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Cognition is both empowered and limited by representations. The matrix lens model

explicates tasks that are based on frequency counts, conditional probabilities, and

binary contingencies in a general fashion. Based on a structural analysis of such

tasks, the model links several problems and semantic domains and provides a new

perspective on representational accounts of cognition that recognizes representational

isomorphs as opportunities, rather than as problems. The shared structural construct

of a 2×2 matrix supports a set of generic tasks and semantic mappings that provide a

unifying framework for understanding problems and defining scientific measures. Our

model’s key explanatory mechanism is the adoption of particular perspectives on a

2×2matrix that categorizes the frequency counts of cases by some condition, treatment,

risk, or outcome factor. By the selective steps of filtering, framing, and focusing on

specific aspects, the measures used in various semantic domains negotiate distinct

trade-offs between abstraction and specialization. As a consequence, the transparent

communication of such measures must explicate the perspectives encapsulated in

their derivation. To demonstrate the explanatory scope of our model, we use it to

clarify theoretical debates on biases and facilitation effects in Bayesian reasoning and

to integrate the scientific measures from various semantic domains within a unifying

framework. A better understanding of problem structures, representational transparency,

and the role of perspectives in the scientific process yields both theoretical insights and

practical applications.
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1. INTRODUCTION

Solving a problem simply means representing it
so as to make the solution transparent.

(Simon, 1981, p. 153)

Human cognition is both empowered and limited by
representations. Some of the greatest scientific discoveries—like
the heliocentric cosmos, the Indo-Arabic number system,
and the double-helix structure of the DNA molecule—involve
fundamental changes in representations (Kuhn, 1962). Problems
in logic and mathematics essentially ask for the explication
of information that is provided in the problem formulation
and are solved, or dissolved, by finding a superior problem
representation (Polya, 1957). Although the history of psychology
is littered with representational effects, the demands and rigidity
of mental constructs are typically portrayed as a source of
problems, rather than as opportunities for insight and solutions.

This article promotes a representational account for
solving problems based on frequency counts and conditional
probabilities that gravitates around the notion of a 2×2 matrix
as its core construct. Just like the logical conditional (Wason
and Johnson-Laird, 1972, p. 92), the humble 2×2 matrix is a
chameleon that appears in many guises. Its structural simplicity
is deceiving, as it accommodates an enormous manifold of
measures and meanings. By explicating their shared structure,
the model developed here integrates a wide variety of measures
from different semantic domains in a unifying framework.
As we will see, highly selective steps of filtering, framing,
and focusing on particular parts of a 2×2 matrix eventually
capture some scientific measure. Our model explicates this
process and highlights the key role of adopting particular
perspectives for gaining insights. Understanding how this
mechanism simultaneously reveals and encapsulates some aspect
of information that was implied by the original matrix builds
conceptual bridges between domains and enables the transparent
communication of scientific results. Before introducing our
model, we recapitulate the role of representations in psychology
and introduce a problem that we will revisit repeatedly
throughout this article.

1.1. Reframing Representational Effects
The history of psychology is reflected in its representational
constructs. Classic studies have lamented the rigidity of mental
representations, and attributed their damaging effects to some
lack of mental dexterity known as Einstellung (Luchins,
1942), functional fixedness (Duncker, 1945), or negative transfer
(Bartlett, 1958). By contrast, desirable traits like creativity
and productive thinking were seen as requiring a flexible re-
organization of problem parts (Wertheimer, 1959). When the
right representation is found, both chimpanzees and humans
appear to stumble upon the problem’s solution in a sudden flash
of insight (Köhler, 1925).

Representations also provide the foundations for cognitive
theories of thinking and problem solving. In the psychology of

FIGURE 1 | The rabbit-duck illusion (Jastrow, 1899).

reasoning, people’s responses to logical puzzles are based on a
dynamic interplay of structure and content (Wason and Johnson-
Laird, 1972). Beyond purely formal aspects of arguments, it
has been shown that mental models of tasks and domains,
the plausibility of premises, and concerns for relevance and
linguistic pragmatics can both facilitate and inhibit logical
thinking (Gentner and Stevens, 1983; Johnson-Laird, 1983;
Sperber and Wilson, 1986; Nickerson, 1998). When specific
contents increase the likelihood of valid conclusions, so-called
facilitation effects were often attributed to the availability of
particular representations (e.g., pragmatic reasoning schemas,
Cheng andHolyoak, 1985), or to the evolution of domain-specific
inference algorithms (e.g., a cheater detection module, Cosmides
and Tooby, 1992).

Psychological investigations of judgment and decisionmaking
have been dominated by research on heuristics and biases
(Tversky and Kahneman, 1974) and documented striking framing
effects on decisions (Tversky and Kahneman, 1981). Early
research on human problem solving was shaped by the problem
space hypothesis (Newell and Simon, 1972), which postulates
that we search and traverse a space of mental states until
reaching our goal. Subsequent work addressed the benefits of
diagrams (Larkin and Simon, 1987), contrasted the difficulty of
representational isomorphs (Kotovsky et al., 1985), and studied
tasks that distribute information across themind and the external
environment (Hutchins, 1995). Overall, researchers accumulated
ample evidence for representational effects (Zhang and Norman,
1994): Different representations of a shared problem structure
can cause dramatic differences in cognition and behavior.

A problem with representational accounts of cognition is that
their explanations can be too narrow and specific. Although
some explanation may be perfectly obvious, they remain hard
to verbalize or generalize. When an ambiguous image can be
viewed as either a rabbit or a duck (see Figure 1), a hint that
the duck’s beak can be seen as the rabbit’s ears may ease the
mental flip, but provides no material for scientific theories. Just
as being too narrow is a problem, representational accounts that
aspire to be general can easily get vacuous. For instance, when
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any possible conclusion can be explained as a valid deduction
based on implicit premises (Henle, 1962) or in reference to “other
things the speaker knows” (Braine and O’Brien, 1991, p. 192),
overly wide and flexible explanations risk becoming circular
(Smedslund, 1970). Similarly, most biases and fallacies can be
explained as the result of improper representations or as resulting
from deficient information processing (Fiedler and Juslin,
2006). Consequently, accounts that blur the boundaries between
representational structures and processes are too permissive and
vague to be useful. And although Simon (1981) rightly insists that
problems are solved by making their solution transparent, it is far
from simple to explicate a problem’s mental representation, let
alone its transparent solution.

How can we capitalize on Simon’s insight that transparent
representations are solving problems? In this article, we
essentially promote a notion of positive framing effects. In
our view, a productive representational account requires a
revolution, in the literal sense that implies a reversal or shift in
perspective. Rather than gravitating around a particular problem
and examining its possible representations, we must anchor
our investigations in the analysis of shared representational
structures. Shifting from focusing primarily on tasks to
pivoting around particular representations has immediate
benefits: Starting from the representation avoids getting trapped
in problem-specific trivialities and allows for non-circular
accounts of representational transparency. Instead of serving
as convenient post-hoc explanations for observed behavior,
representational constructs can be studied independently and
prior to specific tasks. Ideally, this will illuminate aspects that
were obscured before and replace retrospective explanations by
genuine predictions. And rather than portraying representational
isomorphs as problems to-be-solved, the discovery of a common
underlying structure provides opportunities for clarifications and
builds conceptual bridges between semantic variants of tasks
and domains.

To illustrate this approach, this article proposes an abstract
model for analyzing problems that rely on binary frequency
counts and probabilistic measures derived from them. Ourmodel
is anchored in the representational construct of a 2×2 matrix,
which we employ to reframe a variety of measures and problems.
As this construct is shared across many semantic domains,
explicating its structural features and the mechanisms operating
upon them illuminates and links many concepts and tasks that
are typically treated in isolation. Before we can unfold this model,
we introduce a problem that allows illustrating the steps and
tasks involved in our approach. But rather than merely serving
as a sandbox, this problem has provoked intense theoretical
debates within psychology and beyond, and will be rendered
more transparent by our framework.

1.2. The Mammography Problem
The mammography problem (Eddy, 1982) is the drosophila of
a research tradition that has been haunting both psychology
and clinical diagnostics for decades. Typical problems in this
tradition ask for inferring the probability of a potential cause
(e.g., some medical condition C) given an observed effect
(e.g., a positive test result T). In its standard form, the

problem provides a condition’s base rate (e.g., the prevalence of
cancer, p(C) = 1%), the conditional probability of correctly
detecting the condition’s presence (e.g., the mammography test’s
sensitivity, p(T |C) = 80%), and the conditional probability
of falsely detecting the condition in its absence (e.g., the
test’s false positive rate, p(T |¬C) = 9.6%). Solving the
problem consists in computing the value of the conditional
probability p(C |T), which denotes the test’s positive predictive
value (PPV). Such problems are often framed as requiring
“Bayesian reasoning,” as their mathematical solution can be
derived by Bayes’ theorem:

p(C |T) = p(C) · p(T |C)
p(C) · p(T |C) + p(¬C) · p(T |¬C)

= 0.01 · 0.80
0.01 · 0.80 + (1− 0.01) · 0.096 ≈ 7.8%.

In a seminal paper, Gigerenzer and Hoffrage (1995) devised
15 variants of this problem and presented them in different
formats (see Table 1). Importantly, they reported facilitation
effects for two types of representational changes: Both expressing
the problem in frequency formats (or natural frequencies) and
using a short version containing fewer numbers (aka. short
menu) boosts the rate of correct solutions (see the meta-
analysis by McDowell and Jacobs, 2017). Whereas, Gigerenzer
and Hoffrage (1995) describe their manipulations in terms
of information representation, they explain the observed
effects primarily as computational facilitation. For instance,
the algorithm for solving the problem in frequency formats
simplifies to:

p(C |T) = n(T ∩ C)

n(T)
= n(T ∩ C)

n(T ∩ C) + n(T ∩ ¬C)

= 8

8 + 95
= 8

103
≈ 7.8%.

The mammography problem’s notoriety has many reasons. For
both experimental participants and medical professionals, the
problem seems of high practical relevance, but is frustratingly
difficult. Most naïve respondents estimate its solution to be
around 70 or 80%, thus misjudging the true value by an
order of magnitude. Theoretically, the error committed in the
context of such problems has been described by a confusing
array of concepts—including base rate neglect (Kahneman
and Tversky, 1973), base rate fallacy (Bar-Hillel, 1980), and
insensitivity to prior probability (Tversky and Kahneman,
1981)—and attributed to an inverse fallacy (Eddy, 1982) or a
heuristic of representativeness (Kahneman and Tversky, 1972b).
Even when the problem’s solution is known, the discrepancy
between the mammography’s high sensitivity and its low PPV
remains perplexing. In addition to the theoretical challenge of
explaining people’s poor performance, researchers in applied
psychology, clinical diagnostics, and information visualization
face the practical challenge of improving it. In numerous
attempts to train people (e.g., Sedlmeier and Gigerenzer,
2001; Ruscio, 2003; Sirota et al., 2015) or support their
performance by visual aids (e.g., Brase, 2008; Moro et al.,
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TABLE 1 | Three versions of the mammography problem (from Gigerenzer and Hoffrage, 1995, Table 1, p. 688), and an overview of the information provided and required

for solving each version (probabilities p in blue, frequencies n in green, and parts of required solutions in red).

