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INTRODUCTION 
 
The tumor microenvironment (TME) is created by the 
tumor and dominated by tumor-induced interactions [1]. 
Within the TME infrastructure, various types of 
immune (innate and adaptive immune cells) and non-
immune (stromal cells, fibroblasts, endothelial cells) are 
found. These cells drive a chronic inflammatory, 
immunosuppressive, and pro-angiogenic intratumoral 

environment by secreting downstream factors [2, 3]. To 
date, several studies have found that TME not only 
plays an essential role in tumor initiation, disease 
progression, and metastatic development but also has 
profound effects on therapeutic efficacy [4]. Therefore, 
identifying effective targeted drugs with TME provides 
new insights into case-specific medical care. Immune 
checkpoints such as programmed death (PD‐1) and its 
ligand (PD‐1 ligand [PD‐L1]) have been found ligand-
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ABSTRACT 
 
Background: As a major component of the tumor tissue, the tumor microenvironment (TME) has been proven 
to associate with tumor progression and immunotherapy. Ovarian cancer accounts for the highest mortality 
rate among gynecologic malignancies. Its clinical treatment decision is highly correlated with the prognosis, 
underscoring the need to evaluate the prognosis and choose the proper clinical treatment through TME 
information. 
Method: This study constructs a score with TME information obtained by the CIBERSORT algorithm, which 
classifies the patients into high and low TMEscore groups with quantified TME infiltration patterns through the 
PCA algorithm. TMEscore was constructed by TCGA cohort and validated in GEO cohort. Univariate and 
multivariate Cox proportional hazards model analyses were used to demonstrate prognostic value of TMEscore 
in overall and stratified analysis. 
Result: TMEscore is highly correlated with survival and high TMEscore group has a better prognosis. In order to 
improve treatment decision, the expression of immune checkpoints, immunophenoscore (IPS) and ESTIMATE 
score showed a high TMEscore have a better immune microenvironment and respond better to immune 
checkpoint inhibitors (ICIs). Meanwhile, the mutation landscape between TMEscore groups was profiled, and 
13 genes were found mutated differently between the two groups. Among them, BRCA1 has more mutations in 
the high TMEscore group and speculated that high TMEscore patients might be a beneficiary population of 
PARP inhibitors combined with immunotherapy. 
Conclusion: TMEscore based on TME with prognostic value and clinical value is proposed for the identification 
of targets treatment and immunotherapy strategies for ovarian cancer. 
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receptor interactions between cancer cells and host 
immune cells in TME. The corresponding monoclonal 
antibody agents like nivolumab and pembrolizumab 
have been approved by the Food and Drug 
Administration (FDA) to treat melanoma, lung, gastric 
cancer, etc. [5, 6]. Even though these drugs could 
prolong overall survival (OS) and progression-free 
survival (PFS), still only a small subset of patients 
benefit from these drugs [7, 8]. Therefore, it is vital to 
accurately identify prognostic biomarkers and the 
therapeutic beneficiaries in future research directions. 
 
Ovarian cancer is the leading cause of death among 
patients with gynecologic malignancies [9]. About 80% 
of patients with serious carcinomas are diagnosed at an 
advanced stage [10]. Even though more than 80% of 
patients with advanced-stage respond to cytoreductive 
surgery and adjuvant chemotherapies, most of them 
ultimately relapse and eventually develop 
chemotherapy-resistant disease [11]. Recently, PARP 
inhibitors and Bevacizumab have been approved for 
ovarian cancer in addition to platinum-based therapies 
[12]. Immunotherapy presents a potentially novel 
frontier in ovarian cancer treatment, but the response 
rates among ovarian cancer patients is not quite high as 
expected. A phase II study of nivolumab (anti–PD-1 
antibody) monotherapy found a 15% overall response 
rate (ORR) in 20 patients with platinum-resistant 
disease, while another combination therapy with 
nivolumab and bevacizumab show a 40% ORR in 38 
patients with relapsed ovarian cancer in platinum-
sensitive patients and 16.7% in platinum-resistant 
patients [7, 13]. It is evident that not all patients can 
benefit from immunotherapy, and patients sensitive to 
first-line platinum-based therapy had a higher response 
rate to immunotherapy than platinum-resistant patients. 
 
This paper aims to construct a prognostic biomarker 
with TME and predict therapeutic effects. At present, 
the prognostic models consist of the commonly used 
prognostic indicators, such as clinicopathological 
characteristics and various biomarkers. However, the 
interaction between genes and the bias of gene 
expression values across platforms may lead to 
differences across studies. In this study, we started by 
systematically characterizing TME in ovarian cancer 
using CIBERSORT computational algorithms [14]. 
Then, the score with quantified TME infiltration pattern 
(namely TMEscore) through Principal Components 
Analysis (PCA) algorithm was constructed and 
systematically correlated with platinum-based therapy 
and clinical features in ovarian cancer. Finally, we 
explored the response to ICIs in different TMEscore 
groups and the association between TMEscore and 
mutation landscape to identify potential targets and 
feasible treatments. 

