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Background. Hypoxia is a typical microenvironmental feature of most solid tumors, affecting a variety of physiological processes. We
developed a hypoxia-related prognostic risk score (HPRS) model to reveal tumor microenvironment (TME) and predict prognosis of
lung adenocarcinoma (LUAD). Methods. LUAD sample expression data were from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) databases. Weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and
selection operator (LASSO) Cox regression identified hypoxia-related genes (HRGs) to create HPRS. The prognostic value, genetic
mutation and TME, and therapeutic response of distinct HPRS groups were analyzed. Univariate and multivariate Cox regression
analysis identified independent factors associated with the prognosis of LUAD. A decision tree based on HPRS and clinicopathological
variables was established using the classification system based on decision tree algorithm. A nomogram was constructed with important
clinical features and HPRS by the RMS package. Results. A HPRS model with five HRGs was developed and verified in two separate
cohorts of GEO. HPRS model divided patients with LUAD into two groups. High HPRS was related to high probability of genetic
alterations. HPRS could predict the prognosis, TME, and sensitivity to immunotherapy/chemotherapy of LUAD. The decision tree
defined four risk subgroups with significant OS differences. Nomogram with integrated HPRS and clinical features had acceptable
accuracy in predicting LUAD prognosis. Conclusions. A HPRS model was developed to evaluate prognosis, genetic alterations, TME, and
response to immunotherapy, which may provide theoretical reference for the study of molecular mechanism of hypoxia in LUAD.

1. Introduction

Lung cancer is the most frequently occurring cancer and the
leading cause of cancer death in men, and the morbidity and
mortality are approximately twice that of women [1]. 80% of
lung cancers belong to nonsmall-cell lung cancer (NSCLC),
which can be subdivided into adenocarcinoma, squamous
cell carcinoma, bronchiolar alveolar carcinoma, and large
cell carcinoma [2]. About 2/3 of lung cancer deaths
worldwide can be attributed to smoking [1]. Among the
main histological types of lung cancer, lung adenocarcinoma
(LUAD) has the weakest correlation with smoking, which
often occurs in women and nonsmokers [3]. However, most
patients have advanced diseases at the time of diagnosis. At

present, the main treatment methods are surgery, chemo-
therapy, and radiotherapy [4]. Although great progress has
been made in oncology management of advanced lung
cancer in recent years, the survival rate is still very low [5].