Problem description Information % correct*

(a) The probability of breast cancer is 1% for a woman at age forty who participates
in routine screening.

p(C)=0.010

(b) If a woman has breast cancer, the probability is 80% that she will get a positive
mammography.

p(T |C)=0.800

(c) If a woman does not have breast cancer, the probability is 9.6% that she will also
get a positive mammography.

p(T |¬C)=0.096

S
ta
n
d
a
rd

P
ro
b
a
b
ili
tie
s

A woman in this age group had a positive mammography in a routine screening.
What is the probability that she actually has breast cancer? %

p(C |T )=?

4%

(a) 10 out of every 1,000 women at age forty who participate in routine screening
have cancer.

n(C)=10

N=1,000

(b) 8 of every 10 women with breast cancer will get a positive mammography.
n(C ∩ T )=8

n(C)=10

(c) 95 out of every 990 women without breast cancer will also get a positive
mammography.

n(¬C ∩ T )=95

n(¬C)=990
n(T ∩ C)=?

n(T )=?N
a
tu
ra
lF

re
q
u
e
n
c
ie
s

Here is a new representative sample of women at age forty who got a positive
mammography in routine screening. How many of these women do you expect
to actually have breast cancer? out of %

24%

(d) 103 out of every 1,000 women at age forty get a positive mammography in
routine screening.

n(T )=103

N=1,000

(e) 8 of every 1,000 women at age forty who participate in routine screening have
breast cancer and a positive mammography.

n(C ∩ T )=8

N=1,000

n(T ∩ C)=?

n(T )=?

S
h
o
rt
F
re
q
u
e
n
c
ie
s

Here is a new representative sample of women at age forty who got a positive
mammography in routine screening. How many of these women do you expect
to actually have breast cancer? out of %

36%

*Estimates of correct answer rates (from McDowell and Jacobs, 2017) for problems in this format.

2011; Garcia-Retamero and Hoffrage, 2013; Binder et al., 2015,
2020; Böcherer-Linder and Eichler, 2017; Eichler et al., 2020),
solutions rates remained frustratingly low (e.g., Micallef et al.,
2012; Khan et al., 2015; Weber et al., 2018). Thus, despite
considerable progress, it is still controversial to what extent
humans are able to solve such problems, how they perform
the required calculations, and which aspects of the task,
person, or task environment help or hinder their performance
(see Navarrete and Mandel, 2016; McDowell and Jacobs, 2017,
for reviews).
We contribute to these debates by proposing new perspectives
on the problem. Rather than focusing on differences between
representational formats, we explicate the steps and processes
that lead from the provided information (i.e., probabilities or
frequencies) to the measures required for solving the problem.
As we will show, this illuminates the geometric nature of
the underlying problem representation in ways that explain
both the problem’s difficulty and the observed facilitation
effects. As a collateral benefit, our analysis can be applied
to related problems and allows defining a large variety of
scientific measures from seemingly distinct domains in a unified
framework. Our account is embedded in a broader model that
emphasizes the role of 2×2 matrices as a key construct of
scientific inquiry.

2. THE MATRIX LENS MODEL

This article introduces an abstract matrix lens model of
scientific inquiry. As an analytic device, this model explicates
the steps and processes that we perform when solving
problems based on frequency counts, binary contingencies,
and probabilistic measures derived from them. The core
representational component of our model is the structural
construct of a 2×2 matrix that frames and sculpts a large
variety of measures in seemingly distinct tasks and domains.
The key mechanism invoked by our framework is the
adoption of particular perspectives on parts of this matrix. By
selectively focusing on some aspects while ignoring others, highly
specialized measures trade-off gains in depth and resolution with
losses in context and scope. As a consequence, the transparent
communication of such measures must explicate the perspectives
encapsulated in their derivation.

Figure 2 illustrates the steps of our model as a pipeline
of adopting increasingly specific perspectives. When providing
a numeric answer to a scientific question, we dramatically
reduce the world’s complexity by selecting and zooming
into relevant aspects to eventually capture the value of
some measure (e.g., PPV). An initial step of filtering (P1)
categorizes some population of elements on binary dimensions
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FIGURE 2 | The matrix lens model describes scientific inquiries that reduce complexity in several steps by adopting increasingly specific perspectives on particular

aspects of the world. Its initial steps reduce the dimensions of explicitly represented information by filtering, framing, and focusing (P1–P3) to capture a particular

measure (e.g., a diagnostic test’s positive predictive value, PPV). By contrast, the final step of presenting (P4) can widen the scope by creating representations that are

transparent when explicating the perspectives adopted during the measure’s derivation.

to yield a binary grid of frequency counts as a prerequisite
for the model’s two main steps, whose geometric nature
corresponds to the visual process of adopting particular
perspectives. A second framing step (P2) selects and arranges
dimensions to construct a specific 2×2 matrix. Given this
matrix, a focusing step (P3) further selects and highlights
some particular aspect to derive a quantitative measure. The
value of this measure implicitly contains the entire chain
of transformations and thus encapsulates the perspectives
adopted in the measure’s derivation. An additional step of
presenting (P4) communicates the measure as a scientific
result. Whereas, the model’s three initial steps (P1–P3)
reduce complexity—by selectively carving out, organizing and
compressing information—its final step (P4) widens the scope by
adding information and providing an interpretation. As a pre-
scriptive consequence, a measure’s verbal or visual presentation
is transparent when explicating the perspectives that were
encapsulated in its derivation.

Capturing some noteworthy aspect of the world by viewing it
through the lens of a 2×2 matrix requires a mix of numeric and
representational skills. Selecting the right measure out of a large
variety of options typically requires both task-related experience
and domain-specific knowledge. Although the measures deemed
relevant and their labels vary between tasks and domains, the
basic steps and mechanisms mostly remain the same. In the
following, we first illuminate the structural elements of each
step by abstracting from the content and semantics of specific
tasks. This will portray the act of scientific measurement as
a deliberate, strategic, and intricately coordinated process that
encompasses different levels, decisions, and parameters. Just like
a photographer is not merely pointing a lens in the direction of
an object of interest and then randomly triggers the shutter, a
scientist aiming to answer a question is not randomly screening
data and computing metrics that may or may not answer a
question. In practice, and particularly in experts, this process may
nevertheless unfold in an automatic and intuitive fashion. This
allows for glitches and errors, if something breaks down or is led
astray, as well as for systematic biases, due to schematic processes
and preferred perspectives. Overall, our model emphasizes the
selective and directional elements of scientific investigations and
reveals scientific insights as a matter of adopting and presenting
particular perspectives.

2.1. Filtering
The reductionist nature of our model is most obvious in its
initial step of filtering, which categorizes a population of elements
on binary dimensions and acts as a sieve for all subsequent
steps. The object being filtered is defined as some population of
elements that can be measured on our dimensions of interest.
Although this population can comprise any well-defined set of
elements, we usually encounter subsets of samples and elements
that represent events or individuals. Measuring elements requires
a dimension of interest and a scale that assigns values to elements.
An elementary type of measurement is categorization, which uses
some rule to assign or arrange elements into groups.

The elements of a population can be categorized in many
different ways. In this paper, we limit ourselves to cases of
binary categorization in which the categories employed are
dichotomous, exhaustive, and mutually exclusive, so that each
element falls into exactly one of two categories on any dimension
of interest. As an example, suppose we aimed to investigate
what may have contributed to surviving the sinking of the
RMS Titanic in 1912. Our population of elements consists of
the N = 2, 201 passengers on board of the Titanic on its
fatal maiden voyage. Suitable dimensions of interest could be
the age, sex, or class of each passenger (see Dawson, 1995).
To satisfy the constraint of binary dimensions, any variable
describing the passengers must be dichotomous. Although the
variable Age is continuous when expressed in terms of years, it
can be categorized into Adult vs. Child. Similarly, the variable
Sex is often categorized into Female vs. Male, despite allowing
for finer distinctions. A key outcome variable in this example is
each passenger’s Survival, categorized into Alive vs. Dead. Cross-
classifying all elements on d binary dimensions arranges them
in a d-dimensional grid. The top cube of Figure 3 illustrates
this for d = 3 dimensions. As each of three variables contains
two categories and all of their 2d = 8 possible combinations
exist, the population is dissected into eight sub-cubes that
show the frequency counts of individuals for every category
combination. Interestingly, any two-dimensional visualization of
a three-dimensional problem introduces artifacts that are based
on properties of the representation, rather than the problem.
For instance, depicting categories as the cells of a cube implies
an element of spatial clustering that mere classification does
not provide. Similarly, an issue of arranging categories arises
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FIGURE 3 | Filtering the population of N = 2, 201 passengers of the RMS Titanic on d = 3 binary dimensions and framing the resulting frequency grid as three distinct

2×2 matrices. The top cube shows the frequency counts of eight subgroups resulting from categorizing all elements by the binary variables Age, Sex, and Survival.
Due to aggregation, all arrows are uni-directional. Arrows from cube to matrices show the three possible two-dimensional projections along each of the cube’s axes.

The three 2×2 matrices (A–C) result from adding the frequency counts of the collapsed dimension. (Color marks Adult category; pattern marks Female category; bold

font marks Alive category. Titanic image adapted from: https://commons.wikimedia.org/wiki/File:RMS_Titanic_3.jpg).

due to constraints of viewing a 3d-object from a particular
perspective. Here, the sub-cube in the hidden lower corner
of the population cube—which is obscured by the currently
adopted angle of view and thus drawn separately, shifted to the
right—shows that 338 male adults survived the disaster. The
tension between the properties of a represented object and the
effect of highlighting or occluding some aspects by choosing a
particular representation forms a recurring theme throughout
this article: Whereas, some subjective elements—like choosing
particular dimensions or binary cut-off values—are an inevitable
consequence of reducing a multi-faceted world to a 2d-grid,
merely representational constraints often occur as side-effects
and can be mitigated by choosing other representations.

Overall, the initial step of filtering imposes a binary
perspective upon the world. Although the range of questions that
can be addressed within this framework remains substantial, it is
clear that this step is highly selective and reduces complexity by
many orders of magnitude. By rendering chosen variables from
shades of gray as either black or white, certain aspects of the
world are emphasized while others are ignored. For instance, if
the variable of a passenger’s Class is available but not considered
in this step, it is lost and cannot be recovered later.

