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Abstract: The rapid evolution of technology allows the healthcare sector to adopt intelligent, context-
aware, secure, and ubiquitous healthcare services. Together with the global trend of an aging
population, it has become highly important to propose value-creating, yet cost-efficient digital
solutions for healthcare systems. These solutions should provide effective means of healthcare
services in both the hospital and home care scenarios. In this paper, we focused on the latter case,
where the goal was to provide easy-to-use, reliable, and secure remote monitoring and aid for elderly
persons at their home. We proposed a framework to integrate the capabilities of edge computing and
blockchain technology to address some of the key requirements of smart remote healthcare systems,
such as long operating times, low cost, resilience to network problems, security, and trust in highly
dynamic network conditions. In order to assess the feasibility of our approach, we evaluated the
performance of our framework in terms of latency, power consumption, network utilization, and
computational load, compared to a scenario where no blockchain was used.

Keywords: IoT; healthcare; remote monitoring; edge computing; blockchain; fog computing; mist
computing; energy efficiency

1. Introduction

The emergence of ubiquitous and pervasive computing and recent advancements in
wearable and smart sensing technologies is revolutionizing the conventional modes of ac-
cessing and delivering healthcare services [1]. In addition to that, the advent of 5G and
relevant enabling technologies provides several opportunities for the rapid developments
of future healthcare systems [2,3]. For example, the traditional means of measuring pa-
tients” health parameters and vital signs are being replaced by automatic medical sensing
technologies (medical sensors) [4]. Furthermore, technology development has facilitated
healthcare-related processes, such as patient registration to the hospital, keeping track of their
electronic medical /health records (EMR/EHR), and authorized access to these records.

Future healthcare systems require a secure, trusted, and dynamic service and comput-
ing environment, i.e., “personalized and connected health” [5]. These smart and connected
healthcare systems are expected to provide advanced medical services, such as advanced
diagnostic, remote and real-time patient monitoring, efficient handling mechanisms for
the healthcare big data, and digital solutions for addressing sudden challenges such as
global pandemics [6,7]. Thus, the design of future digital healthcare systems must fulfill the
resulting high requirements, for instance in terms of providing secure and trusted mech-
anisms for healthcare data sharing, data management of the massive data, and ensuring
ubiquitous availability of the needed services in the desired amount of time. To fulfill these
requirements, recent network and communications-related enabling technologies are going
to play a significant role [8].

With the change in the demographics of the world population, the aging of people is
becoming a key challenge for future healthcare services [9]. The expenses of providing the
needed digital healthcare infrastructure for the elderly population are expected to rise in
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the future. Most elderly people want to live independently as long as possible. Since many
of them live far from hospitals, one of the crucial requirements is to provide safe, secure,
and timely remote healthcare monitoring services [10,11]. In addition, future hospitals
are likely to have the additional burden of patients with chronic diseases who require
continuous care for longer periods. Furthermore, in the case of highly contiguous diseases,
(such as the recent COVID-19 pandemic) [12], it is desirable to handle patients with mild
symptoms remotely at their home.

Edge computing is considered as a vital technology enabler in providing time-
dependent or delay-critical healthcare services, specifically in the case of emergencies, real-
time patient monitoring (intensive care unit (ICU) patients), and for faster data analysis
of patients with conditions requiring fast medical response or contiguous diseases [13,14].
This brings computational and processing resources near to the end-users and devices to
perform necessary real-time data analysis and decision-making functions and to improve
resource-efficiency by reducing the amount of data transferred between the end systems and
centralized cloud servers [15,16].

The blockchain is yet another promising technology in the context of the future health-
care domain and can provide a number of key characteristics in terms of decentralization,
traceability, transparency, and immutability [17]. In addition, it enables a trusted computing
environment required for the involved network entities /healthcare stakeholders to securely
share information and resources among them [18]. For example, EMR/EHR records can be
securely managed and monitored by the blockchain, and only authorized stakeholders are
given access to append or retrieve the data. Some of the potential blockchain applications
in the healthcare sector include: clinical data sharing, maintaining medical history, drug
supply chain management, and billing/insurance claims, among others [19,20]. There-
fore, in this paper, we integrated blockchain with a three-tiered IoT edge architecture
for a elderly remote monitoring use case to ensure trusted data sharing among different
healthcare stakeholders, tracking or monitoring of various processes and their phases, and
maintaining the medical history of senior citizens, among others.

In this direction, this paper focused on the integration of the blockchain and edge
computing and their combined impact on the efficacy and efficiency of remote health
monitoring systems, which furthermore contributes to the overall efficacy and efficiency
of the digital healthcare system. The core aim behind combining these two enabling tech-
nologies is to fulfil the crucial requirements of remote monitoring use cases, including, e.g.,
delay-critical monitoring of patients’ vital signs, requiring low-latency, trusted, and privacy-
preserving automated data management and decision-making. The main contributions of
this paper include:

* A blockchain-edge-based conceptual network framework for remote healthcare moni-
toring applications;

¢ The performance and efficiency evaluation of the proposed framework and compari-
son to a baseline architecture without the blockchain; and

e The analysis of the achieved results and their real-world impact.

The rest of the paper is organized as follows: Section 2 presents the existing work related
to the blockchain and edge computing for healthcare applications. Section 3 introduces
the proposed Health-BlockEdge framework and the central performance and efficiency
parameters in the context of a remote patient monitoring use case. In Section 4, the proposed
framework is evaluated against a baseline setup without blockchain. Section 5 provides a
discussion and future research directions, and finally, Section 6 concludes the paper.