RESULTS 
 
Landscape of TME cells in ovarian cancer 
 
The workflow for this study is shown in Supplementary 
Figure 1. The landscape with LM22 in TCGA was 
analyzed by CIBERSORT computational algorithms 
(Supplementary Table 1). With the NMF method, 
cluster numbers k = 3 was chosen as a final cluster 
number because of the suitability of clustering (Figure 
1A) [15]. Finally, 373 samples with TME cell 
expression profiles were divided into three subgroups, 
named TME cluster-1, TME cluster-2 and TME cluster-
3. We found that TME cluster-2 had a significantly 
longer OS than others (P = 0.0102; Figure 1B). TME 
cluster-2 exhibited high infiltration of CD8 T cells, 
activated memory CD4 T cells, follicular helper T cells, 
M1 macrophages, gamma delta T cells and so forth. 
While TME cluster-1 and TME cluster-3 were 
characterized by increases in the infiltration of resting 
mast cells, resting NK cells and M0 macrophages or M2 
macrophages, activated dendritic cells, neutrophils and 
activated mast cells, respectively (Figure 1C). 
 
TME signature and functional annotation 
 
We identify 1,351 TME-related DEGs, which might be 
associated with the biological behavior of TME. 
Consensus clustering was used to unsupervised learning 
clusters of genes (Figure 2A–2D). According to heatmap 
of the consensus matrices, consensus cumulative 
distribution function (CDF) curve, two gene clusters, 
termed as gene-cluster A and gene-cluster B, were 
identified. The functions and pathways associated with 
the DEGs were analyzed using KEGG and GO. The 
gene-cluster A enriched in Cytokine-cytokine receptor 
interaction pathway, Chemokine signaling pathway,  
Viral protein interaction with cytokine and cytokine 
receptor pathway and so on. In contrast, gene-cluster B 
enriched in Focal adhesion pathway, PI3K-Akt signaling 
pathway, MAPK signaling pathway, Proteoglycans in 
cancer pathway etc. GO enrichment (biological process) 
showed that gene-cluster A mainly involved T cell 
activation, leukocyte cell-cell adhesion and leukocyte 
migration; gene-cluster B were significantly enriched 
in axonogenesis and regulation of protein-containing 
complex assembly. (Figure 2E, 2F, Supplementary Tables 
2, 3). And top 100 DEGs were shown in Figure 2G. 
 
Establishment of the TMEscore in TCGA database  
 
The TMEscore was defined as 
TMEscore 1 1 .i jPC PC= −∑ ∑  The 373 patients in the 
TCGA cohort were divided into high or low TMEscore 
groups based on the TMEscore cutoff value (0.83). The 
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patients with low TMEscore had a worse prognosis in 
univariate analysis (HR, 1.818; 95% CI, 1.303–2.536; 
P < 0.001; Figure 3A). Adjusting for age, grade, stage 
and chemotherapy outcome, TMEscore (HR, 1.643; 
95% CI, 1.118–2.413; P = 0.011) was an independent 
predictive factor of ovarian cancer, and its C-index was 
0.688 ± 0.024 (Figure 3E). Furthermore, in subgroup 
analysis, we found that the TMEscore was still an 
independent predictive factor for patients with complete 

response (CR) of platinum drug chemotherapy, while 
TMEscore could not be identified as an independent 
predictive factor for non-CR (non-CR: partial response, 
progressive and stable disease) patients (Figure 3B, 3C 
and 3F, 3G). In addition, we combined CR and PR as 
the responders (CR and PR) and the others as the non-
responders (non-CR and non-PR) and found that 
TMEscore could be used as an independent predictive 
factor in responders but not in non-responders 

 

 
 
Figure 1. Unsupervised clustering of tumor microenvironment (TME) cells and subtype characteristics for 373 ovarian 
cancer patients in the TCGA cohort. (A) Cophenetic correlation coefficient of different clusters. (B) Kaplan–Meier (K–M) curves for 
overall survival (OS) of different 3 subtypes (log-rank test, P = 0.010). (C) Expression pattern of 21 TME cell types in 3 TME subtypes. The 
differences were confirmed by Kruskal–Wallis tests in the three TME subgroups with TME cell infiltration, and they were statistically 
significant except Monocytes. The asterisks represented the statistical P value. (*P < 0.05). 
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(Supplementary Figure 2). Compared with the high 
TMEscore group, only a small number of DEGs in high 
TMEscore group were highly expressed in gene-cluster 
A. Meanwhile, high TMEscore group was concentrated 
on the CR, TME clusters-2, which were all related with 
better survival (Figure 3D). 