2.2. Framing
A second step of framing reduces our object of inquiry to two
dimensions by transforming the binary grid into a 2×2 matrix.
When the elements of our population are clustered as a
three-dimensional cube, adopting perspectives on this cube
corresponds to viewing it from particular directions. Figure 3
illustrates this step geometrically as projections along each of
the cube’s dimensions. Crucially, each of the three resulting
2×2 matrices (Figures 3A–C) is an abstraction of the categorical

information that achieves simplification by further aggregating
over one of the cube’s dimensions. As the three projections are
orthogonal, any two 2×2 matrices provide the marginal sums
of the third matrix, but do not allow reconstructing it without
additional information. Again, our Titanic example illustrates
that adopting particular perspectives on an object implies
both reduction and specialization. Switching to a different
representation can sacrifice, hide, or reveal information that was
implicit before. Additionally, changing representations imposes
new constraints that can illuminate or obscure particular aspects,
but may also introduce representational artifacts. As we shall see,
each 2×2 matrix allows answering a wide range of questions.
But all insights provided by increasingly detailed comparisons
and metrics come at the price that other aspects are obscured
or lost. Thus, the benefits of adopting any particular perspective
incur potential costs of neglecting or abandoning alternative
view-points and interpretations.

When categorizing the elements of a population on two binary
dimensions, their cross-tabulation as a 2×2 matrix provides “the
crudest possible division” (Pearson, 1904, p. 21) into four sub-
groups, with each table cell displaying the frequency count of
the corresponding category combination. The core construct of
our model is also known as a binary contingency table (e.g.,
Everitt, 1977; Powers, 2011)—a term coined by Karl Pearson, who
pioneered its statistical analysis (in Pearson, 1904). Alternatively,
the same four-fold table is also known as confusion matrix (e.g.,
Fawcett, 2006; Ting, 2011; Chicco, 2017) or error matrix (e.g.,
Stehman, 1997). To anyone familiar with the literature on the
subject, these latter terms seem uncannily appropriate, as they not
only apply to the table itself, but also characterize the plethora of
measures and interpretations it subsequently spawned, and even
provide an apt description of the state of mind of many of its
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students. We see three types of reasons for the confusing nature
of 2×2 matrices:

1. Structural reasons: A first source of errors is the deceptive
simplicity of its structure. While any 2×2 matrix provides
a “simple four-fold division of the universe” (Pearson,
1904, p. 3), actually framing this construct implies
(a) the selection of two binary dimensions, and (b) their
arrangement in a spatial layout. As there exists no
standard layout of a given 2×2 matrix, swapping the
order of its dimensions and their categories allows for
23 = 8 different ways of representing the same information
(see Supplementary Figure 1). Although all these spatial
variants are mirror images or rotations of a single
2×2 matrix, this flexibility in expression allows for a
multiplicity of surface structures that differ between authors,
applications, and domains.

2. Semantic reasons: A second source of confusion is that
seemingly similar surface structures vary substantially in
their semantic interpretations. Both the specific dimensions
mapped to the axes of a 2×2 matrix and the relations
between their categories influence its meaning. For
instance, many binary distinctions (e.g., Alive/Dead,
Adult/Child) imply preferences that carry over to the
perception of corresponding matrix cells. Similarly,
particular combinations of categories (e.g., Adult/Alive
vs. Child/Dead) give rise to further evaluations. Thus,
the four cells of an interpreted matrix can vary both
categorically (e.g., positive/negative, correct/incorrect,
etc.) and as matters of degree (e.g., some cells are more
relevant than others). Within our visual metaphor, we can
think of these semantic aspects as re-introducing colors,
patterns, or shades to a 2×2matrix, and exuding substantial
implications beyond its binary structure.

3. Terminological reasons: A third and particularly vexing type
of reasons for the confusing nature of 2×2 matrices is
that different semantic domains not only frame different
matrices, but also label the resulting measures by distinct
concepts. As a consequence, the same measures often
appear in different terminological disguises, rendering their
identification and selection difficult and error-prone.

Fortunately, these structural, semantic, and terminological
sources of confusion can be reduced by adopting an analytic and
functional perspective on a shared representational construct.
In the following sections, we use a framed 2×2 matrix as a
foundation for tackling each of the confusions in turn. From a
functional viewpoint, we can ask: Which generic goals or tasks
are supported by a 2×2 matrix? Regarding semantic issues, we
will explicate the typical mappings and terminologies of different
domains. Before addressing the semantic and terminological
issues (in sections 3, 4), the next step of focusing provides the key
mechanism of our model.

2.3. Focusing
Given a well-defined 2×2 matrix, focusing on parts of this
structure supports distinct tasks that reveal increasingly specific
aspects. These tasks remain implicit when using mathematical

concepts and formulas to define measures based on the contents
of matrix cells. By contrast, our model explicates these tasks and
shows how themeasures arise by adopting particular perspectives
on the 2×2 matrix. Whereas, a numeric value encapsulates the
perspective adopted in its derivation, our structural approach
illuminates both the specific detail provided by each measure and
its limits due to ignoring all other aspects.

Before explicating the mammography problem in our model,
we introduce some abstract nomenclature. The highlighted
panel of Figure 4 provides abstract labels for the dimensions,
categories, and cells of a 2×2 matrix. In the absence of any
semantic interpretation, the lowercase letters a, b, c, and d
describe a 2×2 matrix by denoting the frequency counts
of its top-left, top-right, bottom-left, and bottom-right cell,
respectively. Using a matrix-based framework for structuring our
analysis primarily provides us with a methodological tool. Thus,
rather than claiming that the 2×2 matrix provides a superior
type of visualization (see e.g., Binder et al., 2020; Eichler et al.,
2020, for comparisons between alternatives), we use its geometric
potential for distinguishing between locations and directions.

As a result of framing, we can refer to the dimensions and
categories of a 2×2 matrix by combining the corresponding
labels. Figure 4I cross-tabulates the primary dimension of a True
condition (consisting in the presence or absence of cancer, C
vs. ¬C) with a secondary dimension of a positive or negative
Test outcome (T vs. ¬T) to yield a 2×2 matrix containing
the four possible combinations of all category levels. Thus, the
cell label ‘a’ and the number of elements in set C ∩ T are two
ways of referring to the same frequency count. The numeric
values in Figure 4I result from reconstructing themammography
problem’s probability information in terms of frequencies. When
assuming a sample ofN = 1, 000 women of the target population,
a cancer prevalence of P(C) = 1% implies that 10 of them are
expected to have cancer [N · P(C) = 1, 000 · 0.01 = 10]. Next,
the sensitivity of the screening test p(T |C)= 0.80 suggests that
a = 10 · 0.80 = 8 of the women with cancer also test positively
(C ∩ T). For the N − 10 = 990 women without cancer, the
probability for a positive test is p(T |¬C)= 0.096, so that b =
990 · 0.096 ≈ 95 receive a false positive test result (¬C ∩ T). All
other frequencies of the 2×2matrix can then be computed, as the
four elementary cells add up to the total number of individuals in
the population (i.e., N = a + b + c + d = 1, 000 women), as do
the sums of its row and column margins (e.g., N = 103 positive
+ 897 negative test outcomes). Thus, Figure 4I provides a well-
defined 2×2 matrix that estimates the frequency counts of the
mammography problem for a sample of N = 1, 000 women.

Which types of tasks are supported by a 2×2 matrix? And
which numeric transformations are required to address these
tasks? The panels of Figure 4 identify five types of tasks in a
generic fashion:

1. Frequencies: The only type of task directly supported
by a 2×2 matrix is the evaluation of frequencies. For
instance, Figure 4I shows that—given a population of N =
1, 000 women—a majority of d = 895 of them do not have
cancer and receive a correct negative test result (¬C ∩ ¬T).
Adding cells of joint frequencies across rows or columns
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FIGURE 4 | The structure of the 2×2 matrix and labels for its dimensions, categories, and cells. Numbered panels express the mammography problem in a

2×2 matrix framework to illustrate the transformations of cell values from frequency counts (I), to probabilities (II), and conditional probabilities (III). Arrows represent

the direction of adopted perspectives and numeric transformations, with curved exits indicating information that is lost by a transformation and needs to be added

when moving in the opposite direction. Cell background color marks category C (cancer present); pattern marks category T (positive test outcome); bold font marks

category correspondence (correct cases). Numbers shown in blue, green, and red mark the provided probabilities, corresponding frequencies, and the solution of the

problem, respectively.

allows comparing frequency counts between category levels.
For instance, the marginal sums reflect that there are fewer
womenwith thanwithout cancer (10 vs. 990), and fewer with
a positive than with a negative test result (103 vs. 897).

2. Proportions and probabilities: A second type of task
supported by the 2×2 matrix is the assessment and
comparison of proportions. Expressing frequencies in
terms of proportions facilitates comparisons of relative
magnitudes by standardizing cell values and their sums
to a reference value. As the frequency counts of the four
original cell values add up to the population size N, dividing
them by N normalizes their values to a sum of 1, allowing
for their interpretation as the probability of each category
combination (see Figure 4II). As this transformation leaves
all relative proportions within the 2×2 matrix intact, all
row and column values still add up to their marginal
sums. Some of these marginal sums convey interesting facts
about the original 2×2 matrix. For instance, adding the
probabilities of the left column yields the prevalence of

cancer in the population [P(C) = 1%], and adding those
of the top row reflects the test’s bias for positive outcomes
[P(T) = 10.3%]. However, the benefits of convenient
expression and comparison of cell values come at the cost
that all information regarding the population size N is lost
in the transformation.

3. Correspondence: The tabular structure of the 2×2 matrix
primarily suggests combining rows or columns of cell values,
but combining other configurations is often informative. A
special type of aggregation consists in adding the diagonals
of a 2×2 matrix (i.e., the frequencies a + d vs. b +
c in Figure 4I, or their corresponding proportions in
Figure 4II). In the mammography problem, the diagonals
mark the correspondence between a woman’s true condition
and her test outcome. Any instance in the top-left or
bottom-right cells (i.e., the counts of a and d) represents a
woman with a correct test result (due to the correspondence
C ∩ T or ¬C ∩ ¬T), while any element in the top-right or
bottom-left cells (i.e., b and c) represents a woman with
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an incorrect test result (due to a lack of correspondence,
¬C ∩ T or C ∩ ¬T). Whereas, correctness is a categorical
property of each individual (Rescher, 1998), accumulating
the groups of all correctly diagnosed women (a + d = 903)
and all incorrectly diagnosed women (b + c = 97), and
computing their proportion (by dividing both sums by N),
yields continuous measures of accuracy (90.3%) and error
rate (9.7%). Both measures fit into our increasingly familiar
pattern of gaining abstraction while sacrificing detail: On
one hand, they provide easily interpretable values on a
convenient scale from 0 to 1. On the other hand, the
normalization and aggregation in their derivation obscure
not just the population size N, but all differences between
accurate instances (a vs. d) or inaccurate instances (b vs. c)
have also vanished.

4. Conditional probabilities: A key transformation of a
2×2matrix consists in dividing its cell values by its marginal
sums to obtain conditional probabilities (see Figure 4III).
The three sub-panels A–C differ in the reference class on
which the cell values (of Figures 4I,II) were conditionalized.
Adopting a by row, by column, or by diagonal perspective
on a 2×2 matrix normalizes its values in the corresponding
direction (i.e., the rows, columns, or diagonals of Panels A,
B, and C, add to a sum of 1).