2. Related Work
2.1. Edge and Fog Computing

Edge computing brings computational and processing resources near to the end-users
and devices to perform necessary real-time data analysis and decision-making functions
and to improve resource efficiency by reducing the amount of data transferred between
the end systems and centralized cloud servers [15,21]. In addition, the inclusion of the
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edge network improves the data privacy, security, and reliability of the systems running
on the edge architecture [22]. Multi-access Edge Computing (MEC) is the European
Telecommunications Standards Institute’s (ETSI) standard for unleashing the full potential
of low-latency 5G radio communications in the mobile access network [23]. MEC brings
cloud computing 1-2 hops away from the IoT devices, which include the cellular base
station or access point [21].

Fog computing [24] is a term closely related to edge computing, the distinction be-
tween these two terms being vague due to various overlapping definitions in the literature.
We define the difference as follows: EC refers to the computational edge infrastructure and
FC to the distributed service architecture above the edge computing infrastructure and
local nodes. FC typically covers functions such as caching, data processing, and analytics
occurring near the source of the data that improve the performance at the edges of the
network, reduce the burden on data centers and core networks, and improve the resilience
against networking problems [24-26].

2.2. Local Edge and Mist Computing

In mission-critical applications, the role of the local network in delivering the most
critical services is emphasized in the cases when the connection to the global network is not
available or not stable [25]. Mist computing refers to the distributed service architecture
above the local edge computing infrastructure and local nodes [27].

Complex sensors like surveillance cameras and healthcare monitoring devices are com-
posed of a micro-controller or microcomputer that can perform certain tasks locally [28].
Although these devices have limited processing power, this network layer has not yet been
explored by scientists and researchers. With more advanced health monitoring and imaging
solutions, such as MRI scanners, the available computational capacity is much higher com-
pared to traditional IoT devices, allowing also more demanding edge computing tasks to
be deployed at the local level. The only disadvantage involved in mist computing lies in its
complexity. The devices used for mist computing are usually application specific, and the
sensors are often heterogeneous, making the implementation of a solution more complicated.

The authors in [29] proposed an efficient and secure mist computing framework that
ensures the requirements of a recently released public geospatial heath data set. The aim
of the model is to enhance the security features with the help of mist nodes for effective
management of geospatial health data. The proposed prototype was evaluated and the
results compared with the traditional cloud framework. Furthermore, in [30], a mist-
fog computing framework for the Internet of Healthcare Things (IoHT) was proposed.
The model achieved ultra-low latency with the assistance of mist-fog computing in the
healthcare monitoring system.

2.3. Blockchain

In the early days of the blockchain, it was originally used mainly as a technology for
banking and finance applications, e.g., cryptocurrency [31]. Bitcoin was the first cryptocur-
rency, implemented by Satoshi Nakamoto in 2009 [32]. Since then, the blockchain has been a
significant technology enabler for various IoT applications due to the number of key charac-
teristics it provides, e.g., decentralization, immutability, transparency, and trusted computing
environments [33]. Some of the well-known blockchain-based IoT applications include: smart
healthcare, transportation, supply chain management, and the Industrial IoT (IloT) [34]. The
blockchain belongs to distributed ledger technologies (DLT), where all transactions are repli-
cated and recorded among all involved parties in a peer-to-peer network architecture and are
secured using a strong cryptographic mechanism [35].

The blockchain has significant utility in various areas of the healthcare domain, e.g.,
secure data sharing among various healthcare entities, maintenance of healthcare records,
remote monitoring of patients, pharmaceutical supply chain management, and health
insurance claims, among many other areas [19,36,37]. The blockchain enables various key
features in healthcare, such as a fine-grained access control mechanism for secure access to
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healthcare records, the needed distributed trust among various healthcare entities (patients,
healthcare professionals, hospital administration, and service providers), authentication,
traceability, process tracking and monitoring, and data privacy protection [386—40]. In
addition, the blockchain offers valuable opportunities in terms of trusted data management
mechanisms for digital healthcare systems [41-44]. However, despite its many desirable
features from the viewpoint of healthcare applications, there are still concerns related to,
e.g., the achievable performance and efficiency such as ensuring low latency, enhanced
scalability, and the increased storage capabilities (ledger size) [45,46]. In this paper, we
explored addressing these challenges by integrating it with edge computing to achieve
higher performance and efficiency.

3. The Evolution of Cloud IoT Models

Cloud computing is evolving from a fully centralized computational model towards
more decentralized edge-cloud models [47]. In the following subsections, we briefly
introduce the three fundamental architectural cloud IoT models.

3.1. Traditional Cloud IoT Model

Figure 1a highlights the traditional cloud-based IoT architecture, which consists of
three main tiers: core, access, and local tier [47]. The lowest tier of the cloud IoT model
is the local tier, which involves low-power end-devices such as sensors and actuators
(e.g., instrumentation and monitoring devices) that sense the data and interact with the
surroundings. The middle tier is the access tier, which is comprised of different gateway
devices (access points, switches, routers, etc.) connecting local devices to core networks.
The uppermost tier is the core tier, which includes the servers at the data centers, as
well as high-performance switches and routers to deliver the data to/from lower tiers.
Cloud servers handle all application logic, decision-making, data-management, and storage
functions in this model.