Oxygen is essential for energy metabolism to drive
cellular bioenergetics. In the development of cancer, the
supply of oxygen is limited by the rapid and uncontrolled
proliferation of tumors. Therefore, oxygen deficiency is
the most typical microenvironmental feature of almost all
solid tumors [6]. Hypoxia has different effects on the
progression of cancer. First of all, hypoxia is associated
with tumor recurrence and chemotherapy resistance.
Previous studies have revealed the molecular mechanism
of hypoxia inducing drug resistance in colorectal cancer
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through HIF-1 «/miR-338-5p/IL-6 feedback loop [7].
Hypoxia induces resistance of lung cancer cells to EGFR
inhibitors by upregulating FGFR1 and MAPK pathways
[8]. A clinical study of hypoxia in prostate cancer shows
that hypoxia is associated with early biochemical re-
currence after radiotherapy and local recurrence of the
prostate [9]. And hypoxia is associated with the biological
progression of many cancers. Hypoxia-induced HIF-1 «
and IncRNA-CF129 feedback promote proliferation and
invasion of pancreatic cancer by stabilizing p53 protein
[10]. Hypoxia induces ZEB1 to activate CCL8 tran-
scription, which attracts macrophages through CCR2-
NF-«xB pathway to promote the progression of cervical
cancer [11]. Hypoxia-induced FOXO4/LDHA axis reg-
ulates glycolysis of gastric cancer cells [12]. Hypoxia-
induced acetylation of PAK1 promotes autophagy and
contributes to brain tumorigenesis via phosphorylating
ATGS [13]. Therefore, a comprehensive understanding of
the biological effects of hypoxia-related regulatory
molecules will be helpful to the treatment of cancer.
Tumor hypoxia also has been found to be a characteristic
feature in lung cancer [14]. Lungs are directly exposed to
higher oxygen concentrations than most other tissues. The
oxygen concentration in normal lung tissue is about 5.6%
O,, while the oxygen concentration in NSCLC is 1.9-2.2%
[15]. Hypoxia supports carcinogenesis and tumor progres-
sion in two NSCLC histological subtypes involving different
molecular pathways, resulting in hypoxic adaptation dif-
ferences between LUAD and lung squamous cell carcinoma
(LUSQ) [16]. LUAD seems to be more often associated with
hypoxic regions, such as hypoxic regions of lung adeno-
carcinoma presenting a CAFs tumor microenvironment
with abundant tumor promoting stromal cells, CD204 (+)
TAMs, and podoplanin (+) CAFs, which contributes to an
increase in aggressive behavior in lung adenocarcinoma with
hypoxic regions [17]. Hypoxia also induces overexpression
of chemokine (C-C motif) ligand 28 (CCL28), which en-
hances angiogenesis and metastasis of lung adenocarcinoma
[18]. However, further studies on the relationship between
LUAD and hypoxia are still lacking. Considering that
hypoxia in LUAD is regulated by a variety of complex genes,
in this study, to evaluate the role of hypoxia in LUAD, we
identified hypoxia-related genes (HRGs) by weighted gene
co-expression network analysis (WGCNA) and identified
HRGs related to the prognosis of LUAD patients by least
absolute shrinkage and selection operator (LASSO) re-
gression to form hypoxia-related prognostic risk score
(HPRS) model to predict the prognosis of LUAD. Finally,
this study aims to explore the biological effects mediated by
HPRS and provide a new perspective for cancer treatment.

2. Materials and Methods

2.1. LUAD Datasets and Genes Participating in Hypoxia.
The RNA-sequencing spectrum and matching clinical in-
formation of LUAD were downloaded from The Cancer
Genome Atlas (TCGA), and 500 primary tumor samples
were included. The RNA-seq data of LUAD in GEO were
retrieved by logging into the Gene Expression Omnibus
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(GEO, https://www.ncbi.nlm.nih.gov/geo/) portal, and the
RNA-seq data and corresponding clinical features of
GSE31210 and GSE50081 datasets were downloaded, re-
spectively. 226 cases of LUAD samples were included in
GSE31210, and 398 samples were included in GSE50081. 200
hypoxia-related genes (Supplementary Table 1) were
searched from Molecular Signatures Database (MsigDB,
http://www.gsea-msigdb.org/gsea/index.jsp).

2.2. Analysis for Clinical Features of Hypoxia. Based on the
expression profile of the hypoxia gene, single-sample gene
set enrichment analysis (ssGSEA) was performed by gene set
varjation analysis (GSVA) package in the TCGA dataset to
quantified hypoxia in LUAD samples. Z-score scaling was
used for the ssGSEA score. Univariate and multivariate Cox
regression analyses were performed to evaluate the corre-
lation between hypoxia and clinical features and the LUAD
prognosis. The samples were divided into different sub-
groups according to each clinical feature provided in TCGA,
and the hypoxia ssGSEA score of each subgroup was ana-
lyzed under each clinical feature.

2.3. Weighted Gene Co-Expression Network Analysis. The
WGCNA was constructed using the genes in the TCGA and
helps calculate the weighted adjacency matrix by using the
power (B) value as a soft threshold. Among all the soft
thresholds, the  value with the highest average connectivity
was selected according to the scale-free topology criterion
>0.85. According to the cutreeDynamic function, the genes
with similar expression patterns were clustered into the same
module by hierarchical clustering tree. The minimum size of
each module was set to 30, and the best cut-off height of 0.25
was selected to combine similar modules. Next, the module
significance (MS) was calculated to evaluate the module
eigengene in relationship with hypoxia.