As we explicate the semantics of diagnostic measures
and other domains later (in sections 3, 4), we only contrast
two conditional probabilities that matter in the context of
the mammography problem here. By adopting a by column
perspective on the 2×2 matrix, Panel B normalizes cell
values on the presence or absence of cancer (C vs. ¬C).
Thus, the top-left cell of Panel B shows that the conditional
probability of receiving a positive test result given that
a woman has cancer is P(T|C) = 80.0%. This is the
sensitivity of themammography test provided by the original
problem formulation (in blue). By contrast, Panel A adopts a
by row perspective and normalizes its values on the possible
outcomes of a mammography test (T vs.¬T). Thus, the top-
left cell of Panel A shows that the conditional probability of
having cancer given a positive test result is P(C|T) = 7.8%
(in red). This is the test’s positive predicted value (PPV) and
the solution to the original problem.

As with previous transformations, computing
probabilities that normalize values by a particular
perspective yields highly specialized measures that render
comparisons in one direction simple and transparent, but
drop any information regarding the base rates of rows,
columns, and diagonals. For instance, whereas Figures 4I,II
show that women with cancer (C) and with a positive test
result (T) are clear minorities, this information is lost in the
transformations to Figure 4III.

5. Contingencies: Detecting the degree of covariation or
contingency between events is an important adaptive task.
In the context of a 2×2 matrix, detecting contingency
concerns the relation between its dimensions. In the
absence of contingency, both dimensions are independent
of each other, whereas the presence of contingency implies
a dependency, association, or correlation between them.

Contingency-related questions are answered by assessing
differences in conditional probabilities (e.g., by subtracting
or dividing two conditional probabilities) or computing
more comprehensive metrics (e.g., the χ2-score, or the
Matthews correlation coefficient, MCC). We discuss some of
these metrics in the context of classification and diagnostics
(in section 4.1).

Importantly, any measure based solely on the values
of a transformed 2×2 matrix inherits both the benefits
and limitations of its origin. Hence, any measure based
exclusively on the conditional probabilities of Panel A may
be highly informative for answering questions that are
conditionalized on a specific Test outcome, but is useless or
misleading for addressing tasks that require the absolute
frequency or proportion of women with vs. without cancer
or with vs. without a particular test outcome.

The five types of tasks enabled by a 2×2 matrix reach from
relatively simple comparisons (based on the frequency or
probability of cells or cell combinations) to more complex
judgments (involving assessments of correspondence,
conditional probability, and contingency). However, solving
a specific problem does typically not recruit all of these tasks.
For instance, solving the mammography problem primarily
requires adopting a particular perspective on a 2×2 matrix that
cross-classifies the target population’s health condition C by
test outcomes T. Comparing the values provided and required
in Figures 4II,III reveals the essence of the mammography
problem: The test’s sensitivity for detecting cancer p(T |C) is
conditionalized on a low cancer prevalence P(C), whereas the
required PPV p(C |T) is conditionalized on a proportion of
positive test results P(T) that is more than ten times higher than
the prevalence. More generally, a conditional probability p(C |T)
typically differs (a) from the unconditional probability P(C)—
unless C and T are independent—and (b) from the inverse
conditional probability p(T |C)—unless P(C) and P(T) are
equal. Thus, both the meaning and the value of a conditional
probability vary drastically as a function of its reference class1.

Our model solves the mammography problem by framing
a 2×2 matrix and focusing on a particular location in a
larger framework of probabilistic measures. Before exploring
the semantics and labels of additional locations, we should
realize that even relatively simple scientific problems are typically
not solved by providing a measure and its value (“The PPV
is 7.8%.”). Instead, successfully answering a question by deriving
a suitable measure is not the end of a scientific enterprize, but
the beginning of its dissemination and interpretation. While
it is non-controversial that communicating scientific results in
a transparent fashion is desirable, explaining what this means
and how it can be achieved is far from clear. Interestingly,
our model implies a non-circular and non-trivial notion of
representational transparency.

1While the non-reversible nature of conditional probabilities seems puzzling in
the abstract, an example makes it obvious: Given the population of all U.S. citizens
from 1789 to 2020, the conditional probability P(male|U.S. president) = 1, but the
inverse conditional probability P(U.S. president|male) is almost zero.
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2.4. Presenting
How can we communicate scientific results in a transparent
fashion? For probabilistic measures, the standard solution is to
either assume that one’s audience is familiar with the measure’s
definition or to provide it as a mathematical formula. This
is perfectly transparent to anyone at ease with the notation
and the axioms governing their interpretation, but opaque
and intimidating to anyone else. Alternatively, visualizations
can be powerful tools for communicating abstract information.
While most people agree that most presentations of scientific
findings benefit from clear and transparent visualizations (e.g.,
Tufte, 2001), precisely explaining why visualization help remains
challenging (see Streeb et al., 2020, for a systematic review).
A full-fledged theory of visualizing metrics derived from
2×2 matrices is still lacking (though see, e.g., Micallef et al.,
2012; Binder et al., 2015, 2020; Khan et al., 2015; Böcherer-
Linder and Eichler, 2017, 2019; Eichler et al., 2020, for studies
contrasting specific types of visualizations). But as we began this
article with Simon’s (1981) notion that a problem’s solution lies in
its transparent representation, we owe an account of what renders
representations transparent. Our model suggests a non-circular
definition of representational transparency:

A representation is transparent with respect to a specific task
when it explicates the perspective required for solving the task.

When applying this definition to measures derived from a
2×2 matrix, we obtain:

A particular measure’s representation is transparent

when it explicates the perspective adopted during the
measure’s derivation.

Several aspects of these definitions are noteworthy: First, both
definitions of transparency are explicitly constrained to a specific
task. If this task consists in quantifying some aspect of a
2×2 matrix, a transparent representation of the resulting
value must explicate the perspective adopted in the measure’s
derivation. Seeking a more general definition of representational
transparency (i.e., beyond the tasks considered in section 2.3
and the measures defined in section 4.2) would need to consider
the representation’s ecological rationality (see Todd et al., 2012,
for details).

Second, the definitions are applicable, but not limited to
visualizations. They specifically allow for verbal explications or
mathematical notations. Similarly, the definitions are deliberately
silent and agnostic about specific types of graphs and the visual
feature(s) to which a measure is being mapped. For instance, a
measure’s numeric value can be expressed by an angle, area, co-
ordinate, or length. Which of those features is most appropriate
depends on many factors, including the task to be performed
(e.g., does it require a qualitative judgment or a quantitative
comparison?), a value’s context and magnitude, and the viewer’s
perception, graph literacy, and motivation.

Third, explicating a measure’s perspective typically requires
that the measure is being shown, rather than merely being
implied by other representational elements. However, merely

depicting some measure in a visualization is not sufficient for
achieving transparency. For instance, mapping the values of
probabilities (e.g., accuracy, PPV, or the effects of risks or
treatments) to spatial locations or the heights of bars may
explicate their numeric magnitude, but provides no information
on how the values were derived. In fact, visualizations that
invite comparisons between non-transparent measures may even
obscure and manipulate information, rather than reveal it (see
section 5.3 for examples).

How can we explicate the perspectives adopted in the
derivation of a particular measure? Although mathematical
definitions help explicating how measures are computed, we
believe that visualizations are more accessible to a wider
audience. Our definition of representational transparency can
be read as providing prescriptive guidance, but there is no
simple recipe for turning it into a procedure for creating
transparent visualizations. Given a vast repertoire of options,
we can only provide some examples here. In fact, most of the
figures in this article explicate perspectives adopted on a shared
representation of a 2×2 matrix. For instance, Figure 4 illustrates
how probabilities and conditional probabilities are derived from
the joint frequencies of a 2×2 matrix. In sections 3, 4, we extend
this approach to additional visualizations (e.g., hierarchical trees
in Figure 5) and more complex measures (e.g., of contingency
and odds in Figure 6). Similarly, the perspectives adopted
on a 2×2 matrix for deriving the sensitivity or PPV of a
diagnostic test can be expressed in the form of an icon.
Given the 2×2 matrix of the mammography problem (shown
in Figure 4I), the contrast between the test’s sensitivity (sens)
and its positive predictive value (PPV) can be depicted as:

sens =
a b

c d = 80% vs. PPV =
a b

c d = 7.8%. Although such

icons seem suitable for expressing frequencies, probabilities, and
conditional probabilities in a compact fashion, they assume a
framed 2×2 matrix and reach their limits for more complex
measures (e.g., the aggregate scores of Figure 6 or Table 3).
Additional options for visually explicating particular perspectives
on tasks involving probabilistic measures include icon arrays,
unit squares, tables, tree diagrams, and frequency nets (see Neth
et al., 2018, for generating different visualizations from a shared
representation, and Binder et al., 2015, 2020, and Böcherer-
Linder at al., 2019, 2020 for empirical comparisons).

While this article promotes the matrix lens model as an
analytic device, a 2×2 matrix may also turn out to be a useful
visualization for many problems. For instance, a key structural
feature of a 2×2 matrix—as an external representation—is
that it explicates two orthogonal dimensions. If this also is an
important feature of a problem, representing it as a 2×2 matrix
may facilitate solving it. However, if the task’s structure or
semantics impose an order on two dimensions, a hierarchical
representation (like a unit square or tree) may provide a better
fit. Thus, rather than suggesting that the 2×2 matrix is the right
representation for all problems, we emphasize that evaluating a
visualization’s degree of fit to a particular task pre-supposes an
analysis of the task’s structural and semantic aspects. In section 3,
we will see that the semantics of many tasks and domains
imply a three-dimensional structure. As a consequence, any
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two-dimensional visualization contains visual artifacts that select
and emphasize some aspects while omitting or obscuring others.
Although visualizations can be tailored to fit to specific tasks,
the downside of any such specialization is a loss of generality.
Thus, if problems or domains require transfers betweenmeasures
or tasks, the costs of tailored visualizations may outweigh their
benefits. Overall, the question which visualization fits best for
which task—and for which audience—remains an important
challenge for future research.

3. SEMANTICS

The previous section introduced the matrix lens model as a
general approach for solving tasks based on frequency counts,
conditional probabilities, and binary contingencies. The model’s
steps were illustrated by framing specific 2×2 matrices of Titanic
passengers and deriving some measures of the mammography
problem. However, the model was expressed in abstract terms,
involving simple geometric transformations, and a set of basic
tasks that could be applied on any population of elements that is
filtered into binary dimensions and viewed through the structural
construct of a 2×2 matrix. Its key mechanism of adopting
particular perspectives on this construct derived measures as
locations in a matrix-based framework. The meanings of these
matrices seemed arbitrary, merely motivated by examples, and
did not matter much.

In practice, scientific problems are rarely posed in a semantic
vacuum, but rather embedded in specific contexts. As people
typically solve problems within particular domains, the concepts
and categories used to frame 2×2 matrices vary as a function
of domain-specific contents. Similarly, the preferred perspectives
adopted on 2×2 matrices and the terminology of corresponding
measures differ substantially between domains.