3.2. Edge-Cloud IoT Model

Figure 1b illustrates the edge-cloud IoT model, where the access tier is—in addition to
its role connecting the local tier to the core tier—considered as a middle tier in the cloud IoT
system, handling a part of the cloud services closer to the end-nodes (i.e., IoT devices). It
reduces the physical distance between IoT devices and the computation processing server
and, therefore, also provides lower latency between the end-device and the processing
unit, compared to centralized cloud-based computation. It also reduces the processing
burden on centralized cloud servers by performing some of the data processing at the
access layer and therefore closer to the end-users. This model is also more resilient to
core network problems and therefore more reliable to fulfill the requirements of mission-
critical applications. Furthermore, security is improved by limiting the data propagation
within the access network when needed. Together, these new features enable real-time and
mission-critical cloud applications and services.
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Figure 1. Existing IoT models: (a) cloud IoT model; (b) edge-cloud IoT model; (c) local edge-cloud IoT model.

3.3. Local Edge-Cloud IoT Model

In our previous work, we proposed a local edge-cloud IoT model [25,47,48], which
utilized the capacity of local nodes at the local tier to manage some parts of the processing
and data analytics as presented in Figure 1c. This model allows a part of the computation
and decision-making to take place in local nodes with sufficient computational capacity
and stability. Therefore, in this model, the cloud applications and services and their parts
can be deployed to the most suitable of three network tiers: local, access, and cloud. To
enable this scenario, we introduced the concept of nanoservices [25,49]. A nanoservice is a
lightweight microservice, which, with resource-aware orchestration, can be deployed on
resource-constrained IoT nodes. We aimed at developing the nanoservice concept towards
full compatibility with current cloud microservice systems. The local edge-cloud IoT model
improves security and privacy by allowing the analysis of sensitive data to be managed
locally instead of sending them to public servers for analysis. Furthermore, the model
enables deploying most critical functions locally, therefore improving their resilience to
access network problems and context awareness through available local sensor data.

The authors in [50-52] introduced a two-tier IoT model using the iFogSim simulator
and analyzed the network parameters (including latency, power consumption, network
usage, cost). Furthermore, in one of our previous works [47], we exploited the benefit of
local tier processing, proposed a three-tier IoT edge model, and analyzed the performance
of the network. In [53], we extended the work performed in [47] by integrating the
blockchain technology in the three-tier IoT edge models and evaluated the performance
with and without the addition of the blockchain. However, in this paper, we extended our
previous research [53] for the delay-critical healthcare use case and measured a number of
key parameters such as network latency, power consumption, network usage, total cost,
and number of operations executed in order to evaluate the overall performance of our
proposed framework.

4. Health-BlockEdge Concept

This paper extends the work in [53,54] by proposing the conceptual BlockEdge frame-
work for the remote healthcare monitoring use case. This conceptual framework is called
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Health-BlockEdge. We provide an overview of the concept and analyze its performance in
a healthcare-related scenario by comparing two scenarios: one with the blockchain and the
other without the blockchain. In the following subsections, we present the use case and the
conceptual framework in detail.

4.1. Use Case: Remote Healthcare Monitoring

In order to analyze the proposed Health-BlockEdge concept, we used a remote health-
care monitoring use case. In the use case, the activity and various health parameters of
an elderly person living at home were monitored remotely. Another remote care example
could be the case of a contagious disease, such as COVID-19, where remote home care
effectively prevents the disease from spreading through the physical contact of the patient
with others. In this case, the patients with mild symptoms can be treated and monitored
remotely from home.

The monitoring includes the tracking of the patient health parameters, activity, and
behavior through smart sensors and devices. In the case of exceptional situations, such
as a detected accident or a health parameter (such as blood pressure, oxygen level, blood
sugar, etc.) going outside the normal range, the system can notify a healthcare professional,
who can further analyze the health conditions and accordingly provide recommendation
of advanced treatment or hospitalization if necessary.

4.2. Model Overview

The framework consists of three tiers, i.e., local tier, access tier, and core tier.

Local tier: The local tier is comprised of numerous sensors and devices, including on-
body/in-body medical sensors/devices that can measure health-related data/parameters
(vital signs), do the basic data-prepossessing and analysis, and forward this to the assigned
high-computational nodes/servers (edge and cloud servers). Figure 2 depicts multiple
healthcare services that need to be delivered to remote patients. The nature of a particular
healthcare service depends on the need /requirement of the users/patients in elderly care.
For example, “Healthcare Service 1” may contain medical sensors that provide services
related to measuring the heart rate. Likewise, “Healthcare Service 2” can be related to the
video surveillance/monitoring of an elderly person.
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Figure 2. Blockchain-Edge framework for remote elderly healthcare monitoring.

