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Sex profoundly affects cancer incidence and susceptibility to therapy, with sex hormones
highly contributing to this disparity. Various studies and omics data suggest a relationship
between sex and the oncosuppressor p53 circuitry, including its regulators MDM2 and
MDM4. Association of this network with genetic variation underlies sex-related altered
cancer risk, age of onset, and cancer sensitivity to therapy. Moreover, sex-related factors,
mainly estrogenic hormones, can affect the levels and/or function of the p53 network both
in hormone-dependent and independent cancer. Despite this evidence, preclinical and
clinical studies aimed to evaluate p53 targeted therapy rarely consider sex and related
factors. This review summarizes the studies reporting the relationship between sex
and the p53 circuitry, including its associated regulators, MDM2 and MDM4,
with particular emphasis on estrogenic hormones. Moreover, we reviewed the
evaluation of sex/hormone in preclinical studies and clinical trials employing p53-target
therapies, and discuss how patients’ sex and hormonal status could impact these
therapeutic approaches.
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INTRODUCTION

Cancer statistics reveal sex (meant as biological factors) differences in incidence, therapy response,
and mortality of many cancers (1). The majority of these tumors, excluding sex-related prostate
ovary and breast cancer, present a higher incidence, increased invasive property, and cancer death in
males compared to female, even after correction for environmental exposures and risk habits, as
smoking and alcohol consumption, more common among men (2). Primarily, genetic factors
residing on sex chromosomes contribute to these disparities (3). Indeed, the X chromosome
contains various genes involved in oncogenesis (4). Since a percentage of genes is not silenced in
inactivated X-chromosome, their higher expression levels in females compared to males may
underlie cancer differences (4, 5).

Additionally, an important factor contributing to sexual differentiation is the circulating sex
hormones with a strong relevance of estrogen (6, 7). Women have a higher risk of developing lung
cancer upon smoking than men. Various studies suggest that the interaction between tobacco
carcinogens and endogenous and exogenous sex steroids may be relevant (8). Nonetheless, this
disparity persists among adults aged 85 and older, thus beyond the women’s reproductive age (9).
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The levels of intra-tissue sex hormones determined by local
production of the estrogen (intracrinology) are assuming great
importance in many hormone-related tumors (10, 11). Finally,
epigenetic modification of DNA is different in the two sexes with
DNA methylation enhanced in various organs of experimental
feminine rodents. Since cancer is linked to epigenetic
dysregulation, these differences play an important function, too
[reviewed in (5)].

All these factors can variously affect molecular pathways
involved in oncogenesis. The p53 pathway is one of the most
relevant in tumor development and therapy response, and p53 is
a crucial oncosuppressor in both humans and rodents (12, 13).
TP53 gene is mutated in about 50% of human cancers, while the
protein is inactivated in tumors bearing wild-type p53 (wt-p53).
One of the most frequent inactivation mechanisms of wt-p53 is
the overexpression of its negative regulators, MDM2 and MDM4
(also MDMX). These two proteins form a heterodimer that
controls p53 activity and levels. In addition, the two proteins
function singularly towards p53 with different outcomes
depending on the tissue (14, 15). Given its relevance, re-
activation of wt-p53 oncosuppressive activity is a field of
intense study. In tumors retaining wt-p53, most of the
approaches target the inhibitory proteins MDM2/MDM4,
either singularly or in combination [reviewed in (16, 17)].
These approaches apply mainly to solid tumors as myeloma,
melanoma, and liposarcoma, although some trials have also been
applied to acute myeloid leukemia (AML) (for details, see
Therapies Directed to wt-p53 Re-Activation). Unfortunately, at
present, none of these therapeutic approaches have reached the
patient’s bed.

Over time, different studies have demonstrated crosstalk
between p53/MDM2/MDM4 and sex. Although p53 and its
regulators MDM2 and MDM4 genes reside on autosomes,
genes associated with p53 circuitry reside on the X
chromosome, affecting its function in a sex-related manner.
Moreover, genetic variations in the p53/MDM2/MDM4 genes
(in the promoter, 3′UTR region, introns, or coding sequence) are
responsive to hormone status, affecting p53/MDM4/MDM2
levels and function. Despite all these data, sex differences are
not consistently evaluated in preclinical and clinical trials
targeting the p53 circuitry.

In this review, we summarize data regarding sex-related
factors associated with wt-p53, MDM2, and MDM4.
Particularly, we recapitulate the sex-related factors that can
affect p53 function by acting on p53 itself or its regulators
MDM2 and MDM4. Moreover, we will review sex differences
in therapeutic approaches aimed to reactivate wt-p53 and discuss
how the consideration of sex could affect the results of
these approaches.
EFFECTS OF SEX ON P53 CIRCUITRY

p53
Given the importance of the oncosuppressor p53 in
counteracting cancer development, many studies investigated
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the association of p53 status with sex-related genetic factors and
the potential effect of sex-related factors on p53 function.