Semantic questions address issues of meaning, interpretation,
and relevance. To clarify semantic sources of confusion in the
context of 2×2 matrices, we first describe typical task domains
and then identify some standard mappings of matrix dimensions
and categories in these domains (in section 3.1). Discovering a
shared structural feature will then allow us to propose a simplified
model that explicates the structure that underlies a range of
problems in several domains (in section 3.2).

3.1. Mapping Meanings to Dimensions
Due to their structural simplicity, 2×2 matrices feature
prominently in many tasks and domains. Unfortunately, the
commonalities between these uses are obscured by the flexibility
in arranging a given 2×2 matrix (see section 2.2) and the distinct
terminologies of scientific fields (see section 4.2). We use the
term task domain to denote a discipline or field with a common
set of questions and applications. As the questions that can be
addressed by a 2×2 matrix crucially depend on its dimensions,
we characterize task domains by the semantic categories of their
typical dimensions.

Table 2 lists the task domains considered in this paper and
defines a default mapping of their dimensions. For instance,
the mammography problem stems from the task domain of
medical diagnostics. The corresponding 2×2 matrix (shown in
Figure 4) mapped each patient’s true condition to X and the
test outcome to Y . Table 2 also notes the origins of the matrix
dimensions and the dependencies between them (in the right-
most three columns). When using an existing test to diagnose
a disease, the true condition X is given by the environment
and the test outcome Y is given by the test. As discussed in
section 2.3, the matrix diagonal represents the correspondence
between the other two dimensions. In the context of diagnostics,
this correspondence implies the correctness of a test result and is
listed as a third dimension Z.

Beyond medical diagnostics, Table 2 provides default
mappings for 2×2 matrices of additional task domains that
we cannot cover in detail in this paper. In classification, the
criteria of a true class X and a predicted class Y can both be
freely chosen by the analyst during training, but the identity
of X is externally given when applying a classifier. The field of
information retrieval combines notions from signal detection
theory and categorization to search for relevant documents,
but uses a distinctive terminology for its metrics (e.g., precision
vs. recall). Its signature task typically implies large numbers of
irrelevant documents that are to be ignored (i.e., high values in
cell d or joint category ¬X ∩ ¬Y) as, for instance, expressed in
the null invariance property by Tan et al. (2004).

The domains of risk and treatment are similar insofar as both
freely set or define the levels of some (independent) Factor X and
measure or observe the environmental consequences on some
(dependent) Factor Y . As treatment effects are often measured
as increases or decreases of medical conditions, such conditions

TABLE 2 | Semantic mappings of concepts to three dimensions of 2×2 matrices in different task domains or disciplines.

Task domain or discipline
Semantics of dimensions Origin and dependencies

X Y Z X Y Z

Medical diagnostics True condition Test outcome Correctness Given by environment Given by test Defined by X and Y

Classification (training) True class Predicted class Class match Free distribution Free Defined by X and Y

Classification (application) True class Predicted class Class match Given by environment Free distribution Defined by X and Y

Information retrieval Relevance Retrieval Correctness Given by interest Free Defined by X and Y

Risk Risk factor Outcome Correspondence Free Given by environment Defined by X and Y

Treatment Treatment factor Effect/condition Correspondence Free Given by environment Defined by X and Y

Some dimensions are given by external factors (��), while others can be chosen (��), or are defined by the other two dimensions (�).
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can also be mapped to dimension Y of 2×2 matrices (resulting
in rotations by 90◦, relative to the standard 2×2 matrix of
medical diagnostics). Consequently, the referents of the medical
terms prevalence and incidence should always be noted.

Importantly, all domains considered in Table 2 share a
structural element: Whereas, the semantic contents mapped
to dimensions X or Y can be chosen freely or are given
by external factors, dimension Z is always determined by X
and Y . Inspecting the semantics of dimension Z—noted as
“correctness,” “class match,” or “correspondence”—reveals that
they all imply some notion of accuracy. As a consequence of
this regularity, the 2×2 matrix {X,Y} (i.e., with an implicit
dimension Z) fits closely to the semantic structure of the task
domains considered here. In the absence of a specific task,
this particular 2×2 matrix is semantically privileged, but some
tasks may benefit from an explication of Z. Applying the
correspondence constraint to a 3D-grid (from section 2.1) yields
a modified geometric model that gives rise to more specialized
perspectives that explicate particular dimensions and introduce
representational constraints.

3.2. The Structure of Task Domains
All problems mapped by the task domains of Table 2 correspond
to a shared three-dimensional structure. This partial cube
model (see Figure 5) is created by three orthogonal binary
dimensions X, Y , and Z, under the constraint that Z represents
the correspondence between X and Y . In contrast to our initial
Titanic example (in Figure 3), the partial cube model only
contains four cells with frequency counts, as four category
combinations are rendered impossible by the constraint on Z
(e.g., the triple XY¬Z cannot exist). Thus, the partial cube model
is fully determined by the frequency counts a, b, c, and d.

As before, viewing the model from the direction of one
of its axes collapses the corresponding dimension and frames
three distinct 2×2 matrices (A–C). Geometrically, adopting
one of these perspectives implies a projection from the 3D-
model to a 2D-matrix. But due to the fragmentary nature
of the partial cube, these projections no longer require any
aggregation over the dimension from which it is being viewed.
Thus, each of the three possible 2×2 matrices fully preserves
the frequency information of the 3D-model. Although the three
matrices only differ in the arrangement of the four frequency
counts, they are not identical. Crucially, each 2×2 matrix
explicitly represents two of the three original dimensions (as its
horizontal and vertical dimensions), whereas the third dimension
is implicitly represented (as its diagonal). The 2×2 matrix with
two orthogonal dimensions {X,Y} and an implicit dimension Z
matches the semantic structure of tasks in which the third
dimension is defined as the correspondence of the other
two dimensions (as in Table 2). Thus, Matrix A is the most
compact 2D-representation that preserves the 3D-structure of
the underlying task domain and is semantically privileged
over the other matrices, unless a task requires that category
correspondence is explicated.

Each 2×2 matrix can be organized further by reading
out its four cells in either a by row or by column fashion.
Geometrically, this process corresponds to the two possible

projections from a 2D-matrix into an ordered list of cells.
Collapsing a matrix into a list is also known as stacking
dimensions (Mihalisin et al., 1991), and can be augmented as
a hierarchical tree that illustrates how each matrix is parsed
into the ordered sequence formed by its leaves. Depending on
the angle from which a matrix is being viewed, the projection
results in two distinct trees and lists per matrix: The left
tree below each matrix uses the horizontal dimension as the
tree’s first branching criterion (i.e., dissecting the matrix in a
by column fashion) before using the vertical dimension as the
tree’s second branching criterion (dissecting the cells of each
column by row). The right tree below each matrix assumes a
different projection angle, thus reversing the branching criteria
of the left tree and reordering the list’s four frequency counts
into a different order as the tree’s leaves. The six trees and lists at
the bottom comprise all possible ways of projecting the original
frequency counts into one-dimensional lists (see Supplement 1

for details).
To clarify the status of the geometricmodel shown in Figure 5,

note that the top cube explicates the actual structure underlying
any task with semantic mappings that define one dimension as
the correspondence between two others (i.e., dimension Z in
Table 2). More precisely, the image of the partial cube provides
a visualization of this structure, but its geometry models the
essential aspects of tasks with three orthogonal dimensions
and the correspondence constraint. By contrast, all lower-
dimensional visualizations (e.g., the 2×2 matrices and trees
in Figure 5) selectively depict some particular aspect of this
structure. Depending on the current task, such visualizations
can both increase and decrease the transparency of particular
measures (see section 2.4). As the discovery of a shared
representational structure has the potential to integrate the
terminologies and metrics used in many different domains, it is
important to understand in which sense the representations on
the three levels of Figure 5 are identical to and differ from each
other. On the one hand, all ten images contained in Figure 5 are
informationally equivalent (Larkin and Simon, 1987). In contrast
to the projections in Figure 3, every 2×2 matrix, hierarchical
tree, or list of counts contains the frequency information of the
original cube, and thus can be reconstructed from any other
image. (Supplement 1 shows that the three-, two-, and one-
dimensional models enable an identical number of 24 distinct
projections.) On the other hand, this does not imply that all
these images are equal. Instead, they differ substantially in
the ways in which they explicate and organize information.
Strictly speaking, only the partial 3D-cube faithfully represents
the three-dimensional nature of the underlying problem. By
adopting particular perspectives, all two- or one-dimensional
projections distort this structure by imposing new constraints
and introducing representational artifacts that can have both
desirable or undesirable consequences, depending on the task to
be solved. For instance, framing a 2×2 matrix by selecting and
arranging two dimensions not only renders the third dimension
implicit, but also alters the proximity relations between cells (as
some become neighbors, while others are separated). Similarly,
whereas the original cube contains no hierarchy, each tree depicts
one dimension as the primary and unconditional branching
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FIGURE 5 | The partial cube model shows the geometry of frequency counts resulting from categorizing a population by two binary dimensions X and Y if a third

dimension Z expresses the correspondence between X and Y . Given a population size N, the correspondence constraint reduces the full model (containing 23 cells)

to four cells (df = 3). Arrows are bi-directional and show projections from higher- to lower-dimensional spaces, and vice versa. There exist three distinct

2×2 matrices (A–C) and six distinct one-dimensional representations (augmented as trees)—all others are mirror images or rotations of these (see Supplement 1 for

details). Although all perspectives are informationally equivalent, the dashed region marks the 2D- and 1D-visualizations that are semantically privileged for tasks in

which dimension Z can remain implicit. (Cell color marks category X; pattern marks category Y ; bold font marks correct classifications Z.)

criterion (dissecting the population into two subsets) and one
other dimension as a second branching criterion (appearing to
be dependent and conditional upon the first). Importantly, the
structure of a matrix or tree is blind to all semantic constraints
of specific tasks or domains. Thus, a chosen representation
neither needs to correspond to a user’s current task (e.g., a
2×2 matrix of X by Y can be shown to ask questions about Z),
nor match the causal or statistical properties of a domain (e.g.,
the second branching criterion of a tree can be independent
of its first). As mismatches between the properties of tasks and
representational features make problems more difficult, whereas
matches can render solutions transparent, it matters which
particular representation is chosen. (We elaborate on this point
in section 5.)

4. INTEGRATION

We originally motivated the matrix lens model by the mammo-
graphy problem and showed how it can be solved by framing
and focusing on parts of a 2×2 matrix (see section 2). We then
added semantic mappings to an abstract model and argued that
tasks in various domains share the same underlying structure
(section 3). However, both the matrix lens model (shown in
Figure 2) and the reduced structural geometry of the partial
cube model (Figure 5) seemed ill-motivated if they only allowed
to compute the PPV of this particular problem. To justify our
investment, we now extend the scope of our model in two ways:
First, we show how additional measures of clinical diagnostics
can be derived by adopting slightly different perspectives on the

same matrix. Locating these measures in our structural account
also allows illuminating two key dichotomies in the context
of diagnostic testing. In section 4.2, we further generalize our
model to additional domains and show how a large variety of
measures and terminologies can be understood in a matrix-
based framework.