2.4. Establishment and Validation of Hypoxia-Related Prog-
nostic Risk Score Model. For the module with the highest
correlation with hypoxia, the genes were extracted for
univariate Cox regression analysis. LASSO is a common
algorithm for eliminating collinearity of variables in the
construction of prognostic models. The genes obtained from
univariate Cox regression analysis with p < 0.05 were used in
LASSO penalized Cox regression analysis, which was per-
formed by R package “glmnet.” Stepwise regression can
select the genes that are minimized by Akaike Information
Criterion (AIC) to obtain the best model fitting based on the
genes retained by LASSO regression [19]. Then, the stepAIC
method in MASS package was used to identify the prog-
nostic factors. Based on Cox regression coefficient and gene
expression level, HPRS model was established, and the
formula is as follows: HPRS score=)fix Expi. In each
dataset, by setting the normalized HPRS based on z-score =0
as the grouping standard, the samples are divided into high
HPRS group and low HPRS group. Time-dependent receiver
operating characteristic curve (ROC) and survival analysis
were carried out on the HPRS model.
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2.5. Exploration of Function and Tumor Immunity. The
annotated gene sets from Hallmark database were down-
loaded and analyzed for functional differences between low
and high HPRS using gene set enrichment analysis (GSEA).
ssGSEA was performed by R packet “GSVA” to explore the
pathways related to HPRS. The immune and matrix scores of
low HPRS and high HPRS were calculated by ESTIMATE.
CIBERSORT was used to evaluate the abundance of 22 kinds
of immune cells in each HPRS group.

2.6. Evaluation of Predictive Value of HPRS in Immunotherapy
and Chemotherapy Response. To evaluate the predictive value
of HPRS in immunotherapy response, the expression data of
immune checkpoints were collected from HisgAtlas database,
and the expression of immune checkpoints in high HPRS and
low HPRS groups was analyzed. T cell dysfunction and ex-
clusion (TIDE; https://tide.dfciharvard.edu/) algorithm was
calculated to characterize tumor immune evasion mechanism
[20]. pRRophetic package estimated the half-maximal inhibi-
tory concentration (IC50) of candidate chemotherapeutic drugs
to determine the correlation between different HPRS groups
and chemotherapeutic drugs.

2.7. Development of Decision Tree and Nomogram. We in-
troduce all the basic clinical characteristics (age, gender, T
stage, N stage, M stage, and AJCC stage) and HPRS of LUAD
samples in TCGA into R package “rpart” to create an au-
tomatic decision tree to divide patients into different sub-
groups. A nomogram was constructed with significant
clinical features screened by univariate Cox regression and
HPRS by the RMS package. The performance of nomogram
in predicting the prognosis of LUAD was evaluated by time-
dependent ROC, calibration curve, and decision curve
analysis (DCA).

2.8. Statistical Analysis. Statistical analysis was performed by
R software (version 4.0.2, https://www.R-project.org).
Univariate and multivariate Cox regression analysis was
utilized to calculate the hazard ratios. Somatic mutation data
were analyzed using maftools package. Kaplan-Meier sur-
vival curve was visualized by the “survminer” R package. The
ROC curve was generated using the “timeROC” R package.
The correlations were determined using Pearson’s correla-
tion analysis. Wilcoxon test was used for comparison of two
groups. Kruskal-Wallis test was used for comparison of
multiple groups. All statistical p values were two-sided,
which <0.05 as statistical difference.

