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Abstract: Fast iterative soft threshold algorithm (FISTA) is one of the algorithms for the reconstruction
part of compressed sensing (CS). However, FISTA cannot meet the increasing demands for accuracy
and efficiency in the signal reconstruction. Thus, an improved algorithm (FIPITA, fast iterative
parametric improved threshold algorithm) based on mended threshold function, restart adjustment
mechanism and parameter adjustment is proposed. The three parameters used to generate the
gradient in the FISTA are carefully selected by assessing the impact of them on the performance of
the algorithm. The developed threshold function is used to replace the soft threshold function to
reduce the reconstruction error and a restart mechanism is added at the end of each iteration to speed
up the algorithm. The simulation experiment is carried out on one-dimensional signal and the FISTA,
RadaFISTA and RestartFISTA are used as the comparison objects, with the result that in one case,
for example, the residual rate of FIPITA is about 6.35% lower than those three and the number of
iterations required to achieve the minimum error is also about 102 less than that of FISTA.

Keywords: FISTA; compressed sensing; threshold function; restart adjustment mechanism; parameter
adjustment; signal reconstruction

1. Introduction

At the turn of the twentieth century, the compressed sensing (CS) theory emerged
in the field of signal processing [1,2]. According to studies, the CS is particularly well
suited to wireless sensor networks (WSN) and has a promising future in wireless data
communication [3–7].

To reconstruct the original signal with high precision, we require a faster convergence
speed with less sampling information in the reconstruction algorithm [8] of CS. Iterative
threshold algorithm (ITA), a convex optimization algorithm, converts the reconstruction
problem into a convex optimization problem that can be solved by linear programing. To be-
gin, the “threshold” in the algorithm refers to the hard [9] and soft threshold functions [10].
Second, the lasso optimization problem was studied with a gradient descent algorithm [11]
and an iterative threshold function. The proximal gradient algorithm (PGA) [12] was
also created by the researchers to solve the lasso problem [13]. Overall, the iterative soft
threshold algorithm can be regarded as a combination of the PGA and the soft threshold
function. The “soft threshold” is utilized as the gradient of the objective function and the
“gradient descent” is employed to obtain the best value. Researchers have raised numerous
improved FISTAs, such as AFISTA, [14] which fastens the FISTA by a continuation strategy,
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and S-FISTA [15], which uses a scaling technique for gradient proximal step. EFISTA [16],
monotonic FISTA [17], restart FISTA [18,19] and backtracking strategy [20] are also available.
There is no doubt that those algorithms can play a larger role in a variety of fields [21–23].

This study will put forward a new improved FISTA. We will firstly suggest a better
threshold function and demonstrate theoretically that it can overcome the discontinuity
and constant deviation of the classical threshold function. Simultaneously, the study will
integrate three parameters and the restart judgment mechanism. In this way, an improved
iterative threshold algorithm with a higher convergence rate and better reconstruction
performance would be formed.

2. Related Work
2.1. Basic Theory

In the sensor network structure module, compressed sensing is essential. Figure 1
depicts the basic steps of compressed sensing.
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Figure 1. Basic framework of compressed sensing. (x denotes the original signal, and the x* denotes
the reconstructed signal).

In the reconstruction model, as shown in the above graph, the observation vector
y ∈ RM can be expressed as:

y = φx = φψ−1S = ΘS, (1)

To solve such a linear inverse problem, the least square method is usually used and
the form is as follows:

∧
xLS = argmin

x
||y− φx||22, (2)

To attain decent results, such a morbid linear formula must avoid significant estimation
variance caused by unbiased estimation and the Tikhonov regularization approach is
employed. Simultaneously, Equation (3) is formed, which is the classical lasso problem [13]
due to the benefit that the regular term of the L1 norm can produce sparse solutions,

min
x

1
2
||y− φx||22 + λ||x||21, (3)

Among this expression, λ > 0 is the regularization parameter.

2.2. Fast Iterative Soft Threshold Function Reconstruction Algorithm Based on Proximal
Gradient Descent

It is clear that the basic optimization problem described in Equation (3) can be solved
by the proximal gradient descent method.
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After simplification and optimization, it can be calculated like this:

xk = proxt,λ||·||1(xk−1 − t∇g(xk−1))

= Sλt(xk−1 − tφT(φxk−1 − y))
(4)

where Sλt() is the soft threshold operator, g(x) is the first half of Equation (3) and is described
as g(x) = 1

2 ||y− φx||22. In addition, it has ∇g(x) = ∇ 1
2 ||y− φx||22 = φT(y− φx) and t is

achieved with the Lipchitz continuity in Rn of ∇g(x), which means ∀x1, x2 ∈ Rn, ∃L > 0
satisfies |∇g(x1)−∇g(x2)|≤ L|x1 − x2|. Then, set t = 1