4.1. Integrating Metrics of Classification
and Diagnostics
Our model solved the mammography problem by adopting a
particular perspective on a 2×2 matrix to derive a test’s PPV
(Figure 4). As the geometry of the matrix and the abstract
tasks performed with this construct are independent of a
particular content, we can generalize our analysis to other
situations involving classification tasks and diagnostic tests.
Figure 6 provides a glimpse of the additional measures that
are available by framing and focusing on particular aspects of
a 2×2 matrix. Figure 6 uses the same layout as Figure 4, but
replaces the four frequencies a, b, c, and d, by the nomenclature
of true positives (TP), false positives (FP), false negatives (FN),
and true negatives (TN), which is widely used in the domain of
classification and clinical diagnostics. As before, Figures 6I–III
show frequencies, probabilities, and conditional probabilities,
but Figure 6IV adds likelihood ratios (LR+ and LR−) as row-
wise ratios of the conditional probabilities in Figure 6IIIB.
The highlighted formulas below each matrix compute metrics
that summarize its quality in different ways: By computing the
diagonal total of correct cases, accuracy (ACC), or two measures
of contingency as the difference between conditional probabilities
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FIGURE 6 | Key metrics for measuring diagnostic classification performance based on a 2×2 matrix of frequency counts that denote true positives (TP), false
positives (FP), false negatives (FN), and true negatives (TN). Panels I–III correspond to Figure 4, whereas Panel IV computes likelihood and odds ratios from

conditional probabilities (III) or frequencies (I). The diagram explicates the relations and dependencies between metrics, arithmetic transformations (e.g., normalizing,

computing conditional probabilities, or odds), and corresponding changes of perspective. (See Figure 4 for a numeric example and Table 3 for definitions and

alternative names.)

in a particular direction (1PR vs. 1PC). A noteworthy
aspect of Figure 6 is that some conditional probabilities (in
Figures 6IIIA,B) are not only labeled as “rates” (e.g., TPR,
FPR), but carry dedicated names (e.g., sens, spec, PPV, NPV)
or even multiple names (e.g., sens ∼= recall, PPV ∼= precision).
As we will see in Table 3, this reflects their role and relevance
in various domains. But irrespective of semantics, Figure 6

shows dependencies in a diagrammatic fashion. For instance, by
conditionalizing the 2×2 matrix by row, all values of Figure IIIA
(e.g., PPV, NPV) depend on a condition’s prevalence (prev),
but not on a test’s bias. Conversely, by conditionalizing the
2×2matrix by column, all values of Figure 6IIIB (e.g., sens, spec)
depend on bias, but not on prevalence (prev).

In addition to the familiar frequencies, probabilities,
and conditional probabilities, Figure 6 defines three more
comprehensive measures that further combine and transform
conditional probabilities. The diagnostic odds ratio (DOR,
defined in Figure 6IV) is a global indicator of discriminative
performance that allows comparisons between diagnostic tests
(see Glas et al., 2003; Šimundić, 2009, for details). Whereas,
its formula implies that it integrates all four elementary
frequencies of the 2×2 matrix, the geometry of Figure 6

shows that its value depends on a test’s sensitivity (sens)
and specificity (spec, both in Figure 6IIIB), but decidedly

not on a condition’s prevalence (prev, Figure 6II), as this
information was dropped when adopting a by column
perspective on the original matrix before calculating the
likelihood ratios2.

Additionally, the lower right panels of Figure 6 define two bi-
directional scores that reintegrate the two perspectives adopted
by computing conditional probabilities (in Figures 6IIIA,B). The
F1-score is the harmonic mean of precision (i.e., PPV) and recall
(i.e., sens) and is called triangular (in Figure 6V) as it focuses on
the top-left cell and combines two measures that conditionalize
the number of true positives (TP) both by row and by column.
The χ2-score (Figure 6VI) is even more encompassing by multi-
plying both directional measures of contingency (i.e., 1PR and
1PC) and additionally including the population size N, which
otherwise is lost when transforming into probabilities. Finally,
the same panel also mentions the popular Matthews correlation
coefficient (MCC) as another quadrangular measure closely
related to the χ2-score.

2DOR is a quadrangular score (see its definition in Figure 6IV) that can also be
calculated by first adopting a by row perspective on the matrix, computing two
column-wise likelihood ratios, and then their odds ratio. Thus, DOR values are
also independent of bias.
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Introducing these measures within a structural model of
2×2 matrices—rather than using mathematical notation—has
two advantages: First, visually illustrating the perspectives
adopted by the measures and separating them from the
numerical transformations required for their derivation
highlights their dependencies and limitations. For instance,
realizing that diagnostic situations usually imply a trade-off
between two different errors (i.e., incorrect classifications FP
vs. FN), Figure 6 visually explains the inverse relationship
between sensitivity and PPV (i.e., recall and precision).
Second, explicating the perspectives adopted by otherwise
abstract measures and locating them within a structural
framework increases their transparency and facilitates
their understanding.

The distinction between adopting two perspectives on a
2×2 matrix also helps explaining two key dichotomies in the
domain of clinical diagnostics. First, developing a new test
adopts a different perspective than applying an existing test
(Linn, 2004). Developing a test assumes that each element’s
true condition (and hence the condition’s prevalence in the
population) is known. Based on this assumption, developers
adopt a by column perspective and aim to design a test that
meets certain criteria, typically formulated in terms of sensitivity
and specificity. By contrast, applying an existing test assumes
that the test’s properties are known (as in the mammography
problem). Based on this information, we can ask questions
about the predictive power of a test result. But in order to
adopt the corresponding by row perspective (e.g., for computing
the test’s PPV or NPV), we need an actual prevalence value
(which may diverge from the prevalence value assumed during
test development).

An ideal test would exhibit perfect sensitivity and perfect
specificity. But given that we typically need to compromise
between both measures, shifting perspectives on the 2×2 matrix
also illuminates the difference between testing for screening
vs. for diagnostic purposes (Morrison, 1998; Streiner, 2003;
Trevethan, 2017). In screening an entire population, our primary
goal is to reliably detect all diseased individuals (i.e., rule out
only healthy individuals, Zakowski et al., 2004). Assuming that
the prevalence of the condition is low and we have options
for further testing, this implies maximizing sensitivity (sens)
by minimizing misses (FN), at the expense of accepting some
false positives (FP). Adopting an alternative by row perspective
on the 2×2 matrix resulting from such a screening scenario,
we realize that minimizing misses (FN) at the expense of false
positives (FP) will increase the test’s NPV, at the expense of
lowering its PPV. By contrast, diagnostic testing typically starts
with a suspicion (e.g., the presence of symptoms or a positive
test result) and assumes a higher prevalence of disease. Here,
our primary goal is to avoid unnecessary treatments by reliably
identifying all healthy individuals (i.e., rule in only diseased
individuals, Zakowski et al., 2004). This implies maximizing
specificity (spec) by minimizing false positives (FP) at the
expense of accepting some misses (FN). Viewing the resulting
2×2 matrix from a by row perspective shows that this will
increase a test’s PPV at the expense of lowering its NPV. In
practice, additional factors—like differences in costs, prevalences,

and the availability of other tests or treatments—will also
matter. Importantly, our model helps rendering these theoretical
relationships more transparent.

4.2. Integrating Metrics and Terminologies
Across Domains
Beyond the realms of classification and diagnostics, the
2×2 matrix construct features prominently in many additional
contexts and domains. While many authors have provided
overviews that define and summarize the measures used within a
domain, few have explained and linkedmeasures across domains.
When realizing that an impressive wealth of important measures
is based on the relatively simple construct of a 2×2 matrix,
the lack of an integrative account is striking and calls for an
explanation. We see three obstacles and corresponding sources
of confusion:

1. First, any attempt to bridge domains faces terminological
difficulties. For instance, authors from clinical diagnostics
(e.g., Selvin, 1996; Massart et al., 1998; Šimundić, 2009)
use different names for the same concepts than those
rooted in signal detection theory (e.g., Green and Swets,
1974; Stanislaw and Todorov, 1999) or those from machine
learning and information retrieval (e.g., Rijsbergen, 1979;
Fawcett, 2006; Baeza-Yates and Berthier, 2011; Powers, 2011;
Ting, 2011).

2. Domains differ in their conceptual needs and thus develop
and use different metrics. Whereas, experts in medical
diagnostics primarily focus on the conditional probabilities
and odds ratios discussed in section 4.1 (see Figure 6),
the merits of triangular scores—like the F- and G-scores,
lift, or the Jaccard index—mainly matter in the context of
classifier development and information retrieval tasks (e.g.,
Rijsbergen, 1979; Powers, 2011).

3. A subtle but pervasive barrier to an integrative account is
of a functional nature: Whereas, most domains mentioned
so far primarily address some variant of a classification
task (e.g., “Which of two classes does an individual belong
to?” or “What would be a good criterion to distinguish
between these two categories?”), the domains of risk and
treatment primarily evaluate the consequences of some
categorical distinction (e.g., “Which outcomes are observed
if the risk factor is present?” or “What are the effects of
being treated?”). Although such questions can readily be
addressed in a 2×2 matrix framework, the corresponding
research traditions differ substantially in their constraints
and study designs. Importantly, the usefulness of any
particular measure cannot be determined solely from its
formula or label, but depends on boundary conditions.
An example is the measure of relative risk (RR), which
corresponds to the positive likelihood ratio (LR+) defined
in Figure 6: RR can be a useful measure for comparing
the outcomes for individuals exposed to some risk factor
to those of unexposed individuals (Sauerbrei and Blettner,
2009), a deceptive and misleading measure that inflates
the absolute magnitude of effects (Gigerenzer et al., 2007;
Noordzij et al., 2017), or an un-informative and nonsensical
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measure if the risk factor’s prevalence was fixed by the
study design (Sauerbrei and Blettner, 2009). Thus, choosing
and using measures in a sensible manner requires more
than just knowing their names and definitions—it requires
understanding their roles in answering particular questions
and their match to the study design that generated the
2×2 matrix.

Despite these obstacles, Table 3 provides an overview of metrics
across domains. Previous accounts mostly focused on covering
one domain (see, e.g., Hasenclever and Scholz, 2016, for a
mathematical/statistical approach, or Todeschini et al., 2012, for
an extensive comparison from a bio-chemical point of view) or
on connecting two domains (e.g., Powers, 2011). By contrast,
our model integrates a wide variety of measures from different
domains in a uniform approach and provides—to the best of
our knowledge—the most encompassing account so far. Beyond
satisfying an encyclopedic ambition to collect key measures from
different domains in one place, Table 3 organizes them in a
systematic fashion and links various domains and terminologies.

Overall, successful focusing on a single measure reduces
the complexity of the world to a one-dimensional answer
(see Figure 2). As we have seen, any measure provided as
such an answer is a highly specialized tool that—given precise
boundary conditions—serves particular purposes. By abstracting
from the original data and combining many aspects, the more
complex measures gain generality, but simultaneously obscure
and encapsulate the perspectives adopted during their derivation.