Validation of the TMEscore in GEO database 
 
We used independent datasets from the GEO database 
to further validate TMEscore. A total of 2,005 ovarian 
cancer patients were divided into high and low 
TMEscore groups by the same cutoff value. It was 

 

 
 
Figure 2. The clusters of DEGs with consensus clustering algorithm and KEGG enrichment. (A–C) Consensus matrixes of TCGA 
cohorts for each k (k = 2–4), displaying the clustering stability using 1000 iterations of hierarchical clustering. (D) Cumulative distribution 
function (CDF) curve; Different colors represent different clusters, x-axis denotes consensus index and y-axis denotes CDF values. (E, F) 
Enrichment pathways of the top 30 KEGG in gene cluster A and gene cluster B. (G) Expression profile heatmap of top 100 DEGs obtained by 
LIMMA and Random Forest. 
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found that low TMEscore group had a worse 
prognosis (HR, 1.275; 95% CI, 1.116–1.457; P < 
0.001; Figure 4A). A multivariate Cox regression 
model was constructed, and its C-index was 0.677 ± 
0.030, in which TMEscore (HR, 1.731; 95% CI, 
0.997–3.005; P = 0.051) was might an independent 
prognostic factor (Figure 4E). Expression profile of 
DEGs was similar to TCGA and shown in Figure 4D. 
Further, in subgroup analysis, we found that 
TMEscore had a better performance to predict the 
prognosis for patients who showed CR than non-CR 
to chemotherapy (Figure 4B, 4C and 4F, 4G). 

Consistent with TCGA, we redefined the 
chemotherapy outcome (CR and PR as responder; 
non-CR and non-PR as non-responder) and found 
TMEscore could be used as an independent predictive 
factor in responders (Supplementary Figure 3).  
 
Establish a nomogram to predict the OS of ovarian 
cancer 
 
To predict mortality in ovarian cancer patients, a 
nomogram was drawn in the TCGA dataset to serve as a 
clinically relevant quantitative method and age, stage, 

 

 
 
Figure 3. Determine the prognostic group of 373 ovarian cancer patients based on TMEscore in TCGA and evaluate the 
predictive ability. (A) K–M curve for OS of different TMEscore groups (log-rank test, P < 0.001). (B, C) According to chemotherapy outcome-
stratified analysis (278 ovarian cancer patients), K–M curves in patients with complete response (CR) or non-complete response (non-CR) in 
different TMEscore group (log-rank test, P = 0.001; log-rank test, P = 0.33). (D) Expression profile of DEGs with survival significance. TMEscore, 
age, stage, grade, therapy outcome and TME cluster are shown as patient annotations. GeneClass is shown as gene annotations. Top legend, 
gray indicates missing value. (E–G) Forest plots illustrate the results of multivariate Cox proportional hazards model of clinical feature in all 
patients, CR patients and non-CR patients respectively. 
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grade and chemotherapy outcome were included 
respectively (Supplementary Figure 4A). Furthermore, 
calibration curves showed that the nomogram had 
similar performance to an ideal model, which could 
predict ovarian cancer survival at 3 and 5 years in a 
relatively stable manner (Supplementary Figure 4B, 
4C). Due to the incomplete information on clinical 
features in the GEO dataset, we cannot further verify 
the nomogram in the GEO. 

Profile tumor somatic mutation between TMEscore 
groups 
 
To comprehensively understand and explore the 
appropriate treatment strategy for high and low 
TMEscore groups, the top 30 highly mutated genes 
distribution were shown in Supplementary Figure 5A, 
5B. The mutation rate of TP53 was the highest, 
reaching 87% and 92% in high and low TMEscore 

 

 
 
Figure 4. Determine the prognostic group of 2005 ovarian cancer patients based on TMEscore in GEO and evaluate the 
predictive ability. (A) K–M curve for OS of different TMEscore groups (log-rank test, P < 0.001). (B, C) According to chemotherapy 
outcome-stratified analysis (158 ovarian cancer patients), K–M curves in patients with complete response (CR) or non-complete response 
(non-CR) in different TMEscore group (log-rank test, P = 0.008; log-rank test, P = 0.11). (D) Expression profile of DEGs with survival 
significance. TMEscore, age, stage, grade, therapy outcome and histology are shown as patient annotations. Top legend, gray indicates 
missing value. (E–G) Forest plots illustrate the results of multivariate Cox proportional hazards model of clinical feature in all patients, CR 
patients and non-CR patients respectively.  
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groups. Among a total of 13 differentially mutated genes 
between two groups (P < 0.05; Supplementary Figure 
5C), eight genes such as BRCA1, OR2G6, SHROOM3 
showed a higher mutation frequency in the high 
TMEscore group. The other five genes, such as CHD6, 
TECTA, had a higher mutation frequency in low 
TMEscore group. Subsequently, we calculated the TMB 
and found that TMEscore could distinguish TMB and 
related to patients’ OS (P = 0.018) (Supplementary 
Figure 5D). 
 
