite SHD label.16 13 

Thus, the rapidly increasing number of portable and wearable device users, combined 14 

with the ADAPT-HEART development, significantly enhances SHD screening strategies 15 

in the communities.12,13,27  16 

In addition to the diagnostic value of ADAPT-HEART, we demonstrated its role 17 

as a biomarker for predicting incident SHD using single-lead ECGs. Thus, ADAPT-18 

HEART not only enables the identification of individuals with asymptomatic SHD but 19 

also enables risk stratification for those without SHD. This approach can be particularly 20 

valuable to risk stratify asymptomatic individuals at risk for SHD, such as those with 21 

hypertension and ischemic heart disease, and older adults.28 The lack of an evidence-22 

based protocolized follow-up for such individuals underscores the need for precision 23 
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tools such as ADAPT-HEART to provide personalized care to at-risk people. 1 

Additionally, the predictive significance of ADAPT-HEART for new-onset SHD may 2 

serve as its clinical explainability, where a high model probability in those without 3 

baseline SHD can indicate electrical signatures of SHD in the subclinical stages. 4 

 Leveraging ADAPT-HEART and single-lead ECGs for SHD screening in the 5 

community can transform cardiovascular care by enabling early detection and timely 6 

treatment. Beyond the use case of ADAPT-HEART for SHD screening among the 7 

growing number of portable and wearable device users, it can also enhance screening 8 

for individuals without such devices or those less likely to access healthcare settings.29 9 

Public health promotion programs, such as hypertension screening in barbershops and 10 

pharmacies or cancer screening in churches, can be adapted to establish SHD 11 

screening programs using portable ECGs.30,31 These community outreach efforts would 12 

allow the screening of a large number of individuals for SHD using a limited number of 13 

portable devices, offering an efficient strategy to identify individuals who may benefit 14 

from advanced cardiac imaging.32,33 Furthermore, the proposed screening strategy can 15 

help prioritize echocardiographic studies in underserved areas, including low- and 16 

middle-income countries.34,35 Therefore, our study establishes new frameworks to 17 

improve SHD diagnosis at scale and serves as a tool that has the potential to reduce 18 

disparities in SHD care. 19 

Our findings should be interpreted in the light of the following limitations. First, 20 

ADAPT-HEART was developed using pairs of ECG-TTE among individuals who 21 

underwent these tests within 30 days of each other, representing a selective population. 22 

However, the model performed consistently across four hospitals and a population-23 
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based cohort study, indicating generalizability to distinct settings. Second, hospitals in 1 

the same health system as the development set were part of model validation sets. 2 

Nonetheless, we excluded patients from the external validation sites whose data were 3 

used for model development to ensure independence of development and external 4 

validation populations. Furthermore, the model generalized well to the population-based 5 

cohort of ELSA-Brasil, suggesting its robustness and external validity outside the Yale 6 

New Haven Health System. Third, we developed the model using lead I extracted from 7 

12-lead ECGs rather than portable-acquired ECGs. However, the lack of a large and 8 

rigorous data source where portable ECGs are paired with advanced cardiac imaging 9 

data precludes the development of such a model using portable ECGs. Additionally, 10 

single-lead AI-ECG algorithms that were developed using clinical 12-lead ECGs have 11 

been shown to retain performance while deployed to real-world smartwatch ECGs.36 We 12 

also adopted a noising strategy for model development to enhance the model’s 13 

resilience to noise in real-world settings.17 14 

 15 

CONCLUSION 16 

We propose a novel model that detects and predicts a range of SHDs from noisy single-17 

lead ECGs obtainable on portable/wearable devices, providing a scalable strategy for 18 

community-based screening and risk stratification for SHD.  19 
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Table 1. Demographics and Prevalence of Structural Heart Disease in the Development and External Validation 
Set at Patient- and ECG-level 
 