Genetic Factors
A direct association of p53 status with sex-associated cancer
difference has been reported in various tumors. In lung cancer,
p53 mutations are more frequent in females than in males
[reviewed in (8)]. Also, females carrying mutant p53 have an
increased risk of developing adrenocortical carcinoma (ACC),
suggesting that the p53 oncosuppressive activity impacts ACC
development more strongly in females than in males (18). Since
ACC risk is also increased in females of pediatric age (19), factors
other than sex hormones likely affect p53 function in ACC in a
sex-related way (5). At present, these factors have not
been identified.

In exon 4 of the p53 gene, the SNP-R72P is present (Table 1).
The R72 variant possesses higher ability to induce apoptosis
compared to P72 [reviewed in (20)]. A hospital-based case–
control study of hepatocellular carcinoma (HCC) development
in a Turkish population demonstrated that the P72 homozygote
(p53Pro/Pro) is associated with increased HCC risk in males but
not in females (21). A similar association of the variant alleles (P/
R + P/P) has been found with a particular squamous cell
carcinoma (Kangri cancer) in Indian male subjects (22). These
studies suggest that the penetrance/efficacy of the p53Pro/Pro

variant is different among male and female subjects. Which
factors, genetic or hormonal, alter the p53Pro/Pro activity is
currently unknown. It has been proposed that biallelic
expression of X-linked tumor-suppressor genes in females
explains a portion of the reduced cancer incidence in females
compared to males across various tumor types (4). Recently,
Haupt and collaborators reported X-linked genes associated with
the p53 network. Starting from bio-informatic analyses, they
showed that in many non-reproductive cancer histotypes, p53
mutation is more frequent in males than in females with a
concomitant lower survival rate (23). Then, they identified X-
linked genes encoding for proteins essential for genomic fidelity
that are connected to p53. Due to the chromosome X
inactivation, females are protected from these gene germline
mutations, while males are exposed to a higher risk because they
have only a single copy of the X chromosome. The underlying
hypothesis is that this link brings to enhanced selection of p53
inactivation in men. This phenomenon is not evident in
hormone-dependent tumors since in male breast cancer the
frequency of p53 inactivation is reduced compared to females
(24). Molecular proof of the ability of these X-linked genes to
confer p53-mediated increased protection from cancer in the
female gender has not yet been provided.

Hormone Activity
Many studies investigated the effect of sex hormones, especially
estrogen, on p53 function (25). The picture deriving from these
studies is very complex, in some cases reporting opposite results.
An important factor that may contribute to this inconsistency is
the type of estrogen receptor involved. Indeed, estrogen activity
is mediated by the membrane-bound G protein-coupled estrogen
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receptor 1 (GPER or GP3R0) and the nuclear estrogen receptors
(ERs) a and b (ERa, ERb), with ERb often exhibiting opposite
activity to ERa. Hormone-stimulated nuclear ERs translocate
into the nucleus and direct transcription as homo- and
heterodimers or as partners of other transcription factors
(indirect genomic signaling) (26). Additionally, the two nuclear
receptor genes (named ESR1 and ESR2 corresponding to ERa
and ERb, respectively) originate alternative forms that can
interact with the full-length receptors and repress their
function. Therefore, the studies performed by stimulation with
17b-estradiol (E2, the primary estrogenic hormone that interacts
with all estrogen receptors) without characterization of the
receptor and the ERa and ERb isoforms present in the system
can be variously interpreted. An additional factor that adds
complexity to the interpretation of estrogen activity towards
p53 is the positive regulation of MDM2 levels by estrogens (see
relative paragraph MDM2). Since MDM2 is a negative regulator
of p53, the fine-tuning of MDM2 and p53 by estrogens can result
in different outcomes.

Since ERa is a critical therapeutic target in hormone-
responsive breast and endometrial cancers, many data
described in literature investigated the interplay between p53
and ERa. Particularly, since p53 mutation is not common in
estrogen-responsive breast cancer, accounting for about 20% of
tumors (27, 28), many studies focused on this tissue.

Two main and opposite estrogenic hormone activities
towards p53 have been described: a positive activity at different
levels and a repressive activity mainly related to p53-
transcriptional function.
Frontiers in Oncology | www.frontiersin.org 3
Cooperative Estrogen-p53 Activity
As concerns the mechanism of cooperation, there are various
studies from Olivier’s group (29–31). In cell lines derived from
breast cancer MCF7 cells, they demonstrated that estrogen
through endogenous ERa increases p53 levels and enhances
p53-mediated response to DNA damage. They further showed
that focal adhesion kinase (FAK), a critical regulator of adhesion
and motility, is downregulated by p53 in response to E2 (31).
These studies have been further confirmed by Berger and
colleagues, who demonstrated that the p53 promoter contains
four ERa responsive elements (ERE) (32). Accordingly,
knockdown of ERa leads to decreased p53 mRNA and protein
levels and its targets, MDM2 and p21. This results in increased
colony formation in an estrogen-free medium upon a cytostatic
dose (100–400 nM) of doxorubicin (32). Of note, these authors
demonstrate that the ERb receptor is not involved since its
exogenous expression does not alter p53 levels and activity. In
support of this data, Klaus and colleagues analyzed the radiation-
responsiveness of the mammary epithelium in ovariectomized
mice upon E2 and progesterone (P) treatment (33). These
hormones activate the p53 response to radiation in terms of
increased p21. Also, by comparing the mammary epithelium of
BALB/c mice with different p53 status (Trp53+/+, Trp53+/−,
Trp53−/−), they demonstrated that E + P upregulated p53
nuclear levels and apoptosis upon ionizing radiation, also in
the haploinsufficient background (BALB/c Trp53+/−) (34).
Interestingly, parity acted similarly and delayed the onset
of spontaneous mammary tumors in these mice, confirming a
protective role of hormones towards breast cancer development.
TABLE 1 | Summary of p53, MDM2, MDM4 SNPs relevant to cancer in a sex/hormone-related way.