Expression of immune-checkpoint between TMEscore 
groups 
 
In addition, we found that TMEscore could predict the 
response of ICIs and could provide a basis for 
subsequent immunotherapy. By comparing the 
expression of immune checkpoints (CD80, CD86, and 
PDCD1) and stromal and immune scores computed by 
ESTIMATE between different groups, we found that 
they were highly expressed in high TMEscore group in 
TCGA and GEO (Figure 5A–5C, 5F–5H, 5I–5K, 5L–
5Q). IPS was introduced to evaluate the patients’ 
responses to ICI treatment because of the information 

on ICI treatment was not available in TCGA and GEO 
datasets. The IPS values (IPS-CTLA-4_pos and IPS-
PD-1/PD-L1/PD-L2_pos) as the alternative of the 
ovarian cancer patients’ responses to anti-CTLA-4 and 
anti-PD-1/PD-L1 treatment were increased in the high 
TMEscore group (Figure 5D, 5E). It’s likely that the 
patients in the high TMEscore group have a better 
immune microenvironment and respond better to ICIs. 
 
DISCUSSION 
 
The researchers have made various attempts to prolong 
the survival time of ovarian cancer patients by 
combining targeted therapy and chemotherapy [12]. 
Increased understanding of TME has shifted from a 
tumor cell centered view of cancer progression to the 
concept of a complex TME that supports tumor growth 
and metastatic dissemination. TME significantly 
influences therapeutic response and clinical outcomes 
for patients [4, 16]. In this study, TMEscore with the 
information of TME, developed and validated with 
more than 2,000 ovarian cancer patients, was found to 
be an independent prognostic biomarker and could 
improve treatment decisions in ovarian cancer. 

 

 
 
Figure 5. The expression of immune checkpoints and immune-related scores between different TMEscore groups in TCGA 
and GEO. (A–C) Expression of immune checkpoints (PDCD1, CD80 and CD86) between different groups in TCGA. (D, E) The relative 
probabilities to respond to anti-CTLA-4 and anti-PD-1/PD-L1 treatment in the low and high TMEscore group. (F–I) Expression of stromal 
score, immune score and ESTIMATE score between different groups in TCGA. (J–L) Expression of immune checkpoints (PDCD1, CD80 and 
CD86) between different groups in GEO. (M–Q) Expression of stromal score, immune score and ESTIMATE score between different groups 
in different platforms in GEO. The lines in the boxes represented median value. 
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Three distinct subtypes of ovarian cancer were found 
based on TME. According to previous studies, CD8 T 
cells were generally associated with a longer OS in 
tumors, while the presence of M0, M2 macrophages 
favoring tumor growth and spreading was associated 
with poor outcomes [17–19] (Figure 1). Through the 
enrichment of DEGs between subtypes of TME, we 
found that gene-cluster A was related to immune 
functions such as, chemokine, TNF and other cytokines 
act through cell surface receptors (Figure 2E). 
Cytokines are associated with expanding and 
reactivating effector NK and T lymphocytes, promoting 
lymphocytes tumor infiltration and persistence in TME 
[20]. And several biological processes correlated with 
immune regulation were found, including T-cell 
activation and leukocyte migration [21, 22]. While the 
pathways in gene-cluster B were usually related to cell 
growth, migration and proliferation (Figure 2F). Studies 
demonstrated that PI3K/AKT/mTOR pathway, one of 
the most important signaling pathways for therapeutic 
intervention in ovarian cancer, has been reported as the 
frequently altered signaling pathway in ovarian cancer 
[23]. And EGFR, VEGFR and BRAF targets in MAPK 
signaling pathway has been extensively studied for 
promising cancer treatment [24].  
 
Because of characterizing and quantifying above cluster 
of genes, TMEscore is more biologically meaningful. 
At present, the predictive marker constructed by gene 
expression may be affected by some factors such as 
different platform expression and complexity of 
biological networks in a large number of genes. PCA  
is a mathematical algorithm that reduces the 
dimensionality of the data while retaining most of the 
variation in the data set. In this study, PCA was used to 
reduce further the dimension of the gene clusters with 
biological information.  
 
Recently, numerous successful clinical trials have 
demonstrated that ICI treatment opens new cancer 
immunology avenues. However, only a small proportion 
of patients benefit from this therapy [25]. Therefore, we 
aim to find the biomarker for predicting therapeutic 
effect. As a significant component of the TME, immune 
infiltrates have been proven to mediate the tumor 
progression and immunotherapy responses [26]. For 
example, higher immune infiltration is associated with 
improved disease-specific survival under different 
treatment conditions of muscle-invasive bladder cancer. 
In contrast, higher stromal infiltration is associated with 
unfavorable disease-specific survival [27]. Meanwhile, 
high expression of PD-L1 and tumor-infiltrating 
lymphocytes are more likely to respond to ICI in 
advanced melanoma [28]. This study found that 
TMEscore had great potential in predicting ICI 
response. IPS values, checkpoints expression and 

immune score were highly expressed in high TMEscore 
group. Resultantly, the high TMEscore group was more 
likely to benefit from immunotherapy and TMEscore 
could be used as a biomarker to immunotherapies and 
individualize treatment strategies.  
 