The resource-constrained medical nodes at the local tier are connected to the higher ca-
pacity computational nodes (local edge nodes) for local data processing, analysis, decision-
making, and forwarding the information/data further to the edge or the global networks.
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The local edge nodes are located in the same location, i.e., at the home of a disabled person
or at the elderly care home. In addition, another major task of these high-resource-capable
local edge nodes is to provide the needed resources and computational capabilities to run
the local blockchain. A consortium/permissioned blockchain will run at the local network
(at the local edges) to ensure trusted healthcare data/information sharing among various
entities (users, doctors/staff, service providers, emergency units) in the network. The
local network can be seen as the connection between the resource-constrained IoT medi-
cal sensors and devices and the local edge nodes that can perform the required sensing,
collection, local data pre-processing, and decision-making and send the request of the
high-computational tasks to the higher tiers. Access tier: In comparison with the local
tier, the access tier is considered much richer in terms of the resources/computational
capabilities. The access tier includes edge servers, i.e., MEC servers, that provide compu-
tational resources for remote monitoring services, as shown in Figure 2. This tier enables
the crucial and demanding computational features such as Al-based data analytics and
decision-making, adaptive/customized security and privacy solutions, dynamic alloca-
tion/orchestration of the available resources, etc. At this tier, a public/permissionless
blockchain is run to share the necessary patient information or keep a record for resource
sharing among various edge nodes. The structure of the preceding sentence is a bit unclear:
the blockchain can also provide the resources for the auction/renting functionality in
various entities in the network and can trade various resources, i.e., resources may include
computational/processing capabilities, storage capabilities, or using of hospital resources
(e.g., ambulances and workforce).

Core tier: The core tier includes the global Internet core architecture and the cloud data
centers providing a practically infinite amount of resources and computational capacity for
cloud services. The key role of the global tier is to provide the highest layer service logic
to manage and supervise the overall phases/processes of the healthcare systems and can
provide the needed resources. In the case of the traditional cloud IoT model, all services,
data management functions, etc., are managed at the data centers.

5. Performance Metrics

In this section, we present the key performance factors used to evaluate the efficiency
of the proposed scheme.

Latency: We define latency in the IoT computational offloading as the time between
the moment an observed event has occurred and the moment of the system’s response to
this event. Total latency L is the sum of the communication and computational latency, so
we can write:

L=Ly+Lc+Lp, )

where L; is the time to upload the computational task/data to the cloud/fog/local device
for processing/storage, L¢ is the computational latency for task execution, and Lp is the
communication delay of the control message/result of the computation from the server to
the IoT node.

Power consumption: This refers to the power consumption of data forwarding, com-
putation, and data storage at each network layer. The power consumption P of the task
execution can be expressed as:

P = Pc + Pr + Pp + Py. (2)

Here, P¢ is the power consumption of the computational infrastructure (servers) at the
core level, Pr the power consumption at the edge level, P; the power consumption at the local
level, and Py the power consumption of the communication infrastructure of the network.

Network usage: The network usage can be referred as the utilization of each of the
three network layers in the defined healthcare use case. It is measured as the number of
MB/s transmitted over the communication networks. The network usage increases with
the increase of the number of data processing and network devices.
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Total cost: The total cost of the system C is the sum of the communication (network)
cost Cyet and the computational (server) cost Cmmp.

Cr = Cuet + Ccomp (3)

Here, Cr is the total cost, C,; the communication cost, and Cmmp the computation cost.
Communication cost: This depends on the amount of packets relayed through the
network and the cost per packet:

m_z*f*c « (I, — 1) (4)

Here, N is the number of devices, D,, the size of the sensed data (MB) at device n, [
the size of the packet (MB/packet) defined by the provider, C, the cost of forwarding each
packet (x/packet), and I the number of nodes on the path between the IoT sensor n and
the server processing the data from sensor #n. Here, x is a value that represents the cost.

Computational cost: This refers to the cost of the resources (CPU, power, storage,
memory) used in each computational node in the network.

K
Ceomp = Y [CM % MUk + Cg % STy 4 Cp % Px + Cpyips * S 5)
k=1

Here, K is the number of devices (cloud/edge/local used for computation) in the
network, Cys the cost per memory (x/GB), MU the memory used (GB), Cg the cost per
storage (x/MB), STj the storage consumed (MB), Cp the cost per power (x/W), P the
power consumption (W) of server k, Cy;ps the cost per MIPS(x/mips) allocated, and Sy the
total size of the algorithm executed at k in millions of instructions (MI).

Total number of operations executed: This is the sum of all operations necessary to
execute the sensed data processing algorithm. In order to execute the algorithm, the system
needs to orchestrate resources and to process the task at the server, as well as perform
control operations in the communication network for sending the sensed data from the
end node IoT sensor to the server.

N I

Op=Y Y (H)+Ru+Su (6)
n=1i=1

Here, H; is number of control plane operations for handling the task S, (receiving,
pre-processing, forwarding operations) by each device on the path between end-devices
(such as gateways, WiFi, routers/switches, etc.) and R, the number of operations executed
to orchestrate the resources of the server for the execution of the algorithm with S,, number
of instructions.

6. Results

We evaluated the performance and efficiency of our proposed framework on the three
IoT models and compared the results with the case where the blockchain was not in use [25].
We considered the following performance key factors as the evaluation metrics: (1) latency;
(2) power consumption; (3) network usage; (4) total cost; and (5) total number of operations
executed required to realize the full potential of the traditional cloud, edge IoT, and fog for real
analytics. These performance metrics were described in more detail in the previous section.

6.1. Evaluation Setup

There are a number of simulation tools available, but only a few tools are capable of
analyzing the performance of the fog and edge computing scenarios. We used the iFogSim
simulator for our evaluations. It provides a high-level hierarchy, and the key reason for
choosing this tool is that it provides application placement policies at different layers in the
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network and allows simulating real-time applications. The simulations were carried out by
using a remote patient health monitoring use case and comparing the results of the three
IoT models, with and without the blockchain.