L .
Nevertheless, according to the reference [24], for the objective Equation (3), the conver-

gence rate of f (xk)− f (x∗) is O( 1
k ) and so is the time complexity of ISTA. Fast iterative soft

threshold algorithm (FISTA) is created using Nesterov acceleration technology to speed up
the convergence speed of the algorithm. The difference between FISTA and ISTA lies in
the Nesterov accelerating process, which only requires a few additional steps and brings
great elevation to the convergence speed of the algorithm. ISTA mainly relies on the value
of approximate function xk−1 from the previous iteration and the Function (4) is the only
kernel of the algorithm. FISTA makes use of the Nesterov acceleration technology and it
mainly consists of two parts. The first part is computing a new point along the direction of
the previous two steps. In the second part, the cardinal point is processed by approximate
gradient method. The core formula of the algorithm is shown in Formula (5).

xk+1 = Sλt(yk − tk∇ f (yk))

ξk =
1+
√

1+4ξ2
k−1

2
γk =

ξk−1−1
ξk

yk = (1− γk)xk + γkxk−1

, (5)

Therein, ξ and γ are two momenta, k represents the k-th iteration and we set ξ1 = 1,
y1 = x0 ∈ Rn.

3. Proposed Method
3.1. Parameter Variation Based on Nesterov

As seen in the previous section, there are the following calculation rules in the FISTA

ξk =
1 +

√
1 + 4ξ2

k−1

2
, γk =

ξk−1 − 1
ξk

, (6)

Obviously, each change of xk is related to the value of the γk and the γk is constantly
affected by the ξk. Two constants “1” and one constant “4” are required for each update in
the calculation rules for ξk. In this paper, the three fixed constants are replaced by three
parameters p, q and r to study the impact of those three parameters on the iteration process.
Therefore, the calculation rules that integrate the three parameters p, q and r are modified
as follows:

ξk =
p +

√
q + rξ2

k−1

2
, γk =

ξk−1 − 1
ξk

, (7)

First, analyzing the convergence is necessary and here is the specific analysis:

r ∈ (0, 4) : ξk →
2p+∆
4−r < +∞, γk →

2p+∆−(4−r)
2p+∆ < 1,

r = 4 : ξk ≈ k+1
2 p→ +∞, γk → 1

(8)

where ∆
de f
=
√

rp2 + (4− r)q. It indicates that only when the value of r is 4 can the γk
converge to 1 and the convergence rate of f (xk)− f (x∗) is O( 1

k2 ). It also has the advantage
of proving the convergence in the iterative process thanks to this constant. So we could set r
as 4 for the algorithm. The values of p and q, on the other hand, can have a difference on the
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convergence of the algorithm to a certain extent. Let x∗ be the optimal solution of the lasso
minimum problem and lead x∗ and xk into Formula (2) to get the solution of their respective
minimum errors. According to relevant research, let f (x) = 1

2 ||y− φx||22 + λ||x||21, then the
convergence of f (xk)− f (x∗) is consistent with that of {xk}.

The data in the Figure 2 are made up of random signals and the findings are achieved
through several experiments. It can be seen clearly that FISTA has an oscillation problem,
which has a detrimental impact on the number of iterations, resulting in time waste and a
drop in reconstruction efficiency.
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(a) (b) 

Figure 2. Iteration of conventional FISTA. (a) ||xk − x∗||. It depicts the reconstruction error diagram
of xk and x∗ in each iterative process under the traditional fast iterative soft threshold algorithm;
(b) f (xk)− f (x∗) shows the difference between the value of xk obtained in each iteration and x∗ in
solving the lasso problem shown in Formula (2).

Relevant studies have proposed that some judgment restart mechanisms be imple-
mented at the end of each iteration process to alleviate these problems. According to the
scheme presented in reference [18], the restart mechanism can be incorporated and forms
RadaFISTA, which means that FISTA is regarded as a generalized gradient scheme and
Formula (9) is a generalized gradient step. By such mechanism, the new algorithm is
able to achieve an almost monotonic convergence in terms of f (xk)− f (x∗) and can get a
significantly faster speed.

xk+1 = Sλt(yk − tk∇ f (yk)), (9)

The gradient restart scheme is equivalent to making judgement on (yk − xk+1)
T

(xk+1 − xk) > 0 before each iteration. At the same time, as resetting yk in each itera-
tion, it can never be neglected to regulate the value of r and add a factor between 0 and 1 to
adjust and control the range of r value within 4.