Furthermore, we found that BRCA1 had more 
mutations in the high TMEscore group and speculated 
that high TMEscore patients might be a beneficiary 
population of PARP inhibitors combined with 
immunotherapy. As a key gene in gynecological 
tumors, some studies concluded that patients with 
BRCA mutations have a better response to platinum 
therapy than those without BRCA mutations [29]. And 
HR (Homologous Recombination) deficient ovarian 
cancer may be more sensitive to PD-1/PD-L1 inhibitors, 
and BRCA 1 and 2 mutations may leading HR deficient 
[30]. Olaparib, a PARP inhibition, had been approved 
by EMA and FDA for ovarian cancer patients with 
conditions such as BRCA mutations [31]. Therefore, we 
believe that the PARP inhibition treatment may be 
feasible in the high TMEscore group. Currently, the 
experimental results show that the combination of 
Olaparib and PD-1 can further improve the clinical 
outcome of ovarian cancer [32]. Besides, emerging 
clinical data suggest additive activity between PARP 
inhibition and PD-1/PD-L1 blockade, regardless of 
BRCA1/2-mutation status and HR deficiency [33]. 
These results collectively illustrate that high TMEscore 
group could benefit from a combination of ICIs and 
PARP inhibition treatment, and TMEscore is a 
promising therapeutic predictor in ovarian cancer. 
 
Despite the comprehensive analysis of TMEscore, there 
are still some limitations in this study. Firstly, the 
method of PCA dimension reduction of multiple genes 
may be inferior to the predictive factor constructed by 
gene expression in biological interpretation. Secondly, 
incomplete clinical information in GEO has decreased 
the statistical power in multivariable Cox regression 
analysis. Third, the results are based only on the public 
databases, so further experiments are needed to verify 
its biological function.  
 
In conclusion, TMEscore was a promising prognostic 
marker to explore the therapeutic direction of ovarian 
cancer as well as possible drugs that have substantial 
benefit for patients. Further biological validation is 
needed for this exploratory study. 
 
MATERIALS AND METHODS 
 
Datasets and preprocessing 
 
We systematically searched for ovarian cancer gene-
expression datasets that were publicly available and 
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Table 1. Demographic and clinic features descriptions for ovarian cancer patients in TCGA and GEO. 

Characteristics GSE13876 GSE14764 GSE17260 GSE19829 GSE23554 GSE26193 GSE26712 GSE30161 GSE32062 GSE32063 GSE49997 GSE51088 GSE53963 GSE63885 GSE73614 TCGA 

Number of samples 415 80 110 70 28 107 185 58 260 40 194 116 160 75 107 373 

Median survival time 

(month) (95% CI) 

24 

(21,30) 

55 

(51, NA) 

54 

(49, NA) 

46 

(36,72) 

53.3 

(37.4, NA) 

36.6 

(29.9, 54.7) 

46.0 

(38.9, 58.0) 

51.0 

(32.8, 75.0) 

60 

(50,80) 

54 

(40, NA) 

NA 

(44, NA) 

42.5 

(36.0, 57.0) 

35.3 

(26.0, 45.5) 

37.5 

(29.9, 43.9) 

97 

(73, 156) 

45.2 

(41.6, 49.5) 

Number of Death (%) 302 (72.8) 21 (26.3) 46 (41.8) 40 (57.1) 14 (50.0) 76 (71.0) 129 (69.7) 36 (62.1) 121 (46.5) 22 (55.0) 57 (29.4) 91 (78.4) 139 (86.9) 66 (88.0) 58 (54.2) 230 (61.7) 

Median PFS/DFS/ 

RECUR time (95% CI) 

– – 19 

(15, 26) 

19 

(15, 34) 

– 21.3 

(18.3, 24.5) 

– 13.4 

(10.9, 17.0) 

19 

(18, 23) 

21 

(15, 43) 

19 

(15, 21) 

– – – – 18.4 

(16.8, 20.9) 

Number of PFS/DFS/RECUR (%) 
               

 YES – – 76 (69.1) 41 (58.6) – 80 (74.8) – 48 (82.8) 193 (74.2) 27 (67.5) 124 (63.9) – – – – 244 (65.4) 

 NO – – 34 (30.9) 14 (20.0) – 27 (25.2) – 6 (10.3) 67 (25.8) 13 (32.5) 70 (36.1) – – – – 129 (34.6) 

 unknown – – – 15 (21.4) – – – 4 (6.9) – – – – – – – – 

Age (years) 57.95 ± 12.29 – – 60.50 ± 11.22 – – – 62.57 ± 10.61 – – 57.66 ± 11.82 60.65 ± 12.07 63.61 ± 11.41 – 61.31 ± 10.89 59.60 ± 11.37 

 <55 160 (38.6) – – 25 (35.7) – – – 15 (25.9) – – 77 (39.7) 37 (31.9) 36 (22.5) – 32 (29.9) 131 (35.1) 

 ≥55 255 (61.4) – – 45 (64.3) – – – 43 (74.1) – – 117 (60.3) 79 (68.1) 124 (77.5) – 75 (70.1) 242 (64.9) 