Characteristic* 

Development Set Held-out Test 
Set  External Validation Sets 

ECG Patients Yale New Haven 
Hospital  Bridgeport 

Hospital 
Greenwic
h Hospital 

Lawrence 
+ Memorial 

Hospital 

Westerly 
Hospital 

ELSA-
Brasil 

Number 266,740 99,205 11,023  18,222 4,720 17,867 3,782 3,014 

Age (years) 67.8 [56.0-
78.3] 

66.4 [54.1-
77.3] 66.3 [53.7-77.4]  

68.5 [56.0-
80.0] 

74.0 [59.9-
84.5] 

68.7 [57.3-
79.5] 

73.3 
[62.2-
82.4] 

62.0 [57.0-
67.0] 

Female Sex 128529 
(48.2%) 

49947 
(50.3%) 

5501 (49.9%)  9210 
(50.5%) 

2316 
(49.1%) 

8634 
(48.3%) 

1821 
(48.1%) 

1596 
(53.0%) 

Race and Ethnicity          
White 

179193 
(68.8%) 

66132 
(68.5%) 7264 (67.5%)  

10420 
(58.2%) 

3110 
(67.8%) 

12944 
(73.9%) 

3181 
(85.0%) 

1661 
(55.1%) 

Black 40055 
(15.4%) 

13503 
(14.0%) 1474 (13.7%)  3472 

(19.4%) 182 (4.0%) 1184 
(6.8%) 

56 
(1.5%) 455 (15.1%) 

Asian 3878 (1.5%) 1648 
(1.7%) 

183 (1.7%)  218 (1.2%) 121 (2.6%) 221 (1.3%) 23 
(0.6%) 

74 (2.5%) 

Hispanic 21572 
(8.3%) 

7832 
(8.1%) 897 (8.3%)  2849 

(15.9%) 
504 

(11.0%) 
1271 

(7.3%) 
53 

(1.4%) 0 (0%) 

Pardo 0 (0%) 0 (0%) 0 (0%)  0 (0%) 0 (0%) 0 (0%) 0 (0%) 753 (25.0%) 

Others 15826 
(6.1%) 

7479 
(7.7%) 937 (8.7%)  956 (5.3%) 671 

(14.6%) 
1887 

(10.8%) 
428 

(11.4%) 71 (2.4%) 

SHD† 60096 
(22.5%) 

18896 
(19.0%) 

2085 (18.9%)  4167 
(22.9%) 

1130 
(23.9%) 

3601 
(20.2%) 

1024 
(27.1%) 

88 (2.9%) 

Indeterminate 122181 
(45.8%) 

43296 
(43.6%) 4820 (43.7%)  9278 

(50.9%) 
2449 

(51.9%) 
6420 

(35.9%) 
1939 

(51.3%) 26 (0.9%) 

SHD with Severe Valvular 
Disease‡ 

31311 
(11.7%) 

9005 
(9.1%) 

1067 (9.7%)  2189 
(12.0%) 

442 (9.4%) 1731 
(9.7%) 

466 
(12.3%) 

88 (2.9%) 

Indeterminate 143515 
(53.8%) 

50463 
(50.9%) 5548 (50.3%)  

10795 
(59.2%) 

3016 
(63.9%) 

7612 
(42.6%) 

2410 
(63.7%) 26 (0.9%) 

LVSD (LVEF <40%) 25552 
(9.6%) 

6991 
(7.0%) 821 (7.4%)  1772 (9.7%) 368 (7.8%) 1466 

(8.2%) 
386 

(10.2%) 37 (1.2%) 

Indeterminate 4787 (1.8%) 1506 
(1.5%) 

163 (1.5%)  307 (1.7%) 414 (8.8%) 137 (0.8%) 168 
(4.4%) 

2 (0.1%) 

Moderate or Severe Left-
sided Valvular Disease 

42989 
(16.1%) 

14216 
(14.3%) 1569 (14.2%)  

3053 
(16.8%) 

924 
(19.6%) 

2640 
(14.8%) 