When determining the value of these two parameters, p and q, we first fix that they
must both be positive. Then, several data pairs composed of the values of p and q are formed
and make up a data set. To achieve the suitable values for the parameters p and q, we use
hundreds of groups of random signals as numerical instances and conduct 100 experiments
on each group of signals. As shown in the Figures 3 and 4, the data in those figures are
made up of random signals and the findings are achieved through those experiments.
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On the premise that the value of p is fixed at 1, take the q values of 1
2 , 1, 2 and 10,

respectively, for relevant experiments. As shown in Figure 3, the value of q has little
effect on the results in those multiple experiments. Consequently, in order to facilitate the
implementation of the following experiments, we set the value of q as 1 in the algorithm.

The choice of p value, on the other hand, has an impact on the convergence. Keep the
q value constant and take p values of 1/20, 1, 2 and 4, respectively, for the experiment. The
results are exhibited in Figure 4.

Through repeated tests, it is seen that when the value of p is taken as 2, relatively still
less data residuals can be obtained in fewer iteration times. The effect of taking p value
around 2 cannot be achieved by other values. Therefore, in order to bring convenience for
the following experiments, the value of p is set to 2 in the improved algorithm given in
this paper.

Apparently, the parameters p and q appear to be able to control the reconstruction
process after being added into the algorithm. In comparison to FISTA, this algorithm
proposed in this paper can more easily control the convergence rate and the reconstruction
speed by adjusting the parameters p and q, making it more versatile and adaptable to
signals with different characteristics.

3.2. Improved Threshold Function

For the sake of seeking the “gradient” of the objective function containing the L1 norm,
a soft threshold function is adopted to calculate the optimal solution. Evidently, the soft
threshold function is widely used and has shown to be extremely reliable. However, both
the soft threshold function and the hard threshold function have flaws. Consequently,
this paper proposes a new threshold function that combines the features of soft and hard
threshold functions and applies them throughout the reconstruction algorithm.

∧
xi =

{
0, |xi|< λ

xi(1−
(

λ
|xi |

)n
),
∣∣∣xi

∣∣∣≥ λ
, (10)
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Therein, xi is the processed values of yk and n is a variable quantity that gives the en-
hanced threshold function a lot of flexibility. Furthermore, the threshold function proposed
in this paper also has the advantage of a concise expression, which avoids the problems
of multiple parameters and significant inconvenience that many threshold functions have
to some extent. Additionally, additional advantages are as follows. In terms of continuity,
it can be seen from Formula (10) that the function is continuous at ±λ, which allows it to
avoid the defects of the hard threshold function and to smooth out the signal. Additionally,
when the coefficient xi tends to infinity, the deviation of the soft threshold function will

lead to distortion. However, in this improved function, it can be seen that lim
xi→+∞

∧
xi − xi = 0,

lim
xi→−∞

∧
xi − xi = 0. Hence, the improved threshold function described in this study can par-

tially overcome the constant deviation of the soft threshold function and it is also verified
that the deviation will have less and less influence on the updated threshold function.

Figure 5 illustrates that along with the increase of xi, applying the improved threshold
function described in this paper results in greater sparse constraints. The new function
produces smaller deviations for large coefficients xi than the soft threshold function. By
keeping large coefficients xi, we could overcome the problem of easy distortion of the soft
threshold function and by shrinking the intermediate coefficients xi, we could reduce the
discontinuity of the hard threshold function. When the value of n is 1, the function is a soft
threshold function. When the value of n approaches infinity, the value of xi approaches
the value of the hard threshold function. To some extent, the better function compensates
for the shortcomings of constant deviation. Furthermore, after processing, the estimated

coefficient
∧
xi obtained can approach the real value more quickly. Meanwhile, it also makes

up for the discontinuity of the hard threshold function at the threshold ±λ.
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As a result, an improved threshold function is constructed for the lasso problem in the
compressed sensing reconstruction algorithm. In the reconstruction algorithm, the iterative
threshold algorithm attempts the solution to the lasso problem indicated in Formula (2).
The soft threshold function, as seen in Section 2.2, is frequently utilized to solve such
reconstruction problems. However, the improved function is used to displace the soft
threshold function in this paper and is integrated into the FISTA core formula.

xk+1 = Tλn(yk − tk∇ f (yk)), (11)

In this formula, Tλn denotes the improved threshold function, λ is the threshold, n is
the function variable and tk is the step size. These new penalty functions can be designed
flexibly by changing the value of n in order to obtain a better reconstruction effect.