Histology type (%) – – – – – – – – – – – – – – – – 

 serous – 68 (85) – 65 (92.9) – 79 (73.8) – 47 (81.0) – – 171 (88.1) 90 (77.6) – 70 (93.3) 4 (3.7) 373 (100.0) 

 others – 12 (15) – 5 (7.1) – 28 (26.2) – 9 (15.5) – – 23 (11.9) 26 (22.4) – 5 (6.7) 103 (96.3) 0 (0) 

 unknown – – – – – – – 2 (3.4) – – – – – – – – 

FIGO stage (%) – – – – – – – – – – – – – – – – 

 I & II – 9 (11.2) 0 (0) 3 (4.3) – 31 (29.0) – 0 (0) 0 (0) 0 (0) 9 (4.6) 21 (18.1) 7 (4.4) 2 (2.7) 48 (44.9) 22 (5.9) 

 III & IV – 71 (88.8) 110 (100.0) 67 (95.7) – 76 (71.0) – 58 (100.0) 260 (100.0) 40 (100.0) 185 (95.4) 95 (81.9) 153 (95.6) 73 (97.3) 59 (55.1) 348 (93.3) 

 unknown – – – – – – – – – – – – – – – 3 (0.8) 

Grade (%) – – – – – – – – – – – – – – – – 

 G1 & G2  

  (Mod & Well) 

– 26 (32.5) 67 (60.9) 10 (14.3) 10 (35.7) 40 (37.4) – 21 (36.2) 131 (50.4) 23 (57.5) 50 (25.8) 19 (16.4) 3 (1.9) 9 (12.0) 29 (27.1) 43 (11.5) 

 G3 & G4 (Poor) – 54 (67.5) 43 (39.1) 60 (85.7) 18 (64.3) 67 (62.6) – 33 (56.9) 129 (49.6) 17 (42.5) 143 (73.7) 97 (83.6) 157 (98.1) 66 (88.0) 78 (72.9) 320 (85.8) 

 unknown – – – – – – – 4 (6.9) – – 1 (0.5) – – – – 10 (2.7) 

Therapy outcome – – – – – – – – – – – – – – – – 

 CR – – – – 18 (64.3) – – 32 (55.2) – – – – – 50 (66.7) – 196 (70.5) 

 non-CR – – – – 10 (35.7) – – 23 (39.7) – – – – – 25 (33.3) – 82 (29.5) 

 unknown – – – – – – – 3 (5.2) – – – – – – – – 

 
reported with full clinical annotations in GEO 
(https://www.ncbi.nlm.nih.gov/geo/) [34] and TCGA 
(https://xenabrowser.net/datapages/) [35]. Patients 
without survival information were removed from further 
evaluation. Meanwhile, patients initially recorded as 
recurrent in TCGA were also removed. Finally, we 
gathered sixteen ovarian cancer cohorts from GEO and 
TCGA for this study (Table 1) and summarized the 
detailed medication information (Supplementary 
Table 4). RNA-seq and microarray gene expression data 
were preprocessed separately. For microarray data from 
Affymetrix®, we downloaded the raw “CEL” files and 
processed them using the RMA algorithm for 
performing background adjustment, quantile 
normalization etc., in the “Affy” package. The 
normalized matrix files were downloaded directly for 
microarray data from other platforms. The raw data 
provided by GSE13876 was processed by log2 
transformation and quantile standardization. For TCGA 
dataset, RNA sequencing data (FPKM value) of gene 
expression were downloaded and transformed into 

transcripts per kilobase million (TPM). Probesets that 
mapped to more than one gene symbol were 
summarized by their median expression value. Genes 
with a missing value of more than 50% were deleted, 
and the remaining missing values were imputed with 
KNN imputation approaches. Batch effects from non-
biological technical biases were corrected using the 
“ComBat” algorithm of “sva” package [36]. The somatic 
mutation data (SNPs and small INDELs) was downloaded 
from TCGA database (MuTect2 Variant Aggregation 
and Masking) (https://xenabrowser.net/datapages/) [35]. 
Finally, a total of 2,378 ovarian cancer patients with 
6,008 genes were included in this study. 
 
Inference of infiltrating cells in TME and phenotype-
associated genes  
 
To explore TME and TME-related phenotypes in 
ovarian cancer, a deconvolution algorithm, CIBERSORT, 
was utilized to accurately quantify the proportions of 
immune cells in TME within a complex gene expression 

https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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mixture (https://cibersort.stanford.edu/index.php). It 
distinguishes 22 human hematopoietic cell phenotypes 
(LM22), including seven T-cell types, naïve and 
memory B cells, plasma cells, natural killer (NK) cells 
and myeloid subsets. Next, nonnegative matrix 
factorization (NMF), an unsupervised algorithm, was 
used to find the cluster of TME-infiltrating cells. The 
differentially expressed genes (DEGs) associated with 
the TME phenotype were determined by both linear 
models and nonlinear models for RNA-seq data. The 
linear model was performed using the “limma” package 
with adjusted P < 0.05 [37]. Random forest 
classification algorithm was used as the non-linear 
model for DEGs identification. 
 