3. Results

3.1. Relationship between Hypoxia Score and Pathological
Variables of LUAD. We used hypoxia score as an index to
evaluate the hypoxia characteristics of cancer cells. First, the
hypoxia score of each LUAD patient in the TCGA was
calculated by ssGSEA, and all the normalized hypoxia scores
were arranged in increasing order. AJCC stage, T stage, N
stage, M stage, age, and gender were evaluated under

different hypoxia scores. Different hypoxia scores showed
significantly different AJCC stages, T stages, and N stages.
Higher hypoxia score means later AJCC stage, T'stage, and N
stage (Figure 1(a)). And the 10-year survival rate of patients
with high hypoxia score was significantly lower than that of
patients with low hypoxia score (Figure 1(b)). Univariate
and multivariate Cox regression analysis indicated that
hypoxia and T stage had significant prognostic value
(Figure 1(c)). Patients with LUAD were divided into groups
by age, gender, status, T stage, N stage, M stage, and AJCC
stage, respectively. Analysis of hypoxia score in different
clinical variables showed that there was no significant dif-
ference in hypoxia score in different ages, genders, T stages,
and M stages. The hypoxia score of survival patients was
significantly lower than that of death patients. Among the
four N stages, the later the N stage, the higher the hypoxia
score of patients. Moreover, hypoxia score was significantly
positively correlated with AJCC stage (Figure 1(d)).

3.2. Identification of Hypoxia-Related Modules. The
WGCNA algorithm was used to construct the weighted gene
co-expression module of LUAD. When the soft threshold
reaches 16, the scale-free topology fitting index is greater
than 0.85 (Figure 2(a)). Through clustering, all genes were
assigned into 54 gene modules (Figure 2(b)). Each module
contains a different number of co-expressed genes. Among
them, turquoise and blue modules have the largest number
of genes among all modules (Figure 2(c)). To study the
correlation between hypoxia and module eigengenes (ME)
and the connectivity of ME, the module-character rela-
tionship was evaluated. Pink module and magenta module
showed close positive correlation with hypoxia. There was a
strong negative correlation between dark and cyan module
and hypoxia (Figure 2(d)). Based on the correlation coef-
ficient greater than 0.5, this study takes the genes in the pink
module as the research object. The correlation between
module membership (MM) and gene significance (GS) of
pink module is shown in Figure 2(e).

3.3. Construction and Verification of HPRS Model Based on
Genes in Pink Module. Univariate Cox regression analysis of
genes in pink module and LUAD survival identified 64 genes
significantly related to LUAD survival (Figure 3(a)). LASSO
and multivariate Cox regression analysis confirmed that
C1QTNF6, FLNC, FRMD6, PTGFRN, and GAS7 were used
to create the HPRS model (Figures 3(b) and 3(c)). The
LASSO Cox coefficient of the first four is above 0, which
means that the expression of these four genes is associated
with poor LUAD prognosis. The LASSO Cox coefficient of
GAS?7 is less than 0, suggesting that its expression is related
to a better prognosis (Figure 3(d)). The HPRS of each LUAD
patient in TCGA was calculated and sorted using HPRS
model. The increase of HPRS was associated with a decrease
in time of death and an increase in mortality in patients with
LUAD. The expression of genes with LASSO Cox coefficient
greater than 0 was upregulated with the increase of HPRS,
and the expression of genes with LASSO coefficient less than
0 was reversed (Figure 3(e)). For patients with high HPRS in
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between module membership (MM) and gene significance (GS) of pink module.

the TCGA-LUAD dataset, survival was significantly lower
than for patients with low HPRS (Figure 3(g)). In this
dataset, the AUC of 1-year, 3-year, and 5-year ROC was
0.7, 0.67, and 0.68, respectively (Figure 3(f)). In the
external validation sets GSE31210 and GSE50081, pa-
tients with low HPRS were more likely to die earlier and
have a poor prognosis than patients with high HPRS
(Figures 3(i) and 3(k)). For two independent external
verification sets, the AUC of 1-year, 3-year, and 5-year
ROC was very high, not only exceeding 0.7 for all, but
also the AUC of OS was more than 0.75 in 5 years
(Figures 3(h) and 3(j)), indicating that HPRS has ac-
ceptable accuracy in all three cohorts studied.