818 
(21.6%) 55 (1.8%) 
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Indeterminate 93282 
(35.0%) 

32255 
(32.5%) 

3597 (32.6%)  6979 
(38.3%) 

1243 
(26.3%) 

4537 
(25.4%) 

1611 
(42.6%) 

27 (0.9%) 

Moderate or Severe AR 10485 
(3.9%) 

3660 
(3.7%) 392 (3.6%)  688 (3.8%) 224 (4.7%) 694 (3.9%) 

188 
(5.0%) 24 (0.8%) 

Indeterminate 28962 
(10.9%) 

9345 
(9.4%) 997 (9.0%)  2436 

(13.4%) 
472 

(10.0%) 
1204 

(6.7%) 
277 

(7.3%) 12 (0.4%) 

Moderate or Severe AS 10472 
(3.9%) 

3591 
(3.6%) 

426 (3.9%)  714 (3.9%) 226 (4.8%) 607 (3.4%) 236 
(6.2%) 

4 (0.1%) 

Indeterminate 86106 
(32.3%) 

29757 
(30.0%) 3312 (30.0%)  5958 

(32.7%) 
1167 

(24.7%) 
4343 

(24.3%) 
1252 

(33.1%) 9 (0.3%) 

Moderate or Severe MR 27850 
(10.4%) 

8902 
(9.0%) 

958 (8.7%)  2104 
(11.5%) 

627 
(13.3%) 

1670 
(9.3%) 

537 
(14.2%) 

30 (1.0%) 

Indeterminate 21474 
(8.1%) 

6815 
(6.9%) 759 (6.9%)  1222 (6.7%) 310 (6.6%) 823 (4.6%) 

170 
(4.5%) 15 (0.5%) 

Severe Left-sided 
Valvular Disease 6321 (2.4%) 2188 

(2.2%) 279 (2.5%)  400 (2.2%) 81 (1.7%) 281 (1.6%) 81 
(2.1%) 0 (0%) 

Indeterminate 110298 
(41.4%) 

37722 
(38.0%) 

4166 (37.8%)  8318 
(45.6%) 

1560 
(33.1%) 

5407 
(30.3%) 

2054 
(54.3%) 

0 (0%) 

Severe AR 358 (0.1%) 119 (0.1%) 15 (0.1%)  27 (0.1%) 7 (0.1%) 12 (0.1%) 1 (0.0%) 0 (0%) 

Indeterminate 28962 
(10.9%) 

9345 
(9.4%) 997 (9.0%)  

2436 
(13.4%) 

472 
(10.0%) 

1204 
(6.7%) 

277 
(7.3%) 0 (0%) 

Severe AS 3193 (1.2%) 1202 
(1.2%) 155 (1.4%)  220 (1.2%) 47 (1.0%) 167 (0.9%) 59 

(1.6%) 0 (0%) 

Indeterminate 86106 
(32.3%) 

29757 
(30.0%) 

3312 (30.0%)  5958 
(32.7%) 

1167 
(24.7%) 

4343 
(24.3%) 

1252 
(33.1%) 

0 (0%) 

Severe MR 2716 (1.0%) 857 (0.9%) 104 (0.9%)  146 (0.8%) 28 (0.6%) 94 (0.5%) 
19 

(0.5%) 0 (0%) 

Indeterminate 21474 
(8.1%) 

6815 
(6.9%) 759 (6.9%)  1222 (6.7%) 310 (6.6%) 823 (4.6%) 170 

(4.5%) 0 (0%) 

sLVH 1004 (0.4%) 305 (0.3%) 33 (0.3%)  133 (0.7%) 15 (0.3%) 60 (0.3%) 
20 

(0.5%) 6 (0.2%) 

Indeterminate 121139 
(45.4%) 

40185 
(40.5%) 4446 (40.3%)  8814 

(48.4%) 
2979 

(63.1%) 
5991 

(33.5%) 
2152 

(56.9%) 0 (0%) 