Gene
name

SNP Variant Location Genetic
consequence

Cytogenetic
region

Alleles Minor
allele

MAF (minor allele
frequency)§

SNP-linked cancer*

P53 SNP-R72P rs1042522 chr17:7676154 Missense
variant

17p13.1 G>A/G>
C/G>T

G G = 0.4571 (1,000G) Hepatocellular
carcinoma (HCC),
squamous cell
carcinoma (Kangri
cancer)

MDM2 SNP309 rs2279744 chr12:68808800 Intron variant 12q15 T>G G G = 0.3666 (1,000G) Diffuse large B cell
lymphoma, soft tissue
sarcoma, ER+ invasive
ductal adenocarcinoma
(IDC), colorectal
cancer, pancreatic
ductal adenocarcinoma
(PDAC), skin squamous
cell carcinoma

MDM2 SNP285 rs117039649 chr12:68808776 Intron variant 12q15 G>C C C = 0.0134 (1 000G)
MDM2 SNP55 rs2870820 chr12:68808546 Intron variant 12q15 C>T T T = 0.2322 Colon cancer
MDM4 SNP34091 rs4245739 chr1:204549714 3’ UTR 1q32.1 C>A/C>G/

C>T
C C = 0.2141 (1,000G) ER- breast cancer,

prostate cancer,
ovarian cancers

MDM4 SNPrs2290854 rs2290854 chr1:204546897 Intron variant 1q32.1 A>C/A>G A A = 0.4607
(1,000G)

BRCA-1-associated
breast cancer

MDM4 SNPrs4252707 rs4252707 chr1:204539019 Intron variant 1q32.1 G>A A A = 0.2196 Glioma
July 2021 | Volu
§MAF (minor allele frequency) from 1,000 Genomes from 26 different populations divided into five super populations: African, Ad Mixed American, East Asian, European, South Asian;
*Tumor histotypes in which the SNP is associated with increased cancer risk.
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Similar data were obtained by Sivaraman using the rat model
(35). Importantly, epidemiologic studies show that women with
full-term pregnancy have a significantly reduced risk of
developing ER+ breast cancer (36). In agreement with these
studies, Kupperwasser and colleagues reported that mare
serum gonadotropin (PMSG) and human gonadotropin (hCG)
treatment increases p53 nuclear fraction leading to enhanced
mammary gland apoptosis following ionizing radiation (37).
Interestingly, a recent proteome analysis of MCF-7 cells
demonstrated that estrogen modulates cyto-nuclear shuttling;
in response to estrogen, dynamic subcellular redistribution of
proteins is the major phenomenon compared to the alteration of
protein levels (38). Overall, this data strongly supports that
estrogen enhances the oncosuppressive function of p53 in the
breast tissue. Also, in another normal epithelial context as Young
Adult Mouse Colon cells (YAMC), estrogen induces p53
downstream targets as PUMA, Bcl-2-associated X protein
(Bax), and Noxa, and sensitizes cells to p53-mediated apoptosis
(39), extending the cooperative function of p53 and estrogen in
another epithelium. The good prognosis of ERa+/wt-p53 breast
cancer can also be related to a cooperative activity between these
two factors. To integrate this hypothesis, p53 inhibits ERa
transcriptional activity on synthetic estrogen-responsive
elements (40), suggesting a tumor-suppressive function of p53
towards ERa in hormone-activated signaling pathways.

This data raises a question about the consequences on p53 of
anti-estrogenic therapies in breast cancer (41). Since these drugs
antagonize ER function, they should reduce p53 oncosuppressive
activity. The observation that anti-estrogenic therapy displays
partial agonist activity in a gene-specific and tissue-specific
manner partly solves this issue (42). In this regard, Olivier’s
group demonstrated that 4-hydroxy-tamoxifen (OHT), a
selective estrogen receptor modulator (SERM), suppresses cell
proliferation more effectively in breast cancer cell lines bearing
wild-type p53 compared to cells with mutated p53. Furthermore,
p53 expression levels have been reported as a positive prognostic
factor for OHT treatment (43). Conversely, the activity of
fulvestrant (ICI 182,780), a selective estrogen receptor degrader
(SERD) that acts by inducing degradation of nuclear estrogen
receptors is independent of p53 status (30). This data suggests
that the p53-estrogen crosstalk is differently affected by estrogen,
OHT, and fulvestrant, and supports the efficacy of anti-
estrogenic therapies in wt-p53 breast cancer.