3.4. The Relation between Genetic Alterations and HPRS in
LUAD. To determine whether genetic alterations affect
HPRS, the correlation between HPRS and genomic stability-
related indexes (aneuploidy score, homologous recombi-
nation defects, fraction altered, number of segments, and
tumor mutation burden) was analyzed. All five indicators
showed a strong positive correlation with HPRS, respectively
(Figure 4(a)). The differences of aneuploidy score, homol-
ogous recombination defects, fraction altered, and number
of segments and tumor mutation burden between the two
HPRS groups were compared. The results showed that there
were significant differences in these indexes between high
and low HPRS patients, and the aneuploidy score,
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homologous recombination defects, fraction altered, and
number of segments and tumor mutation burden of high
HPRS patients were significantly higher than those of low
HPRS patients (Figure 4(b)). From the results of mutation
spectrum analysis, we found that the two HPRS groups
had a wide range of variation types, and the main types
were missense mutation and nonsense mutation. Among
all the mutated genes, the mutation rates of TP53 and
HYDIN in both HPRS groups were quite high, and the
mutation rate in patients with high HPRS was much
higher than that in patients with low HPRS. The copy
number variation (CNV) analysis of the two HPRS groups
showed that the CNV amplification in the high HPRS
group was generally higher than that in the low HPRS
group. The CNV deletion of TMEM132 B and FRRSI1 in
low HPRS group was significantly higher than that in high
HPRS group (Figure 4(c)). This indicated that genetic
alterations are highly heterogeneous between high and
low HPRS groups.

3.5. The Role of HPRS in Signal Pathway Regulation and TME
Cell Infiltration. To study the significance of HPRS in tumor
development, the pathway activity of high HPRS versus low
HPRS in each cohort was analyzed. In patients with TCGA-
derived LUAD, there were 17 significantly activated sig-
naling pathways and 8 significantly suppressed pathways in
high HPRS compared with low HPRS. In three cohorts, 15
pathways were activated in patients with high HPRS, among
which epithelial-mesenchymal transition, E2F targets, G2M
checkpoint, MYC targets, angiogenesis, and DNA repair
were all important pathways affecting the occurrence and
development of cancer (Figure 5(a)). Then, we selected the
gene expression profile corresponding to LUAD samples in
TCGA cohort, performed ssGSEA analysis using R software
package GSVA, calculated the scores of each sample on
different KEGG functions, and computed the correlation
between the scores of these functions and HPRS. HPRS was
positively correlated with mismatch repair, DNA replica-
tion, homologous recombination, cell cycle, nucleotide ex-
cision repair, and other pathways (Supplementary
Figure 1(a)). In addition, Pearson correlation analysis also
showed that HIF-1 a and hypoxia score were significantly
positively correlated with HPRS, respectively (Supplemen-
tary Figures 1(b) and 1(c)). The role of HPRS in TME cell
infiltration was then evaluated in three cohorts. By com-
paring the proportion of 22 tumor infiltrating cells in high
and low HPRS groups, it was found that there was a sig-
nificant difference in the proportion of 12 tumor immune
infiltrating cells in TCGA-LUAD between high and low
HPRS groups (Figure 5(b)). 12 and 14 tumor infiltrating
immune cells were found in GSE31210 and GSE50081, re-
spectively, showing significant differences between high and
low HPRS groups (Figures 5(c) and 5(d)). Then, the TME-
related stromal score and immune score between high and
low HPRS were analyzed by ESTIMATE. In TCGA-derived
LUAD patients, there was no significant difference in
stromal score between high and low HPRS, but immune
score in high HPRS group was significantly lower than that
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in low HPRS group (Figure 5(e)). In the other two LUAD
cohorts, the stromal score of the high HPRS group was
significantly higher than that of the low HPRS group, and
there was no statistical difference in immune score between
the two groups (Figures 5(f) and 5(g)). The correlation
analysis between HPRS and 22 immune cells showed that
HPRS was significantly correlated with the proportion of
memory B cells, resting memory CD4 T cells, activated
memory CD4 T cells, monocytes, MO macrophages, and
resting dendritic cells and resting mast cells (Figure 5(h)).
These results suggest that HPRS is a potential prediction tool
for evaluating TME in LUAD.