Figure 3 illustrates the Health-BlockEdge architecture implemented in the iFogSim
simulation. We analyzed three different scenarios. The algorithm that continuously an-
alyzes the sensed patient’s data can be placed at the local tier, access tier, or cloud tier.
We implemented these scenarios with the blockchain and compared the results with the
system without the blockchain.

We modeled the local tier of the system in iFogSim by deploying N = 4 resource-
constrained IoT nodes and four local edge nodes, together with the lightweight blockchain.
The local /permissioned blockchain allowed the data to be exchanged with other edge
nodes in a trusted manner. The sensed data collected at the IoT nodes were sent to the local
nodes for processing and decision-making in the local algorithm placement scenario.

Two fog/MEC nodes with higher computational capabilities were deployed in iFogSim
to represent the access tier. Each fog node in the access tier together with the fog blockchain
connected to two local edge nodes in the local tier. In the simulation scenario, the data
processing algorithm was placed in the access tier edge nodes and provided the necessary
computational resources for each user’s data.

The core network contained the cloud server, which was the highest in available
resources and responsible for the overall system management. In the scenario where the
algorithm was placed at the core layer, the cloud server was responsible for running it.

The communication delay between the system components is presented in Figure 3.

Core Tier

Processing 10ms

Node
Cloud Server

10 ms 10 ms
MEC/Fog Fog MEC/Fog

Server Blockchain Simulation of MEC/Contractors in iFogSim Server

Simulation of cloud in iFogSim

Access Tier

Local Tier

I 1
1 4 .
Local Edge Local Edge Local Edge Local Edge 1
y Node Node Node Node ;
1
1 1
1 1
1 1
. 1ms 1ms ims 1ms 1
1 1
1 1
1 1
1 ]
1 1
1 10T Nodes loT Nodes loT Nodes loT Nodes 1
v I
“ I’
-~ Simulation of Local (loT Edge)/ Local Contractors ,

Figure 3. High-level design of the Health-BlockEdge framework in iFogSim. MEC, Multi-access
Edge Computing.

Table 1 presents an overview of the simulation parameters used during the perfor-
mance evaluation of the proposed framework. The parameters were defined accord-
ing to a literature review of typical devices and networks used in similar application
scenarios [50,51,55]. In this paper, we used the consortium blockchain for the proposed
Health-BlockEdge framework. However, the iFogSim simulator (used in this paper) does
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not support the feature of modeling and simulating any particular type of blockchain.
Therefore, to analyze the overall network performance of the proposed system, we used
the parameters describing blockchain preprocessing power allocation and the number
of instructions (MI), handled by each blockchain module, from [55]. The simulation pa-
rameters are illustrated in Table 1, where blockchain devices with different capacities and
capabilities were considered in the simulation.

Table 1. Simulation parameters for the Health-BlockEdge framework. MI, millions of instructions.

Parameters Data Center MEC Server Edge Nodes IoT Nodes
(Core Tier) (Access Tier) (Local Tier) (Local Tier)
Upstream bandwidth (MBps) 140 70 34 10.5
Downstream bandwidth (MBps) 70 35 16 8
Storage capabilities/RAM (GB) 16 8 4 1
Processing capabilities/CPU (MIPS) 15,000-20,000 8000-13,500 3500-7500 400-1300

Communication latency (ms) 150 50 8 1
Blockchain instructions (MI) 25 14 8 -
Blockchain processing power (Idle-Max) (W) 20-80 12-40 1.4-20 -

In the following, we present the simulation results for the key performance parameters.

6.2. Latency

Without the blockchain: Figure 4 presents the end-to-end latency in milliseconds
(ms) for different complexities of the analysis algorithm (millions of instructions, MI), in
scenarios where the algorithm was placed at different tiers of the cloud IoT architecture
and when blockchain pre-processing was not used. End-to-end latency is defined by (1).
From the results, we can see that for low-complexity tasks (below 185,000 MI), the local
tier, i.e., a local computing node, provided the lowest end-to-end latency and therefore the
most optimal placement for the analysis algorithm. This is the region on the left side of the
junction of yellow and red lines of Figure 4. When the algorithm complexity was moderate,
between 185,000 MI and 550,000 MI, the most optimal tier for its placement was the access
tier, i.e., the MEC server. In Figure 4, this is the region between the red/yellow line and
red /blue line junctions. For high algorithm complexity, above 550,000 MI, the core tier, i.e.,
data center, provided the lowest end-to-end latency of the task execution. In Figure 4, this
is the region on the right side of the red/blue line junction.

With Blockchain: Similarly to Figure 4, Figure 5 shows the end-to-end latency (ms) for
different complexities of the analysis algorithm (MI), in scenarios where the algorithm was
placed at different tiers of the cloud IoT architecture, when blockchain pre-processing was
used. In this case, the local tier provided the lowest end-to-end latency, when the analysis
algorithm complexity was below 195,500 MI. With the algorithm complexity between
195,500 and 575,000 MI, the MEC server (access tier) had the optimal placement for the
algorithm. With the algorithm complexity above 575,000 MI, the data center (core tier)
became the most optimal placement for the algorithm.

When blockchain pre-processing was used, the local tier remained the most suitable
for slightly more complex algorithms (195,500 MI vs. 185,000 MI) compared to the scenario
without blockchain-pre-processing. Overall, the end-to-end latency decreased slightly as
the blockchain was introduced for per-processing at each tier of the network design.
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Figure 4. End-to-end latency: without the blockchain.
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Figure 5. End-to-end latency: with the blockchain.