3.3. Improved Fast Iterative Threshold Algorithm

Aiming at improving the convergence speed and the reconstruction performance of
FISTA, this paper puts forward a new algorithm named fast iterative parametric improved
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threshold algorithm (FIPITA), which substitutes the improved threshold function for the
soft threshold function, uses a restart and self-adaptive adjustment mechanism to alleviate
the oscillation problem in the reconstruction process and improve the convergence efficiency
and integrates three parameters p, q and r to replace three previous constants. The final
reconstructed signal can be obtained by combing the three elements above into the FIPITA.

At last, in order to facilitate the description and understanding of the execution steps
of the above algorithm, the solving process is organized in the form of the following
Algorithm 1.

Algorithm 1 Fast iterative parametric improved threshold algorithm(FIPITA)

Input :
Lipschitz constant: L = L(f)(L(f)-A Lipschitz constant of ∇ f )
Initial value: x0
Output:

Optimal value f (x) with x.
1: Begin
2: Initialize momentum1 ξ, momentum2 γ,
3: Set ξ1 = 1; y1 = x0 ∈ Rn;
4: For k = 1, 2, 3 . . . COMPUTE
5: xk+1 = Tλn(yk − tk∇ f (yk));

6: ξk =
p+
√

q+rξ2
k−1

2
7: γk = ξk−1−1

ξk

8: yk = (1− γk)xk + γkxk−1

9: Restart if (yk − xk+1)
T(xk+1 − xk) > 0

10: Let r = ζr
11: yk = xk
12: if r < 3.99
13: Reset ξk
14: End For
15: Obtain the optimal LASSO answer f(x) and its corresponding x;
16: End

4. Results and Discussions

Simulation experiments used to test and validate the fast iterative parametric im-
proved threshold algorithm (FIPITA) are divided into several sections. These sections
include comparing the signal before and after reconstruction to assess the reconstruction
effectiveness, adopting the residual rate to assess the change in reconstruction accuracy
with sparsity, adopting the required maximum number of iterations to assess the change in
algorithm efficiency with sparsity and adopting the residual rate to assess the variation in
reconstruction accuracy with the observed value. FISTA, the most classic and widely used
algorithm, is added in the experiment as a comparable algorithm to further demonstrate
the performance of the algorithm. Meanwhile, RestartFISTA [25] and RadaFISTA [18] are
also added.

4.1. One Dimensional Signal Reconstruction Simulation Test

To demonstrate the property of the FIPITA, we take a Gaussian random signal x with
length n of 256, observation value m of 128 and sparsity K of 10. The Gaussian random
matrix is selected as the observation matrix of this simulation experiment. When the error
of two adjacent iterations, res = xk − xk−1, is less than 10−16 or the value of y− φxk is less
than 10−6, the algorithm has to call off the iteration.

From Figure 6, it is be indicated that the signal can be rebuilt accurately by the
mended algorithm.
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Figure 6. Signal reconstruction diagram. (a) Original signal; (b) the reconstructed signal.

4.2. Performance of the Algorithm under Different Sparsity

The residual rate is a key verification index for evaluating the algorithm performance
and it is defined as follows:

residualrate =
||∧x− x||
||x|| , (12)

Among Formula (12),
∧
x stands for the final reconstruction result, x is the original signal

and the ratio of the norm of
∧
x− x to the norm of the original signal x is deeded as the index

of signal reconstruction quality; the smaller the index the higher the signal reconstruction
accuracy.

FISTA, RadaFISTA and RestartFISTA are drawn into the experiment to compare
with the FIPITA. Gaussian and Hadamard matrices are selected as observation matrices
for measurement experiments at the same time. The type, length of the signal and the
observation value are identical to those stated in the previous section. The sparsity K is
set between 21 and 70 and the step size is 1. The same group of signals is reconstructed by
those four algorithms.

According to Figure 7a,b, the residual rate of the modified iterative threshold algorithm
is the lowest and does not change with sparsity or observation matrix. Overall, the residual
rates of the four algorithms are steadily increasing in tandem with the increase in sparsity,
which is in keeping with the regular pattern of the algorithm. Moreover, as shown in
the picture above, the residual rate of the FISTA, RadaFISTA and RestartFISTA are pretty
close, that is, the reconstruction effects of these three algorithms are similar. Taking the
Gaussian matrix as the observation matrix and the interval of sparsity between 21 and 70 as
an example, the residual rate of the FIPITA proposed in this paper is approximately 6.35%
lower than the other three algorithms. According to the definition of residual rate, the lower
the residual rate the higher the reconstruction accuracy, which suggests the reconstruction
accuracy of the FIPITA is supreme.
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4.3. Performance of the Algorithm under Different Observation Numbers

The original signal is a Gaussian random signal with the same signal type and length
as the ones above. The observation value m is set to range between 75 and 125, the step size
is 1 and the sparsity K is set to 50. The FISTA, RadaFISTA and RestartFISTA are still used to
reconstruct the same group of signals with FIPITA and the Gaussian matrix and Hadamard
matrices are used as the observation matrices, respectively. The measured residual rate is
shown in the graphs below.