By considering hepatic tissue, Pok and colleagues showed that
testosterone positively regulates hepatocyte cell cycle regulators and
reduces p53 and p21, while E2 plays the opposite effect (44).
Accordingly, in liver cancer cell lines, E2, via ERa, activates the
transcription of p53 and its target miR-23a, promoting p53-
dependent apoptosis and, in turn, inhibiting HCC development
(45). Since men are more susceptible than women to hepatocellular
carcinoma (HCC) at age <60 years (46), this data supports a
protective role of estrogenic hormones in liver cancer risk and
highlights a possible mechanism by which sex hormones
contribute to establishing the male prevalence of hepatocarcinoma.

Few studies analyzed the effects of ERb on p53. In colon
cancer cell lines, ERb overexpression enhances p53 levels and
Frontiers in Oncology | www.frontiersin.org 4
activity through p14ARF-mediated downregulation of MDM2.
Of note, this cell outcome was observed in many but not all colon
cancer cell lines analyzed. The reason for these results remains
unexplained (47). Similarly, in the human colon metastatic LoVo
cell line, overexpression of ERb enhances p53-mediated
apoptosis in an estrogen-dependent manner (48). Overall,
these studies indicate a proapoptotic function and anti-
oncogenic activity of ERb towards p53 although in tissues
other than the breast.
Antagonistic Estrogen-p53 Activity
Opposite to this view, Das’s group reported that ERa inhibits
p53 function on some transcriptional targets (49). The model
proposed by these authors is that ERa and p53 cooperatively
bind on the promoters of some p53-targets genes at whose levels
ERa represses p53 activity. In most of these studies, cell outcome
is not reported, so they are not entirely comparable to previous
studies. One limitation of these studies is that they are often
based on ERa overexpression. Indeed, in MCF7 without ERa
overexpression, endogenous ERa does not affect p53
transcriptional function following E2 or fulvestrant treatments
(50). A further explanation can derive from studies of Brown’s
group (51). They demonstrated in MCF7 that E2 and OHT
reduce the apoptosis induced by cytotoxic high dose of
doxorubicin (10 mM) whereas fulvestrant is inefficacious. Using
genome-wide approaches, they reported the modulation of a
subset of p53 and ER target genes, but not changes of p53 levels
and its binding to these gene promoters. This data suggests that
different p53 targets can be variously regulated upon specific
estrogen treatments, leading to different cell outcomes. Also,
Lewandowski and collaborators reported an antagonistic activity
of estrogen towards p53. In MCF7 cells, E2, through ERa,
mediates the relocalization of p53 from the nucleus to the
cytoplasm, inhibiting its transcriptional activity as revealed by
decreased p21 levels. This, in turn, results in reduced sensitivity
of MCF7 to TNF-mediated cell death while ERb behaves
oppositely, antagonizing cytoplasmic relocalization of p53 (52).
Interestingly, a study from Bargonetti’s group demonstrated
that in MCF7, estrogen-induced cell proliferation and
downregulation of p21 are p53-independent but MDM2
dependent (53). Therefore, E2-induced p21 modulation as a
marker of p53 activity can be misleading. Moreover, the
different crosstalk between ERa and p53 could also be ascribed
to specific treatments, such as cytostatic (32) vs. cytotoxic (49)
doses of doxorubicin, g-irradiation (33), or TNFa (51).
MDM2
MDM2 protein is involved in a negative feedback loop with p53,
by which p53 activates transcription of the MDM2 oncogene,
which in turn inhibits p53 activity. This loop is essential to
maintain both proteins at moderate levels and reset cell behavior
after p53 activation. Due to their intertwined role, an unbalanced
expression or activity of MDM2 is involved in cancer, and many
studies highlighted sex-related factors leading to unbalanced
July 2021 | Volume 11 | Article 698946
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MDM2 (15). Additionally, MDM2 regulates targets other than
p53, which also have relevance to cancer (54).

Genetic Factors
The expression of the MDM2 gene is probably the best example
of sex-mediated regulation of p53 circuitry in cancer. An initial
report from Blaydes’s group demonstrated the activation of the
MDM2 P2 promoter by the AP1-ETS transcription factors in an
ERa dependent manner (55). Subsequently, Bond and colleagues
identified the SNP309 T/G within this promoter (56) (Table 1).
The SNP309G variant extends the length of the DNA binding
site for specificity protein 1 (Sp1), increasing the affinity for this
transcriptional factor. As a result, Sp1 increases MDM2 levels,
leading to an attenuation of the oncosuppressive p53 activity.
This SNP is indeed associated with an early age of cancer
diagnosis. Since Sp1 is a co-transcriptional factor of ERs, the
authors demonstrated that SNP309 accelerates the age of onset of
various cancer types (diffuse large B cell lymphoma, soft tissue
sarcoma, invasive ductal breast carcinoma, IDC)—in female but
not in male patients (57). Accordingly, this sex difference is
associated with ER+ but not ER− invasive ductal breast
carcinoma and is more evident in non-menopausal women.
Similar data were reported for colorectal cancer, in which
female SNP309G carriers were diagnosed with cancer earlier
than those carrying the wild-type gene (58). Other studies
evidenced the relevance of this SNP in a p53-independent way
due to the ubiquitin ligase activity of MDM2 towards other
targets (53, 59, 60). Overall, this data underlies the role of the
estrogen-mediated pathway on MDM2 function through
SNP309. At odds with this data, some studies did not find an
association between SNP309 and estrogen status on cancer risk
[reviewed in (61)]. Although, in many cases, the authors did not
take into account the sex and the hormone levels, a resolving
study from Lønning’s group defined the presence of the
additional SNP285G>C, which antagonizes the Sp1 binding to
SNP309 (Table 1) (62). The presence of this SNP reduces the risk
of both ovarian and breast cancers, highlighting the relevance of
MDM2 fine-tuning for cancer development.