6.3. Power Consumption

Without the blockchain: The power consumption (2) of the three different IoT algo-
rithm placement scenarios, where blockchain pre-processing was not used, is presented in
Figure 6. In the figure, we present the power consumption of each of the tree network tiers
for each deployment scenario. When the analysis algorithm was placed at the data center,
the core tier power consumption was 810.27 W, the access tier consumption 232.87 W, and
local tier consumption 28.93 W. In this scenario, the power consumption consisted of the
algorithm processing and communication costs at the core tier and only the communication
cost at the lower tiers. The calculations excluded the power consumption of the sensing
and actuation functionalities of the IoT nodes at the local tier, since they remained intact
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despite the location of the algorithm. The total power consumption of this deployment
scenario was 810.27 W.

When the algorithm was run on an MEC server at the access tier, the power consump-
tion was distributed as follows. The core tier power consumption was 173.29 W, by keeping
the reserved data center resource idle. This tier took care of the service management and,
therefore, needed to be active, even when the analysis algorithm was deployed on the lower
tiers. In this scenario, the access tier resources (MEC server) ran the algorithm, and there-
fore, the computational load was focused on this tier. Together with the communication
cost, the power consumption on the access tier was 411.91 W. At the local tier, the power
consumption was 28.73 W. At this tier, only the communication costs were present in this
scenario (in addition to the consumption from IoT sensing and actuation functions, which
were excluded from the calculation). The total power consumption of this deployment
scenario was 613.93 W.

When the algorithm was run in a local node at the local tier, the power consumption
distributed as follows: 172.65 W at the core tier, 131.25 W at the access tier, and 63.75 W
at the local tier. In this scenario, the local tier included the computational cost at the local
node running the algorithm and the communication costs between it and the IoT devices
with sensing and actuation functionalities. The access and core tier computational and
networking elements were idle. The total power consumption of this deployment scenario
was 367.65 W.

When comparing the three deployment scenarios, it can be clearly seen that when
the distance between the sensing and actuation nodes and the node running the analysis
algorithm increased, the total power consumption increased. Since our use case was data-
intensive, containing, e.g., a high-definition video feed from the sensing device to the
analysis algorithm, the distance between the source of the data and the processing node
significantly affected the total power consumption.

Power Consumption
600 T T

548.00 I Core Tier
I Edge Tier
500 - [ JLocal Tier| |

400

300

200

Power Consumption (W)

100

Figure 6. Power consumption: without the blockchain.

With the blockchain: Figure 7 depicts the power consumption of three IoT models
when blockchain pre-processing was used. When the analysis algorithm was placed at
the core tier (data center), the total power consumption was 895.87 W. The core tier power
consumption was 612.00 W, the access tier consumption 251.94 W, and local tier consump-
tion 31.93 W. When the analysis algorithm was placed at the access tier (MEC server), the
total power consumption was 695.28 W, consisting of the core tier power consumption of
197.24 W, the access tier consumption of 465.91 W, and local tier consumption of 32.13 W.
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When the analysis algorithm was placed at the local tier (local node), the total power
consumption was 442.60 W, consisting of the core tier power consumption 196.48 W, the
access tier consumption 159.36 W, and the local tier consumption 86.76 W.

Similar to the scenario without blockchain pre-processing, the total power consump-
tion was significantly affected by the distance between the sensing and actuation nodes
and the node running the analysis algorithm.

The blockchain pre-processing increased the power consumption in all deployment
scenarios: 10.6% when the algorithm was deployed at the core tier, 13.3% when the
algorithm was deployed at the access tier, and 20.4% when the algorithm was deployed at
the local tier.

Power Consumption
700 T

612.00 I Core Tier

600 | I Edge Tier | |
["Local Tier

L

= 500

W

400

300

200

Power Consumption

100

Figure 7. Power consumption: with the blockchain.

6.4. Network Usage

Without the Blockchain: Figure 8 illustrates the network usage of the three IoT models
in MB/s when blockchain pre-processing was not in use. In our use case, the raw data
from various sensors, including the full-HD video monitoring feed (constant bit-rate of
1080p video, H.264 compression, and 40 FPS), as well as the necessary control data were
exchanged between the sensor and actuator nodes and the computational node hosting
the algorithm analyzing the sensor data. In addition, the main service at the data center
communicated with the computational node hosting the algorithm analyzing the sensor
data. These data included the exchange of the analyzed and processed data and control
data. When the data were analyzed at the core tier (data center), the network utilization
in each of the three tiers was 6.4 MB/s (all data, including control and raw data, were
delivered through the whole data path between the IoT nodes and the data center). When
the data were analyzed at the access tier (raw data delivered from IoT nodes to the MEC
server), the network utilization at the local and access tiers was 6.4 MB/s, and the network
utilization between the access and core tiers was 1.12MB/s. When the data were analyzed
at the local tier (raw data not moved outside the local network), the network utilization at
the local tier was 6.4 MB/s, 1.12 MB/s at the access tier, and 1.13 MB/s at the core tier.
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Network Usage
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Figure 8. Network usage: without the blockchain.

With the blockchain: Figure 9 depicts the network usage of the three IoT models in
MB/s when blockchain pre-processing was in use. As with the previous case, the raw
data from various sensors, including the full-HD video monitoring feed, as well as the
necessary control data, were exchanged between the sensor and actuator nodes and the
computational node hosting the algorithm analyzing the sensor data. In addition, the main
service at the data center communicated with the computational node hosting the algorithm
analyzing the sensor data, including the exchange of the analyzed and processed data and
control data. Furthermore, the parts of the distributed blockchain architecture, operating at
all tiers of the architecture, exchanged data between each other and the operational entities.