TME gene signature 
 
To predict the prognosis of ovarian cancer, TMEscore 
was constructed by quantifying the TME 
characterization of individual tumor. A three-step 
method was used to establish TMEscore. First, 
consensus clustering algorithm was applied to define 
the cluster of DEGs, as DEGs may be related to 
different biological functions in TME. Then, the 
“clusterProfiler” package [38] was adopted to annotate 
gene patterns of Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway and Gene Ontology (GO) 
enrichment [39, 40]. Furthermore, univariate Cox 
regression was performed to identify prognostic genes 
for each gene (transformed into a z-score) in the cluster. 
Moreover, PCA was used to construct TME relevant 
gene signature. Principal component 1 was selected to 
act as signature scores. Finally, TMEscore was 
calculated similar to GGI method [41]: 
 

TMEscore 1 1i jPC PC= −∑ ∑  
 
where i is the signature score of clusters whose Cox 
coefficient is negative, and j is the expression of genes 
whose Cox coefficient is positive. This method has the 
advantage of focusing the score on the set with the 
largest block of well correlated (or anticorrelated) genes 
in the set, while down-weighting contributions from 
genes that do not track with other set members. 
 
A prognostic nomogram with TMEscore 
 
To determine the prognostic significance of TMEscore 
in ovarian cancer, log-rank test and multivariate Cox 
regression model were fitted in this analysis. 
Meanwhile, to eliminate the influence of chemotherapy 
outcome on prognosis, we performed a chemotherapy 
outcome-stratified analysis of all patients with 
therapeutic information. A nomogram is considered an 
important component of decision-making in modern 

medicine. It could generate an individual possibility of a 
clinical event by integrating various prognostic and 
determinant variables, providing assistance for 
personalized medicine [42]. Therefore, we constructed a 
nomogram with age, stage, grade, chemotherapy 
outcome and TMEscore to predict the probability of 3- 
and 5-year OS. The calibration curve was drawn to 
evaluate the nomogram prediction possibilities against 
the observed rates. 
 
Identification of gene mutations 
 
Some mutant-specific drugs are emerging as the 
preferred first-line therapy for cancers [43]. We 
combined the mutation information with TMEscore to 
explore appropriate treatment of different TMEscore 
groups and improve the treatment strategy. The 
“Maftools” package was used to present the mutation 
landscape, identify the differentially genes mutations 
between groups and calculate tumor mutational burden 
(TMB).  
 
Predicting the patients’ response to ICI 
 
The Cancer Immunome Atlas (https://tcia.at/) analyzed 
the immune landscapes and antigenomes of 20 solid 
tumors and were quantified by Immunophenoscore [44] 
(IPS, a superior immune response molecular marker). 
The IPS value, ranged from 0 to 10, was positively 
correlated to tumor immunogenicity and has been 
verified that IPS could predict the patients’ response to 
immune checkpoints inhibitors (ICIs treatment). The 
immune checkpoint expressions between different 
TMEscore groups were observed intuitively by drawing 
box and violin diagrams. The fraction of stromal and 
immune cells was inferred using the ESTIMATE 
method [45]. 
 
Statistical analysis 
 
Continuous variables were summarized as mean ± SD 
and categorized variables were described by frequency 
(n) and proportion (%). Wilcoxon rank-sum test or 
Kruskal-Wallis test were used to compare two or three 
groups of quantitative variables. For comparisons of 
qualitative variables, statistical significance was 
estimated by Fisher’s exact tests. The cutoff value was 
calculated based on the correlation between the 
patients’ survival and the TMEscore in TCGA using 
“surv_cutpoint” function with the “survminer” package. 
The “surv_cutpoint” function, which repeatedly tested 
all potential thresholds in order for the maximum rank 
statistic, was applied to dichotomize TMEscore. 
Kaplan–Meier (K–M) curves were generated to 
illustrate the prognostic analysis and log-rank tests were 
utilized to identify significance of differences. The 