Further complexity has been recently added by Lozano’s
group, who demonstrated that MDM2 SNP309G exhibits
tissue-specific regulation and different impacts on cancer risk
(63). Accordingly, Grochola and colleagues showed that in
pancreatic ductal adenocarcinoma (PDAC), the SNP309G is
associated with earlier onset in men but not in women. They
attributed this effect to the function of Sp1 as a coactivator of
androgen receptors present in PDAC (64).

In 2015, Kato’s group identified an additional SNP in MDM2-
P2 promoter, the SNP55 (rs2870820, C/T) (65). Both SNP55T
and SNP55C bind Sp1, whereas only the C allelic variant creates
an additional consensus sequence for the transcriptional factor
NF-kB. The NF-kB p50/p50 homodimer interferes with Sp1
transcriptional activity, as demonstrated by Hirano and
colleagues (66). In the context of MDM2, this results in
transcriptional repression of the gene (65). Therefore, this SNP
further contributes to fine-tuning MDM2 levels. Subsequently,
Helwa and colleagues reported that women with SNP55TT or
SNP55TC genotype have a higher risk of colon cancer,
Frontiers in Oncology | www.frontiersin.org 5
particularly left-sided colon cancer, than those with SNP55CC
genotype (66). Conversely, this SNP does not seem to affect
breast, lung, prostate, and endometrial cancer risk (66). In a
recent study, the same group analyzed the impact of the
combination of all three SNPs and reported that the SNP55T
allele variant is associated with a lower risk of endometrial cancer
in women carrying the SNP285G and SNP309T. At the same
time, this haplotype is not correlated with the risk of ovarian
cancer (67).

These results collectively validate the MDM2 SNPs as
important cancer modifiers by attenuating the cell-protective
activity of p53 or p53-independent pathways. To date, the
characterization of these SNPs in the application of MDM2-
target therapies has not been reported.

Hormone Activity
Besides the effect of the hormone on MDM2 transcription
through SNPs, other studies evidenced a regulation of MDM2
by the estrogenic pathway at the protein levels. ERa stabilizes
MDM2 since the use of fulvestrant significantly reduces the
MDM2 half-life. Particularly, fulvestrant decreased basal
expression of MDM2 through increased protein turnover in
the absence of E2 (68). This in turn, increases cell apoptosis
and sensitivity of MCF7 breast cancer cells to chemotherapic
drugs, doxorubicin, paclitaxel, and etoposide (68). Accordingly,
high levels of MDM2 are detected in ERa+ breast carcinoma
(69). In a reciprocal fashion, Cavailles’s group demonstrated
MDM2 activity towards ERa: MDM2 interacts with ERa and
p53 and induces ERa degradation through its ubiquitin ligase
activity in a ligand-independent manner (70). Conversely, in a
p53-independent way, Bargonetti’s group reported the ability of
MDM2 to facilitate the estrogen-mediated activation of cell
proliferation (53), suggesting different activities of MDM2
dependent on p53 background.

The overall positive effects of estrogenic hormones on
MDM2, at the mRNA and protein levels, suggest that anti-
estrogenic therapies in breast cancer could synergize with
MDM2-targeted drugs.

MDM4
MDM4 is a double-faced p53 regulator: it cooperates with
MDM2 in inhibiting p53, thus behaving as an oncogenic
factor. Conversely, under DNA damage conditions, it
cooperates with p53 and promotes cell apoptosis (71, 72).
MDM4 also possesses a p53-independent function by
suppressing the mTOR-mediated pathway (73, 74). Of
relevance, the proapoptotic activities reside on the cytoplasmic
fraction of MDM4 (75, 76). Accordingly, most tumors show high
levels of MDM4 in the nuclear compartment (77). Wide-genome
studies reported the association of specific SNPs in the MDM4
gene with hormone-mediated cancer and estrogen receptor-
negative breast tumors, suggesting that the presence of ERs
may select for a particular MDM4 gene status.