3.6. The Role of HPRS in Predicting the Immunotherapy Re-
sponse and Chemotherapy Effect of LUAD. We explored the
role of HPRS in predicting the immunotherapy response and
chemotherapy effect of LUAD. First, the expression of
immune checkpoints in high HPRS group and low HPRS
group was examined, and we found that there was a sig-
nificant difference in the expression of most immune
checkpoints between the two groups (Figure 6(a)). In ad-
dition, the potential responses to immunotherapy in the
high HPRS and low HPRS groups were compared from the
point of view of evaluating TIDE scores. We found that in all
the three LUAD cohorts studied, the TIDE score of the high
HPRS group was always significantly higher than that of the
low HPRS group (Figure 6(b)). Furthermore, the responses
of different HPRS groups to chemotherapeutic drugs pac-
litaxel, cisplatin, docetaxel, and vinorelbine were investi-
gated in patients with LUAD derived from TCGA.
Comparing the estimated IC50 of each chemotherapeutic
drug in different HPRS groups, the results showed that the
patients with high HPRS had significantly higher sensitivity
to paclitaxel, cisplatin, docetaxel, and vinorelbine than the
patients with low HPRS (Figure 6(c)). And the Pearson
correlation analysis between HPRS and IC50 of four che-
motherapeutic drugs showed that HPRS was significantly
negatively correlated with IC50 values of paclitaxel, cisplatin,
docetaxel, and vinorelbine (Figure 6(d)).

3.7. Comparison of Prognostic Ability between HPRS and
Traditional Clinical Indexes. LUAD patient data from
TCGA and independent cohorts GSE31210 and GSE50081
were combined, and a total of 853 LUAD samples were in-
cluded. The meta-analysis confirmed that LUAD patients with
high TNM stage have poor prognosis (Figure 7(a)). We also
found that there was a significant difference in OS among
patients with stage I, stage II, and stage IV (Figures 7(b)-7(d)).
Compared with stage I, the OS of patients with stage II-IV was
significantly shorter (Figure 7(e)). Additionally, meta-analysis
was utilized to estimate the relationship between HPRS and the
prognosis of LUAD. The results presented in Figure 7(f)
showed that the comprehensive HR was 2.69, indicating that
there was a correlation between HPRS and the prognosis of
LUAD, and there was no significant heterogeneity
(Figure 7(f)). Subsequent survival analysis showed that patients
with high HPRS had significantly longer OS than patients with
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FIGURE 6: The role of HPRS in predicting the immunotherapy response and chemotherapy effect of LUAD. (a): The normalized expression
(Log2 (FPKM + 1)) of immune checkpoints in high HPRS and low HPRS groups. (b): In TCGA (left), GSE31210 (center), and GSE50081
(right), the difference of TIDE score between high HPRS group and low HPRS group. (c): Estimated IC50 of paclitaxel, cisplatin, docetaxel,
and vinorelbine in different HPRS groups. (d): Correlation between HPRS and estimated IC50 of paclitaxel, cisplatin, docetaxel, and
vinorelbine. *p <0.05, **p <0.01, *** p <0.001, **** p < 0.0001.
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FiGgure 7: Comparison of prognostic ability between HPRS and traditional clinical indexes. (a): Meta-analysis was performed to calculate the
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prognoses in 853 LUAD samples. (g): The survival curves of high HPRS group and low HPRS group were measured in 853 LUAD samples.
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low HPRS (Figure 7(g)). Therefore, HPRS is also a prognostic
factor for poor prognosis of LUAD.