Besides defining each measure in terms of frequencies and
probabilities, Table 3 also provides visual icons that show the
perspective adopted on a 2×2 matrix when deriving the measure
and thus implicitly contained in it. We trust that readers will find
these visual and diagrammatic illustrations more illuminating
than a purely mathematical treatment. Ideally, locating measures
and their inter-relations in a shared 2×2 matrix framework will
facilitate their comprehension and, hopefully, help to choose and
use them more responsibly. To illustrate how the 2×2 matrix
construct can clarify theoretical debates, the next section applies
our approach to some problems that are known to puzzle and
perplex people when expressed in conventional form.

5. APPLICATIONS

Our model views the world through the lens of a 2×2 matrix.
Being a theoretical framework, its primary purpose is to enable
insights by explicating the process that reduces selected aspects of
a complex and continuous world to a numeric measure.Whereas,
such measures are typically defined in terms of mathematical
formulas, our structural account reveals them as particular
perspectives on a 2×2 matrix. Showing how the measures of
different domains are based on a common construct and a shared
set of basic tasks allows an integrative view of their assumptions
and terminologies.

Beyond a better understanding of theoretical concepts and
their relations, a practical benefit of our model lies in its potential
for clarifying familiar problems. In the following, we provide
three case studies that demonstrate how ourmodel can be applied

to ongoing debates regarding the difficulty and facilitation of
Bayesian reasoning tasks (sections 5.1, 5.2), and to address the
question whether the women and children of the Titanic were
successfully rescued first (section 5.3). True to its analytic nature,
our model will not solve these debates, but increase transparency
by providing alternative perspectives.

5.1. Perspectives on Natural Frequencies
and Nested Sets
How can we render the mammography problem more
transparent? We argue that our model makes three inter-
related contributions that help to clarify the theoretical debate
surrounding this problem. First, we provide a representational
explanation of the problem’s difficulty. As we have shown
(in sections 1.2, 2.3), the mammography problem revolves
around three conditional probabilities: Whereas, the test’s
sensitivity p(T |C) and false positive rate p(T |¬C) are
given, the problem asks for the test’s PPV p(C |T). When
arranging the problem’s joint frequencies or probabilities in a
2×2 matrix (as in Figures 4, 6) we see that the two conditional
probabilities provided adopt a by column perspective on the
matrix (Figures 4IIIB, 6IIIB), whereas the problem’s solution
requires adopting a by row perspective on the same matrix
(Figures 4IIIA, 6IIIA). Geometrically, the problem requires the
reversal of an adopted perspective before adopting an alternative
perspective. Mathematically, providing the prevalence p(C)
renders the reversal possible (i.e., we can re-construct Panel II
from Panel IIIB). In practice, however, this requires first
computing two joint probabilities [i.e., p(C ∩ T) = p(C)p(T|C)
and p(¬C ∩ T) = p(¬C)p(T|¬C)] before Bayes’ theorem can
be used to compute the desired solution p(C |T). Thus, within
our 2×2 matrix framework, the crux of the Bayesian inversion
task are its representational demands, which are reflected in
its computational complexity. Even when fully understanding
the information provided and the question asked, solving the
standard mammography problem requires two representational
shifts: Reversing an implicit perspective and pivoting to an
alternative perspective.

As a second contribution, our model partially explains why
expressing the problem in the standard frequency format makes
its solution much easier. We propose two representational
reasons for the facilitative effect of natural frequencies on
Bayesian inference. First, let us assume that the four basic
frequencies (a–d) are framed as a 2×2 matrix (as in
Figures 4I, 6I). Given this matrix, the desired PPV p(C |T) can
be derived in a straight-forward manner—by focusing on the top
row (i.e., women with a positive test result T) and computing
the ratio a

a+b . Arithmetically, this operation is identical to the
computationally simple solution based on a natural sampling
process (e.g., Gigerenzer and Hoffrage, 1995; Hoffrage et al.,
2000, 2002). Comparing the representational complexity of this
process to the one outlined for the probability format reveals
a stark contrast: Instead of reversing an implicit perspective
before switching to another, we only need to adopt a single
right perspective on the 2×2 matrix. But what if natural
frequencies are not already framed neatly in 2×2 matrix form?
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TABLE 3 | Definition of metrics and corresponding formulas based on the 2×2 matrix, and alternative names in different domains or disciplines.

Formula
Icon

Measure

Frequencies Probabilities Classification/Diagnostics Alternative names Treatment/Risk

Hits oz

a N · P(X ∩ Y )
a b

c d

TP True positives ghj lnr tαβ γ ǫ

Support δ

FA False Alarms oz

b N · P(¬X ∩ Y )
a b

c d

FP False positives ghlnrtαβ γ ǫ θ

Type I error q

Misses oz

c N · P(X ∩ ¬Y ) a b

c d

FN False negatives ghj lnr tαβ γ ǫ θ

Type II error q

F
re
q
u
e
n
c
ie
s

d N · P(¬X ∩ ¬Y )
a b

c d
TN True negatives ghj lnr tαβ γ ǫ CR Correct rejections o

a+c
a+b+c+d P(X )

a b

c d
prev Prevalence (X ) r tαβ γ ι Generality d prevX Prevalence/incidence (X ) rsyαζ

Response/Label bias t
a+b

a+b+c+d P(Y )
a b

c d

bias Bias o

SR Success rate z
Prevalence/incidence (Y )

Overall correct classification γ

M
a
rg
in
a
l

a+d
a+b+c+d P(Z) = P((X ∩ Y ) ∪ (¬X ∩ ¬Y )) a b

c d

ACC Accuracy ghltβ

diagnostic effectiveness β

TPR True positive rate lnotǫ

HR Hit rate lo
AR+ Absolute risk (+) cs

Recall dhl twǫ
a

a+c P(Y |X ) a b

c d

sens Sensitivity lnr tαβ γ ǫ ι

1− β Power mr
EER Experimental event rate x

b
b+d P(Y |¬X ) a b

c d

FPR False positive rate l t

FAR False alarm rate oz

AR− Absolute risk (−)
Fallout htw

α Significance level mr CER Control event rate x

Miss rate o
c

a+c P(¬Y |X ) a b

c d

FNR False negative rate j t

β

d
b+d P(¬Y |¬X ) a b

c d

spec Specificity lnr tαβ γ ǫ ι

TNR True negative rate notǫ

Inverse recall t

C
o
n
d
it
io
n
a
l
o
n
X
/c
o
lu
m
n

1− α

Precision dhlǫ

Confidence ta
a+b P(X|Y ) a b

c d

PPV Positive predictive value nrβ ǫ ι

PPP Positive predictive power γ

b
a+b P(¬X|Y )

a b

c d
FDR False discovery rate e

c
c+d P(X|¬Y )

a b

c d
FOR False omission rate j

P
ro
b
a
b
il
it
ie
s

C
o
n
d
it
io
n
a
l
o
n
Y
/r
o
w

d
c+d P(¬X|¬Y )

a b

c d
NPV Negative predictive value nrβ γ ǫ ι Inverse precision t spec Specificity α
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TABLE 3 | Continued

Formula
Icon

Measure

Frequencies Probabilities Classification/Diagnostics Alternative names Treatment/Risk

TS Threat score z
a

a+b+c P(X ∩ Y |X ∪ Y )
a b

c d

Jaccard index wη

CSI Critical success index z

Dice coefficient t
2a

2a+b+c 2 · P(X|Y ) · P(Y |X )
/

(

P(X|Y )+ P(Y |X )
) a b

c d

F1 F1 score l tη

PS+ Proportion of specific agreement t

T
ri
a
n
g
u
la
r

a√
(a+b)(a+c)

√

P(X|Y ) · P(Y |X ) = P(X ∩ Y )
/

√

P(X ) · P(Y )
a b

c d
G G(2) score tη Cosine δ

(a+b+c+d)·a
(a+b)(a+c) P(X ∩ Y )

/

(

P(X ) · P(Y )
) a b

c d
Lift f Interest δ

M
ix
e
d

ad−bc
(a+b+c+d)2 P(X ∩ Y )−

(

P(X ) · P(Y )
) a b

c d
Piatetsky-Shapiro’s rule-interest δ

a
a+c − b

b+d = ad−bc
(a+c)(b+d) P(Y |X )− P(Y |¬X ) a b

c d

1PC Contingency (columns) bt

BI (Bookmaker) Informedness t
ARR Absolute risk reduction vζ

ARI Absolute risk increase c

Attributable risk s

J Youden’s index nβ θ
Risk difference s

Uplift u

NNT Number needed to treat a
(a+c)(b+d)
ad−bc

1
/(

P(Y |X )− P(Y |¬X )
)

a b

c d

NNH Number needed to harm c

(

ad−bc
(a+c)(b+d) + 1

)/

2
(

P(Y |X )− P(Y |¬X )+ 1
)

/

2
a b

c d
BACC Balanced accuracy g

RRR Relative risk reduction svζ
ad−bc

(a+c)(b+d)

/

b
b+d = ad−bc

ab+bc
(

P(Y |X )− P(Y |¬X )
)

/

P(Y |¬X ) a b

c d

RRI Relative risk increase c

MK Markedness t
a

a+b − c
c+d = ad−bc

(a+b)(c+d) P(X|Y )− P(X|¬Y ) a b

c d

1PR Contingency (rows) bt

E Difference coefficient i

2·(ad−bc)
(a+b)(c+d)(a+c)(b+d)

P((X∩Y )∪(¬X∩¬Y ))
P(X )·P(Y )+P(¬X )·P(¬Y )

a b

c d
κ Cohen’s Kappa ptγ

r Correlation coefficient p
ad−bc√

(a+b)(c+d)(a+c)(b+d)
√

P(Y |X )− P(Y |¬X ) ·
√

P(X|Y )− P(X|¬Y ) a b

c d

MCC Matthews correlation coefficient bt

Root mean square contingency i
φ Phi coefficient tγ

D
if
fe
re
n
c
e
-b

a
s
e
d

(a+b+c+d)(ad−bc)2

(a+b)(c+d)(a+c)(b+d) N ·
(

P(Y |X )− P(Y |¬X )
)(

P(X|Y )− P(X|¬Y )
) a b

c d
χ2 Contingency krt Test for independence
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TABLE 3 | Continued

Formula
Icon

Measure

Frequencies Probabilities Classification/Diagnostics Alternative names Treatment/Risk

cs Class ratio t
a+c
b+d P(X )/P(¬X ) a b

c d

Pre-test/prior odds r tγ

Skew d
Odds yζ

a
b P(X|Y )/P(¬X|Y )

a b

c d
Post-test odds (+) rγ

S
im

p
le

c
d P(X|¬Y )/P(¬X|¬Y )

a b

c d
Post-test odds (−) r

RR+ Relative risk csxy
a

a+c

/

b
b+d = ab+ad

ab+bc P(Y |X )/P(Y |¬X ) a b

c d

LR+ Positive likelihood ratio norβ γ ι Neyman-Pearson test m

Risk ratio y

c
a+c

/

d
b+d = bc+cd

ad+cd P(¬Y |X )/P(¬Y |¬X )
a b

c d
LR− Negative likelihood ratio noβ γ ι

Odds ratio η OR Odds ratio orxyγ ζ
ad
bc = ad−bc

bc + 1 P(Y |X )·P(¬Y |¬X )
P(Y |¬X )·P(¬Y |X ) =

P(X∩Y )·P(¬X∩¬Y )
P(¬X∩Y )·P(X∩¬Y )

a b

c d

DOR Diagnostic odds ratio npβ

Cross ratio i ψ̂ Approximate relative risk k

ad−bc
ad+bc

DOR−1
DOR+1

a b

c d
Q Yule’s Q ipδη

O
d
d
s

R
a
ti
o
s

√
ad−

√
bc√

ad+
√
bc

√
DOR−1√
DOR+1

a b

c d
Y Yule’s Y ipδη

Colors in icons represent arithmetic operations: •
• ;