Genetic Factors
Despite the description of various SNPs in the MDM4 gene (78),
the majority of data focused on the SNP 34091 (A > C) in the 3′
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UTR region of human MDM4 (Table 1). Data collected from the
Collaborative Oncological Gene-environment (COGS) showed a
significant association of this SNP with hormone-dependent
cancers (79–81). This SNP located 32 bp downstream of the
stop codon should create an illegitimate binding site for miR-887
(80, 82) and has-miR-191, a miRNA often expressed in tumor
tissues, leading to downregulation of MDM4 in the MDM4-C
variant (83). Unexpectedly, the SNP34091C variant is associated
with increased risk of breast cancer, high-grade ovarian cancer
(HGSOC), and prostate cancer suggesting a specific sensitivity of
these hormone-dependent cancers to presumably low MDM4
levels (79, 84). SNP34091C is associated with increased cancer
risk only in ER-negative breast cancer, suggesting that the
presence of ERs interferes with MDM4 activity (79, 85).
Additionally, in ER-negative breast cancer and HGSOC, the
presence of this SNP is not correlated to the status of p53,
suggesting that ERs interfere with MDM4 p53-independent
activities. This data is in agreement with the cytoplasmic
proapoptotic function of MDM4. The ER ability to re-localize
MDM4 in the nucleus would abrogate the MDM4 cytoplasmic
anti-oncogenic function. Accordingly, many human tumors
express nuclear MDM4 (77). Other studies on ovarian cancer
reported contradictory results. Wynendaele reported an
association of the AA haplotype with reduced overall survival
of ovarian carcinoma. Conversely, Gansmo reported an
association of C variant with HGSOC (84). A possible
explanation raised by these last authors is that in HGSOC, p53
is mutated in almost 90% of tumors. Therefore, the effect of this
variant is mediated via pathways other than p53 (84).

The association between hormone-related pathways and this
SNP is supported by the observation that it does not alter colon-
and lung-cancer risk in a large population-based control study
(86). Of merit, this study distinguished male and female patients
compared to male and female controls. Association with prostate
cancer was not found, although some authors reported a trend of
association of the C allele with higher prostate cancer
aggressiveness (87).

At odds with the previous study, other authors reported a
reduced cancer risk for the SNP34091C variant in esophageal
squamous cell carcinoma and non-Hodgkin lymphoma (88, 89).
Information on ERs status in these studies is not available and
cannot be entirely compared to previous results. Additionally,
the different geographic populations (Caucasian vs. Chinese)
may underlie this discrepancy. Indeed, the frequency of the
MDM4-SNP34091 is different between these two populations
(90). Finally, other miRNAs may affect SNP function (91).

Additional SNPs have been identified in other cancer types.
Couch and colleagues reported the association of the minor allele
of MDM4 SNP rs2290854 with breast cancer risk in mutant
BRCA1 carriers, suggesting that this MDM4 variant can be a
modifying factor for breast cancer in this mutant background
(92) (Table 1). Also, in this case, this SNP is associated with ER−

but not ER+ breast cancer. Moreover, two recent papers analyzed
the sex-related association of various MDM4 SNP with glioma in
the European and Chinese populations (93, 94). The authors
evidenced the association of the A allele of a novel MDM4 SNP
Frontiers in Oncology | www.frontiersin.org 6
(rs4252707) (Table 1) with the increased risk of this tumor.
However, although the higher frequency of glioma in males, they
did not find an association with sex.

Hormone Activity
Lozano’s group was the first to demonstrate a dissimilar activity
of overexpressed MDM4 between male and female mice (95).
Her group reported a higher incidence of multiple tumors and a
decreased animal survival in Mdm4 transgenic p53-null males
but not in females, indicating sexual dimorphism of Mdm4
activity, at least in rodents. Using the same animal model, our
group demonstrated that in a wt-p53 background, Mdm4
promotes tumor development following DNA damage in a sex-
independent way, indicating that Mdm4 oncogenic properties
are not affected by sex. In contrast, there is increased
chemotherapy sensitivity in Mdm4-overexpressing male but
not in female mice. Molecular analysis demonstrated that E2
re-localizes MDM4 in the nucleus, antagonizing the cytoplasmic
MDM4-mediated DNA damage response (96). Noteworthy,
treatment of animals with fulvestrant rescues MDM4-mediated
proapoptotic activity and increases tumor sensitivity to
chemotherapy. Accordingly, MDM4 nuclear localization and
intra-tumor estrogen availability correlate with decreased
platinum sensitivity and apoptosis and predict poor disease-
free survival in human HGSOC. A specular finding was reported
by Das’s group (97). They showed that ERa is a positive
regulator of MDM4 oncogenic activity, and treatment of tumor
cells with ER inhibitors (fulvestrant or OHT) reduces MDM4
protein levels. Overall, this data indicates that sex and/or ERa
regulate MDM4 activity. Depending on p53 background, they
can result in opposite outcomes. The assessment of sex/hormone
status in MDM4-target therapy could confirm the relevance of
these factors in drug efficacy and suggest the potential usefulness
of combinatorial treatments.
THERAPIES DIRECTED TO WT-P53
RE-ACTIVATION

In the last decades, different therapeutic approaches were
developed to reactivate wt-p53 functions in cancer. Peptides
and small molecule compounds were described to target the
critical inhibitory binding of MDM2 and MDM4 to p53 or to
stimulate p53 by acting on the protein itself [reviewed in (16,
98, 99)].