3.8. Risk Stratification of LUAD Patients by Decision Tree and
Nomogram. To better stratify the risk of LUAD patients, the
clinicopathological variables of LUAD in TCGA (age,
gender, T'stage, N stage, M stage, and AJCC stage) and HPRS
were used to construct a decision tree. The whole decision
tree consisted of two decision nodes and four terminal
nodes, so patients were divided into four different risk
subgroups (C1, C2, C3, and C4) (Figure 8(a)). These risk
subgroups showed significantly different survival outcomes
(Figure 8(b)). All cases in C1 were of low HPRS, all cases in
C2 were of high HPRS, nearly 55% of patients were with high
HPRS, nearly 45% of patients were with low HPRS in C3,
and the proportion of patients with high HPRS in C4 was
much larger than the proportion of patients with low HPRS
(Figure 8(c)). From C1 to C4, the proportion of deaths
increased gradually (Figure 8(d)). Univariate Cox regression
and multivariate Cox regression analysis for clinicopatho-
logical variables and HPRS showed that N stage or HPRS
may be an independent prognostic factor for poor prognosis
of LUAD (Figures 8(e) and 8(f)).

To optimize the risk assessment of LUAD patients, a
nomogram was constructed by combining the important
clinical parameters obtained by univariate Cox regression
and HPRS using multivariate Cox regression (Figure 8(g)).
The calibration curve showed that the 1-year, 3-year, and 5-
year prediction lines of nomogram were close to the 45-
degree dotted line, indicating that the line chart had high
precision (Figure 8(h)). Decision curve showed that no-
mogram generated the highest returns (Figure 8(i)). Of all
the clinicopathological variables given in TCGA-LUAD,
AUC of tROC of nomogram had the highest accuracy in
finding nomogram, indicating that it is the most effective in
predicting LUAD survival (Figure 8(j)).

4. Discussion

Hypoxia is a landmark pathological feature in the devel-
opment of LUAD. TME is shaped by the changes of genome,
transcriptome, and proteome to increase the malignant
potential [21]. Common detection methods of hypoxia in-
clude the use of immunohistochemistry to identify hypoxia-
induced proteins and imaging techniques to visualize
hypoxia sensitivities. In the past few years, histological
techniques and bioinformatics analysis tools have greatly
expanded the study of cancer hypoxia, and a new method of
incorporating hypoxia gene signatures has emerged [22].
Compared with 21-gene hypoxia signature reported by
Zhang, et al., which has been proved to have the ability to
indicate hypoxia in hepatocellular carcinoma [23]. The
hypoxia-immune-based gene signature developed by Yang
et al. can reflect the hypoxia state in TME of triple negative
breast cancer [23]. In this study, we also explored the
hypoxia characteristics of LUAD and constructed HPRS to
evaluate the relationship between hypoxia and genetic al-
terations, TME, and immunotherapy.
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Based on the 200 hypoxia-related genes, we performed
ssGSEA to obtain the hypoxia score of each LUAD patient as
an indicator of cancer cell hypoxia. Here, higher hypoxia
score indicated later AJCC stage, T'stage, N stage, shorter OS,
and hypoxia score was positively correlated with patient
survival status, N stage, and AJCC stage. It means that
hypoxia score may positively promote the progress of
LUAD. To further understand the role of hypoxia in LUAD,
we passed WGCNA and LASSO cox methods and selected
the five genes most related to hypoxia, which ensured the
exclusiveness of the HPRS we established in patients with
LUAD.