Network Usage

Network Usage (MB/s)

T

7.34 7.34 7.34

7.34 7.34

I Core Tier
I Edge Tier
[C"JLocal Tier

1.47 1.48

Figure 9. Network usage: with the blockchain.

When the data were analyzed at the core tier (data center), the network utilization
in each of the three tiers was 7.34 MB/s. In this scenario, all data, including control and
raw data, were delivered through the whole data path between the IoT nodes and the
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data center. In addition, the extra network utilization from the blockchain operation was
included. When the data was analyzed at the access tier, the network utilization at the local
and access tiers was 7.34 MB/s, and the network utilization between the access and core
tiers was 1.47MB/s. When the data were analyzed at the local tier, the network utilization
at the local tier was 7.34 MB/s, 1.48 MB/s at the access tier, and 1.47 MB/s at the core tier.

6.5. Total Cost

Without the blockchain: The total operational cost, as defined in (3)-(5), of the different
deployment scenarios without blockchain pre-processing is presented in Figure 10. The
total cost was highest when the analysis algorithm was placed at the core tier, and it
amounted to 538, compared to 355 when the algorithm was deployed at the access tier.
The least costly solution was placing the algorithm at the local tier. In this case, the total
cost was 204. In each scenario, the largest portion of the cost came from the tier where the
algorithm was placed, as expected. When the application was placed at the access tier, the
total cost decreased by 34.0% compared to the cloud placement. When the algorithm was
moved further down to the local tier, the total cost decreased by 62.1% compared to the
cloud placement. Therefore, placing the analysis algorithm at the local tier significantly
reduced the total cost of the system compared to the access (MEC server) and core (data
center) tier solutions.

Total Cost
400 373.00 T T T
- I Core Tier
350 - [ Edge Tier | -
["Local Tier
300

100

Figure 10. Total cost: without the blockchain.

With the blockchain: Figure 11 presents the total cost, as defined in (3), for the three
algorithm placement scenarios when the blockchain pre-processing was used. Similar to
the scenario without the blockchain, the total cost was largest when the analysis algorithm
was placed at the core tier, 607, while the access tier placement scenario cost amounted to
410. The least costly solution was again placing the algorithm at the local tier where the
total cost was 249. In each scenario, the largest portion of the cost came from the tier where
the algorithm was placed. The reduction in cost when the algorithm was moved from the
core tier to the access tier was 32.5% and when moved to the local tier, 59%. Having the
blockchain pre-processing in the system slightly increased the total cost. At the core tier,
the placement cost increased by 12.8%, at access tier by 15.5%, and at the local tier by 22%.
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Figure 11. Total cost: with the blockchain.

6.6. Number of Operations Executed

Without the blockchain: The number of operations executed at each layer of the three
scenarios is given in Figure 12, in case no blockchain was used.

In the cloud placement scenario, the sum of all the operations necessary to perform N
tasks was 2882. This included data processing and routing, resource management, control
operations in the network, etc.

Number of Operations Executed

2500 T
I Core Tier
2149.00 I Edge Tier
2000 ["Local Tier| |
1500 1
1087.00
1000 b
614.00
500 1
0

Figure 12. Number of operations executed: without the blockchain.

With the access tier placement, the number of operations executed was 1731 while at
the local tier, it was 1114. Placing the algorithm further from the end-device significantly
increased the number of instructions necessary for the execution of the same tasks, due
to the communication overhead and the larger number of devices involved in data and
control message forwarding. In the access tier placement, the number of control opera-
tions executed at the core layer decreased from 2149 to 276 instructions in the cloud tier
placement. This was because the core layer only performed communication operations



Sensors 2021, 21, 2502

17 of 22

between the cloud and edge server and forwarding operations. The number of operations
executed at the access layer included algorithm execution, data forwarding, and network
communication operations. When the algorithm was placed at the local tier, the number
of operations executed at local layer was 614. This included data processing, resource
management, and control operations. On the other hand, the number of operations at the
core and access tiers was much smaller and accounted for system control and orchestration.

With the blockchain: Figure 13 illustrates the number of operations executed in the three
placement scenarios when the blockchain was used. If the algorithm was placed at the core
tier, the total number of operations executed within the local network was 3175. Compared to
the scenario without blockchain, there was a 10.1% increase in the number of instructions in
this case. With the access tier placement, the total number of instructions was 1914, which was
a 10.5% increase compared to the scenario without the blockchain. Finally, the total number
of instruction executed when the algorithm was run at the local tier was 1286, which was a
15.4% increase compared to the implementation without the blockchain.

Number of Operations Executed

280 B Core Tier
[ Edge Tier
[ Local Tier| |

2500

2000

1500

1161.00
1000

500

Figure 13. Number of operations executed: with the blockchain.

6.7. Summary of the Results

In this section, we evaluate the impact of using the blockchain in a remote healthcare
monitoring use case on the performance, efficiency, and resource utilization in three IoT
edge cloud deployment scenarios. The main observations were as follows:

*  From the latency evaluation (Figures 4 and 5), we can see that the use of blockchain
pre-processing did not have a significant effect on the latencies. The optimal regions for
each deployment scenario were changed by 5-6% towards favoring more local setups.