Compounds in the p53 network that entered clinical trials are
summarized in Table 2. Among them, the majority refers to
phase I studies that evaluate safety and tolerability, with few or
no results about the efficacy of the therapies. Despite the low
number of patients usually enrolled in phase I, none of these
trials reported the hormone/gender status in their evaluations.
Here, we briefly reviewed the active clinical trials suggesting the
potential role of sex/hormone.

P28 is a peptide derived from the Azurin, a Pseudomonas
aeruginosa redox protein that exerts an antiproliferative activity
towards cancer cells by inhibiting COP-1 mediated
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mancini et al. Sex in p53 Circuitry
ubiquitination of p53, thus in an MDM2/MDM4 independent
way (100, 101). In a Phase I study (NCT00914914), p28 proved
preliminary evidence of anti-tumor activity in patients with
melanoma and colon cancer (Table 2). Although no results
regarding gender are displayed (102), P28 efficacy towards
these non-hormone mediated cancers might suggest that COP-
1 mediated regulation of p53 is not affected by hormone status.
Accordingly, a second Phase I study NCT01975116 established
safety in children with recurrent or refractory central nervous
system cancer (CNS) (103). Comparing this peptide efficacy in
males and females could highlight the potential effects of genetic
factor/s on p53 function.

ALRN-6924 is a peptide that targets both MDM2 and MDM4
and prevents their binding to p53 (104). Phase I studies evaluated
safety in acute myeloid leukemia (AML), myelodysplastic
syndrome (MDS), and solid cancers (Table 2). Two recent
trials are recruiting patients to evaluate the safety and efficacy
of ALRN-6924 in combination with drugs used in chemotherapy
as Cytarabine for patients with leukemia (NCT03654716) or
Paclitaxel for those with breast cancer (NCT03725436). The
results of this last trial could be of interest to evaluate the
relevance of ERs in p53 circuitry since the inclusion criteria are
breast cancer carrying wt-p53 and positive for ERs.

RG7112 and RG7388, two derivatives of cis-imidazoline
molecule known as “nutlin”, are under testing in clinical trials
(Table 2). RG7112, despite promising results in terms of p53
activation, was dropped because of significant toxicity (105).
RG7388, known as Idasanutlin, is a nutlin analog with a higher
affinity and specificity for MDM2. This compound underwent
several clinical trials, including phase II and phase III trials in
combination with chemotherapy or novel therapies as
monoclonal antibodies and other new anticancer small
molecules (Table 2). Based on the relevance of ERa in MDM2
levels, the efficacy of this drug could be increased in those tumors
previously shown more sensitive to SNP variations.
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Spirooxindole-based compound mimics the p53 key amino
acids that bind MDM2. MI-77301 from Sanofi (106) and the
substituted dihydroisoquinolinone derivative CGM097 from
Novartis, entered in phase I clinical trials (Table 2). For both
compounds, the anti-tumor activity has been verified in
preclinical studies (107), whereas no results have been reported
from clinical trials. Of interest, p53 status is not sufficient to
predict CGM097 sensitivity in a panel of 477 cell lines from the
Cancer Cell Line Encyclopedia (CCLE). In the 13 gene signature
predicting CGM097 response, MDM2 levels are the most
significant predictor (108). Given the relevance of ER/hormone
status in affecting MDM2 levels, the assessment of hormone
status could be relevant in the analysis of the efficacy of these
compounds in the related clinical trials.

MK-8242 from Merck is a small-molecules that inhibits
MDM2 interaction with p53 and can induce growth arrest at
very low concentration (109). In the NCT01463696 trial, three of
47 patients with liposarcoma showed a partial response, and 31
patients stable disease (110) (Table 2). Since 60% of these
patients are males, it would be interesting to re-evaluate
the results by separate analysis of patients based on sex/
hormone status.

AMG232 by Amgen is a piperidinone-derived compound
that acts as a potent inhibitor of the MDM2−p53 complex and
shows high anti-tumor activity in xenograft models (111). This
compound underwent several clinical trials, including phases I
and II, as single or combination treatments for solid tumors,
AML, myeloma, and melanoma (Table 2), but its effects have
never been evaluated in the light of sex/hormones.

DS3032b developed by Daiichi Sankyo showed stable disease
in 77% of patients with solid tumors (112) and reduced bone
marrow blasts after the first cycle in half patients and complete
remission in two patients with hematological malignancies.

HDM201 developed by Novartis is an imidazopyrrolidinone
analog that inhibits the P53–MDM2 interaction with high
TABLE 2 | Strategies for wt-p53 re-activation, which entered clinical trial phases.