https://cibersort.stanford.edu/index.php
https://tcia.at/
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concordance index (C-index) was calculated to 
investigate performance of the TMEscore prognostic 
model. The nomogram and calibration curve were 
generated with “rms” package. The heatmap was 
produced by R package “ComplexHeatmap”. We list all 
R packages used in this paper in Supplementary 
Table 5. All statistical P values were two sides, with 
P < 0.05 as statistically significance. All data processing 
was done in R 4.0.2 software. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. Overview of study design. 
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Supplementary Figure 2. Sensitivity analysis determine the prognostic group of 373 ovarian cancer patients based on 
TMEscore in TCGA and evaluate the predictive ability. (A) K–M curve for OS of different TMEscore groups (log-rank test, P < 0.001). 
(B, C) According to chemotherapy outcome-stratified analysis (278 ovarian cancer patients), K–M curves in patients with responders (CR and 
PR) or non-responders (non-CR and non-PR) in different TMEscore group (log-rank test, P = 0.007; log-rank test, P = 0.37). (D) Expression profile 
of DEGs with survival significance. TMEscore, age, stage, grade, therapy outcome and TME cluster are shown as patient annotations. GeneClass 
is shown as gene annotations. Top legend, gray indicates missing value. (E–G) Forest plots illustrate the results of multivariate Cox proportional 
hazards model of clinical feature in all patients, responders and non-responders respectively.  
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Supplementary Figure 3. Sensitivity analysis determine the prognostic group of 2005 ovarian cancer patients based on 
TMEscore in GEO and evaluate the predictive ability. (A) K–M curve for OS of different TMEscore groups (log-rank test, P < 0.001). 
(B, C) According to chemotherapy outcome-stratified analysis (158 ovarian cancer patients), K–M curves in patients with responders (CR and 
PR) or non-responders (non-CR and non-PR) in different TMEscore group (log-rank test, P = 0.0095; log-rank test, P = 0.37). (D) Expression 
profile of DEGs with survival significance. TMEscore, age, stage, grade, therapy outcome and histology are shown as patient annotations. Top 
legend, gray indicates missing value. (E–G) Forest plots illustrate the results of multivariate Cox proportional hazards model of clinical feature in 
all patients, responders and non-responders respectively. 
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Supplementary Figure 4. Nomogram of clinical features in TCGA. (A) Nomogram for predicting the probability at 3- or 5-year OS 
based on clinical features. (B, C) Calibration curves of the nomogram for predicting the probability of OS at 3-, and 5-years.  
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Supplementary Figure 5. The mutation landscape between high and low TMEscore groups. (A, B) Mutation profile of high and 
low TMEscore groups. (C) Comparing differential mutated genes between TMEscore groups by Fisher’s exact tests. The asterisks 
represented the statistical P value. (*P < 0.05; **P < 0.01; ***P < 0.001). (D) K–M curves for patients in TCGA cohort stratified by both receipt 
of tumor mutational burden (TMB, cutoff value was calculated by median) and TMEscore (log-rank test, P = 0.018). 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1–3. 
 
Supplementary Table 1. The proportions of tumor microenvironment cells in 373 ovarian cancer patients. 

 
Supplementary Table 2. Pathway enrichment analyses (KEGG) of genes cluster A and B. 

 
Supplementary Table 3. Gene Ontology (GO) enrichment of genes cluster A and B (TOP 50). 

 
Supplementary Table 4. The detailed medication information in different datasets. 

The detailed medication information TCGA 

Drug Number of medication Overall (333) 
Platinum (Carboplatin, Cisplatin, Cisplatin+Gemcitabine, Oxaliplatin, 
Paclitaxel+Carboplatin, Topotecan+Carboplatin) (%) 0 8 (2.4) 

 1 315 (94.6) 
 2 10 (3.0) 
Paclitaxel (%) 0 35 (10.5) 
 1 267 (80.2) 
 2 31 (9.3) 
Others (%) 0 281 (84.4) 
 1 51 (15.3) 
 2 1 (0.3) 
Unknown (%) 0 331 (99.4) 
 1 2 (0.6) 

 
The detailed medication information GSE30161 

Drug Overall (58) 
Carboplatin 2 (3.4) 
Carboplatin/Cytoxan 1 (1.7) 
Carboplatin/Taxol 49 (84.5) 
Cisplatin/Cytoxan 1 (1.7) 
Cisplatin/Taxol 5 (8.6) 

 
The detailed medication information GSE63885 

Drug Overall (75) 
Platinum/Cyclophosphamide 34 (45.3) 
Taxane/Platinum 41 (54.7) 

 
The detailed medication information GSE23554 

Drug Overall (28) 
Cisplatin 28 (100.0) 
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Supplementary Table 5. Summary of R package. 

R package Function 

Affy The package contains functions for Affymetrix GeneChip data analysis 

clusterProfiler Statistical analysis and visualization of functional profiles for genes and gene clusters 

ComplexHeatmap The package was used to visualize heatmap 

ConsensusClusterPlus The package was used to perform unsupervised clustering 

estimate The fraction of stromal and immune cells was calculated by estimate package 

forestplot The package was used to visualize forest plot 

ggplot2 The package was used for data visualization 

limma Limma was used to identify the differentially expressed genes 

maftools The MAF files was analysed by maftools 

NMF Provides a framework to perform Non-negative Matrix Factorization 

org.Hs.eg.db Genome wide annotation for Human, primarily based on mapping using Entrez Gene identifiers. 

psych Principal component analysis was performed with psych 

randomForest The package was used to identify the differentially expressed genes 

rms The nomogram and calibration curve were generated with rms package 

survival Survival analysis was performed by survival package 

survminer Determine the optimal cutpoint for continuous variables and visualize the survival curves 

sva Removing batch effects in high-throughput experiment 

tableone The baseline patient characteristics was described by tableone 
 