In fact, the importance of five genes in HPRS in cancer
has been reported in several previous studies. Cl1q/tumor
necrosis factor-related protein 6 (C1QTNF6) is a gly-
coprotein composed of 259 amino acids, which plays an
important role in predicting the prognosis of many
cancers, including lung adenocarcinoma, bladder cancer,
and gastric cancer [24-26]. A previous study revealed that
the increased expression of filamin C (FLNC) in hepa-
tocytes is associated with microvascular invasion and
poor prognosis [27]. Microvascular invasion is a kind of
TME change induced by hypoxia [28]. Therefore, it also
indirectly indicates that there is a correlation between
FLNC and hypoxia. Cell test and tissue test showed that
FERM domain containing 6 (FRMD6) had tumor in-
hibitory effect in prostate cancer [29] and thyroid cancer
[30]. In contrast, FRMD6 is a wind risk factor that
threatens the prognosis of LUAD in our study. Prosta-
glandin F2 receptor negative (PTGFRN) regulator is
overexpressed in glioblastoma multiforme and associated
with poor survival, downregulates its expression of
radiosensitized cancer cells, and effectively slows down
the rate of cell proliferation and tumor growth [31]. In a
study related to nonsmall-cell lung cancer, it has been
reported that the high level of mRNA of growth arrest-
specific 7 (GAS7) is related to the improvement of overall
survival, and downregulation of its expression can an-
tagonize the resensitivity of gefitinib in lung cancer cells
[32]. In this study, HPRS could accurately predict the OS
of patients with LUAD, and five key genes in HPRS are
also supported as potential targets of LUAD.

The evaluation of mutated genes that drive tumors is a
milestone in cancer detection and treatment selection. We
tried to describe the impact of HPRS on genetic alterations.
The indicators related to genomic stability, including an-
euploidy score, homologous recombination defects, fraction
altered, and number of segments and tumor mutation
burden, showed a strong positive correlation with HPRS. We
also revealed the variation types of different HPRS groups.
Missense mutation and nonsense mutation were the main
variation types in LUAD. As the most common single gene
mutation in human cancer, TP53 has a high mutation rate in
patients with high HPRS. The overall frequency of somatic
mutation and CNV in patients with high HPRS was also
much higher than that in patients with low HPRS.

TME is a complex network of immune cells, endothelial
cells, fibroblasts, and various signal molecules [33]. Hyp-
oxia is one of the most important factors in shaping TME
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FiGgure 8: Construction of decision tree and nomogram for risk stratification of LUAD patients. (a): The decision tree based on LUAD
clinicopathological variables (age, gender, T stage, N stage, M stage, and AJCC stage) in TCGA and HPRS. (b): The Kaplan-Meier curve of
OS in four different risk subgroups. (c): HPRS distribution in each risk subgroup. (d): The proportion of survival and mortality included in
the risk subgroup. (e, f): Univariate Cox regression and multivariate Cox regression of clinicopathological variables and HPRS. (g): A
nomogram is constructed by combining the important clinical parameters obtained by univariate Cox regression and HPRS using
multivariate Cox regression. (h): The calibration curve shows the accuracy of nomogram in predicting 1-, 3-, and 5-year OS in patients with
LUAD. (i): The decision curve for important clinical parameters obtained from univariate Cox regression, HPRS, and nomogram. (j): The
tROC curve of all the clinicopathological variables given in TCGA and HPRS and nomogram.

[34]. In our research work, we explored the role of HPRS in
TME in patients with LUAD. The TME of different HPRS
groups was described from the point of view of evaluating
tumor infiltrating immune cells, matrix components, and
immune components. At the same time, more and more
literature shows that hypoxia microenvironment can re-
duce the sensitivity of ICI treatment [34]. Our study in-
dicated that patients with high HPRS are more likely to
have immune escape, which means that they are not
sensitive to immunotherapy. Finally, the clinical decision

tree integrating the clinicopathological variables of HPRS
and LUAD and nomogram optimized the risk stratification
of LUAD patients.

To sum up, in combination with WGCNA and LASSO
regression analysis, this study created a HPRS that helps to
characterize genetic alterations and TME in LUAD, pre-
dicting the adaptation of LUAD to immunotherapy and
chemotherapy drugs. Moreover, HPRS can be used as a
potential predictive tool to predict the OS of LUAD patients
and guide personalized clinical practice.
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