Compound Drug Mechanism of action Clinical trial ID (Phase)

p28 Peptide Inhibition of COP1-mediated
p53 ubiquitination

NCT00914914 (I), NCT01975116 (I)

ALRN-6924 Peptide Dual inhibition of MDM2 and
MDM4 interaction with p53

NCT02264613 (I,IIa), NCT03725436 (I), NCT02909972 (I,Ib), NCT03654716 (I)

RG7112
RO5045337

Small
molecule

Binds MDM2 and prevents
MDM2/P53 interaction

NCT01677780 (I), NCT01164033(I), NCT01143740(I), NCT01605526(I), NCT00623870(I), NCT00559533(I),
NCT01635296(I)

RG7388
RO5503781

Small
molecule

Binds MDM2 and prevents
MDM2/P53 interaction

NCT02407080 (I), NCT02828930 (I), NCT02633059 (I,II), NCT02545283 (III), NCT02624986 (Ib, II),
NCT01901172 (I), NCT01773408 (I), NCT01462175 (I)

SAR405838
MI-77301

Small
molecule

Mimics p53 key amino acids
involved in MDM2 binding

NCT01636479 (I), NCT01985191 (I)

CGM097 Small
molecule

Mimics p53 key amino acids
involved in MDM2 binding

NCT01760525 (I)

MK-8242
SCH 900242

Small
molecule

Inhibition of MDM2 interaction
with p53

NCT01463696 (I), NCT01451437 (I)

AMG232 Small
molecule

Inhibition of MDM2 interaction
with p53

NCT02016729 (Ib), NCT03031730 (I), NCT01723020 (I), NCT02110355 (Ib,IIa)

DS-3032b Small
molecule

Inhibition of MDM2 interaction
with p53

NCT02579824 (I), NCT02319369 (I), NCT01877382 (I)

HDM201 Small
molecule

Inhibition of MDM2 interaction
with p53

NCT02343172 (Ib,II), NCT02143635 (I), NCT02780128 (I), NCT02601378 (I), NCT03940352 (I),
NCT03714958 (I), NCT04496999 (I), NCT04116541 (II), NCT04097821 (I,II), NCT02890069 (I)

Data from ClinicalTrials.gov. National Library of Medicine: http://www.clinicaltrials.gov
July 2021 | Volume 11 | Article 698946

http://www.clinicaltrials.gov
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mancini et al. Sex in p53 Circuitry
efficiency. It was able to induce p53 dependent apoptosis and
tumor regression in xenograft tumor models (113). Many clinical
studies are ongoing in patients with wild-type p53 tumors of
different histotypes such as AML, solid tumors, and multiple
myeloma (Table 2). Some results of clinical benefit from these
trials have been reported: approximately 25–30% of patients had
a partial response or stable disease, although the tumor
histotypes are not specified (114).

Many of the tumors under these clinical trials—including
myeloma and lymphoma—show sex differences, with male
prevalence. Evaluating these drugs in terms of sex and/or
hormone status could give valuable information for more
personalized medicine.
DISCUSSION

Although sex is an important factor in determining cancer
development, progression, and sensitivity to therapy, sex-based
studies of cancer biology and treatment are still largely
insufficient, and the factors driving the sex-related cancer
disparity remain to be clarified. Even after recommendations
from NIH and other funding agencies to consider sex and gender
at all levels of biomedical research, animal studies and clinical
trials that distinguish gender populations are few (115). P53-
target therapies do not make an exception, as demonstrated by
Table 2. None of those clinical trials reported separate results for
men and women or considered the hormonal status of patients.
Still, many studies demonstrate that p53 activity is affected by
sex-related genetic and/or hormone determinants. This review
reflects the abundance and complexity of the sex-related
molecular factors that affect p53 response in human tumors.
Based on the data here reviewed, nowadays, it is difficult to
predict which genetic or hormonal factors could contribute to
defining a more personalized application of single or
combinatorial treatments.

For this reason, evaluation of sex/hormones in preclinical
studies and clinical trials could help clarify the factors that finally
affect p53 function in vivo and could guide future molecular
studies besides drive a more appropriate and successful
application of these therapies. Indeed, “false” negative or
positive results could be due to the confounding effects of
mixed backgrounds. As stated by Clayton and Collins,
Frontiers in Oncology | www.frontiersin.org 8
“inadequate inclusion of female cells and animals in
experiments and inadequate analysis of data by sex may well
contribute to the troubling rise of reproducibility in preclinical
biomedical research” (115).

Inclusion of sex/hormone status in the analysis of p53 data
could open the possibility of combinatorial treatments with anti-
hormone or other target therapies. Based on the beneficial effect
of SERM on tumors with wt-p53 and possible depressing activity
of MDM2 levels, a combinatorial treatment of SERM therapy
with p53-reactivating drugs in breast cancer could be
hypothesized. Accordingly, Rozeboom and colleagues recently
suggested a new clinical trial based on triple therapy with a BCL2
inhibitor (venetoclax), an anti-estrogen (tamoxifen/fulvestrant),
and an MDM2 inhibitor (AMG-232/MI-77301) in the ER+/WT
TP53 metastatic breast cancer setting (116). Finally, the
ascertainment of sex/hormone and p53 crosstalk could guide
different drug dosages and improve safety-toxicity drug features.
This is particularly relevant given the more active immune
response in females than males and the well-known required
lower doses of heart disease drugs in females compared to men
(117, 118).
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