*  From the power consumption evaluation (Figures 6 and 7), we can see that blockchain
pre-processing increased the power consumption by 10.6% when the algorithm was
deployed at the core tier, 13.3% when deployed at the access tier, and 20.4% when
deployed at the local tier.

¢ When comparing the network usage (Figures 8 and 9), we can see that the overall
network usage was increased by roughly 15-31% when blockchain pre-processing
was used.

*  With respect to the total operational cost (the sum of communication and computation
cost; Figures 10 and 11), the blockchain pre-processing increased the total cost by
12.8% when processing was done at the core tier, by 15.5% when the processing was
done at the access tier by, and by 22% when the processing was done locally.
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*  When comparing the number of computational operations executed at different levels
of the architecture (Figures 12 and 13), blockchain pre-processing increased the total
number of instructions by 10.1%, when the processing was done at the core tier, by
10.5% when the processing was done at the access tier by, and by 15.4% when the
processing was done locally.

7. Discussion and Future Directions

In this paper, we dealt with two highly important enabling technologies for digi-
tal healthcare: edge computing and the blockchain. The integration of the blockchain
with edge computing is considered vital to providing secure, trusted, and delay-critical
healthcare services for remote monitoring scenarios, e.g., elderly home care. The pro-
posed conceptual Health-BlockEdge framework brings computational and processing
resources near to the end-users and devices to perform necessary real-time data analysis
and decision-making functions and to improve system-level resource efficiency.

The consortium blockchain technology used in this paper improves the overall security
of remote health monitoring systems by providing key features such as confidentiality,
transparency, immutability, traceability, data privacy, and availability [41,56].The inclusion
of the blockchain also enables various highly important characteristics for the selected
healthcare use case, e.g., trusted data sharing, secure monitoring or tracking of different
processes and their phases, and keeping the electronic medical records of users.

The proposed blockchain-edge approach (Health-BlockEdge concept) improves the
data privacy protection by limiting the propagation of sensitive data at the local and edge
networks instead of sending all data to the cloud. Our proposed framework does this in
two ways. First, since we can provide analysis capability at the edge, not all private data
need to pass through the public (cloud) servers. Second, data that need to be processed
on public servers can be anonymized at the edge. In addition, the blockchain can also
fulfill the anonymity requirements of end-users by preventing the leakage of their real
identities to the access/edge and core tiers. For example, similar anonymous settings
can be adopted as the authors developed in [57], where they proposed blockchain-based
anonymous authentication mechanisms for edge computing-based smart grid systems.

We evaluated the performance and efficiency of our proposed framework in the three
IoT edge cloud deployment scenarios and compared the results with the case where the
blockchain was not in use. According to our results, the end-to-end latency decreased
slightly as the blockchain was introduced for pre-processing at each tier of the network
design. With respect to power consumption, the blockchain pre-processing increased the
power consumption by roughly 10-20%, depending on which tier of operation the data
analysis functions were deployed. The blockchain pre-processing increased the system
overhead with respect to the combined effect of computational and communication cost
by roughly 13-22% and the number of computational instructions on the system level by
roughly 10-15%. In conclusion, when considering the potential of blockchain usage in
improving the security, privacy, and trust in healthcare monitoring scenarios, the increase
in the system cost can be considered tolerable.

While evaluating the performance of the proposed system, we also observed some
potential limitations of this work. For example, in our setup of the simulations, we were
not able to model the actual blockchain (consortium) blocks because the iFogSim simulator
does not provide any features for the blockchain. Therefore, we only considered the
blockchain processing power and the number of blockchain instructions (MI) handled by
each blockchain module for the performance evaluation of our proposed framework. By
simulating or implementing the actual blockchain model in this three-tiered architecture,
the analysis of the overall network performance could be improved.

The proposed framework also represents the infrastructural bases for enabling future
healthcare services such as remote health monitoring and contactless patient treatment. These
innovations aim at reducing the price of healthcare services and improving the availability of
healthcare. The proposed framework in this paper can be extended to interesting avenues
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for future work, e.g., artificial intelligence (Al)-based optimization of the combined use of
the blockchain and edge computing in the healthcare domain for improved performance
and efficiency. Another direction for future work is to develop solutions to maximally utilize
the features of the blockchain in bringing trust between different stakeholders of complex
distributed healthcare communication and data management systems.

8. Conclusions

The rapid evolution of technology allows the healthcare sector to adopt intelligent,
context-aware, secure, and ubiquitous healthcare services. It has become highly important
to propose value-creating, yet cost-efficient digital solutions to healthcare systems. These
solutions should provide effective means of healthcare services in both hospital and home
care scenarios. The blockchain is a promising technology for enabling a trustful distributed
computing environment in the context of future healthcare. However, despite its many
desirable features, there are still concerns related to, e.g., the performance and efficiency of
blockchain technologies.

In this paper, we addressed these challenges by integrating blockchain with edge
computing to cope with some of the key requirements of smart remote healthcare systems,
such as long operating times, low cost, resilience to network problems, security, and trust
in highly dynamic network conditions. Through simulations of our proposed Health-
BlockEdge concept, we evaluated the performance of our approach in terms of latency,
power consumption, network utilization, and computational load, compared to a scenario
where no blockchain was used.

According to the results, our concept demonstrated the feasibility of the combined
use of blockchain and edge computing to provide decentralized trust, reliable real-time
access, and control of the network and computational capacity in the digital healthcare
environment, without compromising the system performance and resource efficiency.
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