*Data are presented as median [interquartile range], or number (percentage%). 
†Includes a composite of LVEF <40%, moderate or severe left-sided valvular disease, and sLVH. 
‡Includes a composite of LVEF <50%, severe left-sided valvular disease, and sLVH. 
Abbreviations: AR, aortic regurgitation; AS, aortic stenosis; ECG, electrocardiogram; LVEF, left ventricular ejection fraction; LVSD, left ventricular 
systolic dysfunction; sLVH, severe left ventricular hypertrophy; MR, mitral regurgitation; YNHH, Yale New Haven Hospital.
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Table 2. Hazard Ratio of Screen-positive ECG Based on ADAPT-HEART for Predicting Incident Structural Heart 
Disease in Yale New Haven Hospital, Hospital-based External Validation Sites, and the UK Biobank 
 

Model* Covariates Yale New 
Haven Hospital 

Bridgeport 
Hospital 

Greenwich 
Hospital 

Lawrence + 
Memorial Hospital 

Westerly 
Hospital 

UK 
Biobank 

Cox Proportional Hazard Model       

Model 1 Screen-positive, Age, and 
Sex 4.03 (3.71-4.37) 

4.95 (4.45-
5.5) 

5.74 (4.64-
7.11) 3.97 (3.45-4.58) 

5.19 (3.42-
7.88) 

2.82 (2.13-
3.74) 

Model 2 Model 1, HTN, DM 3.74 (3.45-4.06) 4.52 (4.07-
5.02) 

5.06 (4.09-
6.26) 3.52 (3.06-4.06) 4.83 (3.18-

7.31) 
2.75 (2.07-

3.66) 

Fine-Gray Subdistribution Hazard Model      

Model 3 Model 1, Competing Risk of 
Death 4.00 (3.65-4.38) 

4.93 (4.39-
5.54) 

5.84 (4.62-
7.39) 3.94 (3.38-4.59) 

5.25 (3.46-
7.97) 

2.48 (1.89-
3.26) 

Model 4 Model 2, Competing Risk of 
Death 3.70 (3.39-4.05) 4.50 (4.01-

5.05) 
5.16 (4.08-

6.52) 3.50 (3.01-4.07) 4.85 (3.21-
7.34) 

2.43 (1.85-
3.20) 

*Data are presented as HR (95% CI). 
Abbreviations: DM, diabetes mellitus; HTN, hypertension. 
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Figure 1. Model Development for Detecting Multiple Structural Heart Diseases 

 

 

Abbreviations: ADAPT-HEART, AI Deep learning for Adapting Portable Technology in HEART disease detection; AR, aortic 
regurgitation; AS, aortic stenosis; CNN, convolutional neural network; ECG, electrocardiogram; LVH, left ventricular hypertrophy; 
IVSd, interventricular septal diameter at end-diastole; LVDD, left ventricular diastolic dysfunction; LVEF, left ventricular ejection 
fraction; MR, mitral regurgitation; XGBoost, extreme gradient boosting.  . 
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Figure 2. Receiver Operating Characteristic Curves of the ADAPT-HEART for 
Detecting (A) the Primary and (B) the Secondary Outcome Structural Heart 
Disease in the Held-out Test Set and External Validation Cohorts 
 

 
Abbreviations: ADAPT-HEART, AI Deep learning for Adapting Portable Technology in HEART 
disease detection; AUROC, area under the receiver operating characteristic curve; YNHH, Yale 
New Haven Hospital.  
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Figure 3. Model’s Performance Measures Across Thresholds in the Held-out Test 
Set 
 

Abbreviations: NPV, negative predictive value; PPV, positive predictive value. 
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Figure 4. Model’s Performance for Detecting Structural Heart Disease Across Key 
Demographic Subgroups in the Held-out Test Set 
 

 

Abbreviations: AUROC, area under the receiver operating characteristic curve; CI, confidence 
interval. 
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