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ABSTRACT The genus Curtobacterium belongs to the family Microbacteriaceae,
within the phylum Actinobacteria. This genus includes a wide range of Gram-positive
species associated with plants and soils. Here, we report the genome sequence of a
new strain, Curtobacterium sp. strain YC1, which was isolated from the surface of
Nostoc flagelliforme colonies. The genome of this strain contains one chromosome
and one plasmid, and its size is 3.4Mb.

N ostoc flagelliforme is a type of terrestrial filamentous cyanobacterium distributed
in the arid and semiarid steppes of the western and northwestern parts of China

(1). It appears as a hair-like colony on the soil surface. It has been used as a healthy
food for more than 2,000 years, and disordered exploitation during the past century
has caused a sharp decline in its availability. The State Council of China banned the col-
lection and trade of N. flagelliforme in 2000.

A previous study suggested that Curtobacterium species could generate oxidative
stress to inhibit plant growth (2). We thus attempted to isolate and identify those epi-
phytic microorganisms on the surface of N. flagelliforme colonies collected on the east-
ern side of Helan Mountain in Yinchuan, Ningxia, China (3). The epiphytic microorgan-
isms were washed from the N. flagelliforme colonies with sterilized water. The collected
water was plated onto Luria-Bertani (LB) solid medium supplemented with 5-bromo-4-
chloro-3-indolyl-b-D-galactopyranoside (X-Gal) (used to detect b-galactosidase activ-
ity), and one strain that showed b-galactosidase activity was isolated. The strain was
identified as a new Curtobacterium strain by 16S rRNA gene sequencing and was
named Curtobacterium sp. strain YC1.

One done of the isolated Curtobacterium sp. strain YC1 was cultivated in LB medium
and collected for DNA extraction using the DNeasy PowerMax soil kit (Qiagen). The
Illumina HiSeq 4000 platform was used to obtain the draft genome assembly of
Curtobacterium sp. YC1, and the PacBio RS II platform was used to help obtain the full
genome assembly. The same DNA was used for Illumina and PacBio sequencing at the
Beijing Genomics Institute (BGI) (Shenzhen, China). Paired-end sequencing (2 �
150 bp) was used for Illumina sequencing, and the total read number was 8,353,300.
The total Illumina data represented 1,148 Mbp, and the coverage was 339�. For
PacBio sequencing, a total of 91,229 reads were obtained, and the read N50 was
19,715 bp. The total PacBio data represented 1,280 Mbp, and the coverage was
378�. The program pbdagcon (https://github.com/PacificBiosciences/pbdagcon)
was used for self-correction of the PacBio sequencing results (4), and draft genome
unitigs were assembled with Celera Assembler v8.3 against a high-quality corrected
circular consensus sequence subread set (5). GATK v1.6-13 and the SOAP tool pack-
age (SOAP2, SOAPsnp, and SOAPindel) were used to improve the accuracy of the
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genome sequences by making single-base corrections (6, 7). The bacterial plasmid
database was used to identify plasmid sequences in the genome using SOAP2 soft-
ware. Genes in the genome were predicted by Glimmer3 (http://ccb.jhu.edu/
software/glimmer/index.shtml) with hidden Markov models. The KEGG, Clusters of
Orthologous Groups of proteins (COG), nonredundant, Swiss-Prot, and Gene
Ontology (GO) databases were used for functional gene annotation (8). Noncoding
RNA sequences were recognized with the tools tRNAscan-Se v1.3.1, RNAmmer v1.2,
and the Rfam database v9.1 (9–11). Default parameters were used for all software
unless otherwise specified.

One circular chromosome assembly and one circular plasmid assembly composed
the final assembly of the Curtobacterium sp. YC1 genome. The length of the chromo-
some is 3,301,309 bp, with a GC content of 71.68%. The length of the plasmid is
77,217 bp, with a GC content of 66.99%. There are 3,270 genes in the chromosome and
the plasmid, and the average gene length is 938 bp. The length of all the genes repre-
sented 90.79% of the whole genome. Among the 3,270 genes, the Swiss-Prot database
identified 1,119 genes, the COG database identified 2,315 genes, the nonredundant
database identified 3,083 genes, the KEGG database identified 1,683 genes, and the
GO database identified 1,918 genes. A total of 84 genes were identified with the
carbohydrate-active enzyme (CAZy) database, and 52 glycoside hydrolase genes
were annotated (12). There are 46 copies of tRNAs, 3 copies of 5S rRNAs, 3 copies of
16S rRNAs, 3 copies of 23S rRNAs, and 2 copies of small RNAs. Moreover, 6 clustered
regularly interspaced short palindromic repeat (CRISPR) regions were predicted
with CRISPRFinder (https://crispr.i2bc.paris-saclay.fr/). The phylogenetic analyses
suggested that Curtobacterium sp. YC1 is a new Curtobacterium strain (Fig. 1). The
public version of this genome was annotated using PGAP through NCBI (13).

Data availability. The complete genome sequences (one chromosome and one plas-
mid) of Curtobacterium sp. YC1 were deposited in GenBank under the accession numbers
CP066341 and CP066342, with BioProject accession number PRJNA683987, BioSample
accession number SAMN17050104, and SRA accession numbers SRR13298322 and
SRR13638075.
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