Although the observation value is varied, the residual rate of the FIPITA is the min-
imum among the four algorithms under different measurement matrices, as is clearly
shown in Figure 8a,b, and the residual rate of those three algorithms used for comparison
is close. Taking the Hadamard matrix as the observation matrix and the interval of obser-
vation value between 75 and 125 as an example, the residual rate of FIPITA in this study
is around 4.99% lower than the other three algorithms. In other words, the FIPITA has
the maximum reconstruction accuracy, whereas the other three algorithms have similar
reconstruction accuracy.
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4.4. Algorithm Efficiency Comparison

In this paper, the maximum number of iterations required by the algorithm is adopted
as an index to measure the efficiency of the algorithm. The maximum number of iterations
indicates the number of final iterations required when res = xk − xk−1 is less than 10−16

and the iteration is ceased. The efficiency of the algorithm improves as the number of
iterations decreases, which means the reconstruction will be faster. Figure 9a,b shows the
number of iterations for varied sparsity and observation matrices.
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In light of Figure 9a,b, it is explicit that the number of iterations required by FISTA is
the highest for various sparsity, implying that the algorithm requires more time cost and is
inefficient. The FIPITA appears to be better than FISTA in terms of the number of iterations,
but at the same time as sparsity increases the number of iterations required by the FIPITA is
sometimes higher than RadaFISTA and RestartFISTA. For this reason, this paper integrates
data from one particular experiment on the Hadamard matrix and displays them in the
Table 1 below.

Table 1. Comparison of reconstruction residual rate and iteration numbers of four algorithms.

Average Iteration
Times under

Different Sparsity

Sparsity (=30) Sparsity (=45) Sparsity (=50)

Number of
Iterations Residual Rate Number of

Iterations Residual Rate Number of
Iterations Residual Rate

FISTA 397.66 222 0.2861 346 0.2605 508 0.3609
RadaFISTA 273.82 150 0.2861 240 0.2602 357 0.3612
RestartFISTA 273.82 149 0.2860 237 0.2608 359 0.3610

FIPITA 295.92 145 0.2592 253 0.2423 358 0.3427

The statistics from Table 1 leads us to the conclusion that, while FIPITA will result in
marginally higher iteration times than RadaFISTA and RestartFISTA, such iteration times
are inherently unstable. When the sparsity is 30, for example, the number of its iterations is
much less than the other three algorithms, including FISTA, and when the sparsity is 50,
its iteration times are similar to RadaFISTA and RestartFISTA. At the same time, when it
comes to residual rate, the FIPITA has a clear advantage, which can improve the accuracy
of the compressed sensing reconstruction algorithm.

It is also important to combine the number of iterations with convergence. Several
hundreds of experiments are done on the same group of signals to study the convergence.

The horizontal axis of Figure 10 denotes the number of iterations. We can see that
the results of the figure are consistent with those analyzed above. The convergence rate
and the iterations of FIPITA are similar to RadaFISTA and RestartFISTA and superior to
FISTA. In addition, the convergence rate of f (xk)− f (x∗) is O( 1

k2 ), which is coincident with
those three.
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Generally speaking, while the number of iterations required by the suggested tech-
nique is significantly fewer than that of FISTA, it is slightly more than RadaFISTA and
RestartFISTA. However, after thoroughly evaluating and judging the unstable nature of
the number of iterations, lower residual rate and superior reconstruction performance of
FIPITA in a comprehensive way, we can get a conclusion that the FIPITA not only has
relatively rapid reconstruction speed but also can increase signal reconstruction accuracy.
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5. Conclusions

The fast iterative parametric improved threshold algorithm (FIPITA) has combined
the restart mechanism with the idea of backtracking and added three parameters so that
it can converge faster than the FISTA. Furthermore, instead of using the soft threshold
function to lower the residual rate of the algorithm, this paper uses the enhanced threshold
function to improve the reconstruction accuracy. Through experiments, the effectiveness
of the algorithm is tested and confirmed. The results reveal that this algorithm is not
only better than several camparable algorithms in terms of reconstruction accuracy but
also considerably superior to FISTA in terms of algorithm efficiency. Therefore, the next
research project should focus on how to further improve the efficiency of the reconstruction
algorithm while still ensuring reconstruction accuracy.
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