•
• − •

• ;
•
•

/ •
• . Yellow icons (•, •, •, • and •) indicate more complex calculations, often combining perspectives, as shown in Figure 6. Note that many measures of contingency can be

formulated as scaling the determinant (i.e., ad− bc) of the 2×2 matrix. Superscripts denote the following references: aAkobeng (2005), bAllan (1980), cAndrikopoulou and Morgan (2017), dBaeza-Yates and Berthier (2011), eBenjamini
and Hochberg (1995), fBrin et al. (1997), gBrodersen et al. (2010), hChicco (2017), iEdwards (1963), jErman et al. (2012), kEveritt (1977), lFawcett (2006), nGlas et al. (2003), mGigerenzer et al. (2004), oGreen and Swets (1974),
pHasenclever and Scholz (2016), qHowell (2013), rMassart et al. (1998), sNoordzij et al. (2017), tPowers (2011), uRadcliffe and Surry (2011), vRanganathan et al. (2016), wRijsbergen (1979), xSackett et al. (1996), ySauerbrei and Blettner
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Interestingly, assuming the absence of a 2×2 structure may
render the adoption of the right perspective even easier. Our
second representational reason for the higher likelihood of
correct solutions when expressing the problem in the standard
frequency format considers the identities and semantics of the
joint frequencies provided. Note that the problem statement
explicitly provides only two of four joint frequencies: a = 8
and b = 95. The semantic category shared by these frequencies
is T (i.e., women with a positive test outcome). Noticing
this common element is the mental equivalent of adopting a
by row perspective on the 2×2 matrix, or constructing an
hierarchical tree that uses the Test outcome dimension as its
first branching criterion. (As we will see in Figure 7B, adopting
this perspective essentially solves the problem.) Thus, framing
the joint frequencies as a 2×2 matrix facilitates the solution
by requiring fewer perspective changes than starting from two
conditional probabilities and a prior. And providing only the
two joint frequencies that need to be combined for deriving
the correct solution may even act like a mental nudge into the
right direction.

Given abundant evidence for the facilitative effects of natural
frequencies on Bayesian reasoning, a puzzling finding from
decades of research is that about 75% of the participants facing
such problems still fail to provide the correct solution (McDowell
and Jacobs, 2017). Thus, a very good question (raised by
Weber et al., 2018) is: Why is Bayesian reasoning in frequency
formats still so difficult? Our third contribution builds on the
previous two and provides an analytic answer to this question.
As we have seen, the mammography problem in its standard
probability format provides sufficient information for applying
Bayes’ theorem or for translating the problem into an alternative
representation using natural frequencies. By specifying the
cancer prevalence p(C), the test’s sensitivity p(T |C), and its false
positive rate p(T |¬C), the three measures typically provided
adopt a by column perspective on a 2×2 matrix framed by
True condition as its Dimension X (see Figures 4, 6). As a
consequence, reconstructing the frequency matrix from the
probabilities provided implies building a hierarchical tree that
first dissects the population by True condition before branching
by Test outcome (see Tree A of Figure 7, which shows provided
probabilities as blue edges). Importantly, expressing the problem
in the standard frequency format provides five key nodes of the
same tree (in green and in red). Thus, although the underlying
problem structure actually enables three 2×2 matrices and
six hierarchical trees (see Figure 5), the only tree that can
directly be constructed from the provided information splits the
population by True condition (i.e., adopts a by column perspective
on the matrix). By contrast, the PPV measure solving the
problem adopts a by row perspective on the same matrix. Hence,
instructing a representation of Tree A for computing the PPV
still requires a change in perspective: Rather than combining
tree leaves by True condition, they must be combined by Test
outcome (to see that the number of women with positive tests
is 8 + 95 = 103). Making this change effectively constructs an
alternative tree that corresponds to adopting a by row perspective
on the 2×2 matrix (see Tree B of Figure 7, which explicitly
represents both frequencies required for computing the PPV

in red). Importantly, both trees are perfectly transparent, but
with respect to different tasks. Both standard formats instruct
Tree A which transparently represents the information provided
by the problem. The task remains difficult because its solution
is not obvious in this representation—only Tree B adopts the
perspective required for deriving the PPV and thus provides
a transparent representation of the task’s solution. Thus, our
geometric analysis shows that Bayesian reasoning is and remains
vexing as long as it requires a crucial representational shift
between problem statement and solution. Even when expressing
the Bayesian problem in terms of natural frequencies, the
perspective implicitly adopted by the provided information has
problem solvers, metaphorically, and literally, barking up the
wrong tree. Taking (Simon, 1981) seriously, we suggest: By
making the problem’s solution transparent, the right tree solves
the problem.

Accepting this insight raises an intriguing conundrum: If the
crux of Bayesian problem solving consists in the representational
shift, what remains when we provide people with a transparent
representation of the solution? Removing the need for a
perspective change essentially dissolves the Bayesian aspect of the
original problem3. Thus, it should not surprise us that providing
participants with the crucial elements of Tree B (as in the short
menu formats by Gigerenzer and Hoffrage, 1995) or both trees
(as in the double tree by Wassner, 2004) improves the likelihood
of correct solutions. What should surprise us, however, is that
their rate fails to reach 100%. Based on our representational
analysis, instructing the problem in a short menu format (or
one of its visual analogs) essentially tests participants’ ability
to recognize the solution when its key elements are provided
to them. As the term “facilitation effect” seems misleading in
the absence of a Bayesian problem, it may be more appropriate
to view this experimental condition as providing an upper
performance benchmark (in the sense of Neth et al., 2016), which
assess people’s ability or willingness for deriving and reporting
a conditional probability when the representational demands of
the Bayesian problem have been removed. The empirical finding
that the solution rates in conditions with short menu formats
only rise by about 12% (McDowell and Jacobs, 2017) suggests that
participants suffer from additional difficulties that prevail beyond
the representational demands of Bayesian reasoning (e.g., lack of
comprehension, motivation, or numerical skills. See Brase, 2009a;
Ferguson and Starmer, 2013; Weber et al., 2018, for suggestions).

Figure 8 summarizes our arguments on the representational
demands of Bayesian reasoning and the facilitation effects
of natural frequencies and short menu formats. Beyond the
computational differences (shown in the lower right panel),
the information provided by the problem and the perspectives
required and suggested for solving it differ substantially between
the three problem versions. The probability format (Figure 8I)
mixes a marginal probability and two conditional probabilities
that both adopt a by column perspective. The two joint
probabilities of the 2×2 matrix containing probabilities (marked

3In technical terms, providing p(T) and p(C ∩ T)—or the corresponding joint
frequencies—no longer requires Bayes’ theorem for computing the posterior
probability p(C|T) from a prior p(C) and the likelihoods p(T|C) and p(T|eg C).
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FIGURE 7 | A 2×2 matrix of the mammography problem and two trees resulting from adopting a by column vs. a by row perspective on it. Computing the PPV from

natural frequencies for a population of N = 1, 000 women requires realizing that 8 out of 103 women with a positive test result also have cancer. Irrespective of its

format, the information provided by the Bayesian problem (probabilities in blue, frequencies in green or red) only allows the direct construction of Tree A. However, only

Tree B explicitly represents both frequencies required for solving the task (in red). Thus, while Tree A provides a transparent representation of the problem, Tree B

renders its solution transparent.

as missing parts of the Solution in Figure 8) are necessary
for solving the problem, but first need to be computed from
the probabilities provided. The natural frequencies format
(Figure 8II) presents information in the same (by column)
perspective as the probability format (as indicated by the
vertical arrows), but provides frequencies instead of probabilities.
Reducing this difference to a mere change in representational
format ignores the representational differences between both
panels. Figure 8II renders it obvious why the problem’s solution
is facilitated: The two joint frequencies that are explicitly
mentioned in the problem are also required for computing its
solution and suggest the right by row perspective. Finally, the
short frequencies format (Figure 8III) abandons the by column
perspective of the other panels. By providing a joint and
a marginal frequency, the alternative by row perspective is
suggested and implies the solution. Especially if the answer
asks for frequencies (i.e., 8 out of 103), the short frequency
format essentially becomes a search task that does not require
any calculation.

To clarify, our representational account does not compromise
the key argument of Gigerenzer and Hoffrage (1995), who
demonstrate the facilitative effects of frequency formats
on Bayesian reasoning. But whereas previous authors saw
the benefits of short menu formats primarily in reducing
computational complexity (e.g., Ferguson and Starmer, 2013;
Fiedler et al., 2000; Mellers and McGraw, 1999), we argue that
removing the need for a perspective change fundamentally

alters the problem. Whereas, natural frequencies only facilitate
performance by implying a more goal-directed representation
of the Bayesian problem, the short menu format suggests
this alternative perspective, thereby explicating the problem’s
solution in a transparent fashion. Despite these contributions,
any attempt to explain all existing data solely on the structure
of a 2×2 matrix would inevitably fall short, as its geometry
remains silent about the difference between joint frequencies
and joint probabilities (i.e., Figures 4I,II, 6I,II). Studies
demonstrating the impact of representation formats (e.g.,
Sedlmeier and Gigerenzer, 2001; Brase, 2008) and the relevance
of analytical abilities (e.g., Sirota et al., 2014) show that
representation format, problem content and context, and
individual differences jointly matter for performance in
Bayesian reasoning.

Our analysis has both theoretical and practical implications
for investigations of Bayesian reasoning. Theoretically, our
account is compatible with the basic tenets of nested-sets
theory, which claims that Bayesian inference is facilitated by
rendering certain subset relations and their reference classes
more transparent (e.g., Mellers and McGraw, 1999; Sloman
et al., 2003; Yamagishi, 2003; Barbey and Sloman, 2007). But
advocates of nested-sets theory have been criticized that “the
mechanism by which the subset structure is revealed has not
been specified. Nor is it clear how the joint event formats
help participants to visualize the nested structure.” (McDowell
and Jacobs, 2017, p. 1293). By contrast, our model provides
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FIGURE 8 | A matrix-based account explicating the difficulty of Bayesian reasoning and two types of facilitation effects (on the example of the mammography
problem, as studied by Gigerenzer and Hoffrage, 1995, p. 688). (Color coding and lowercase letters next to arrows in Panels I–III refer to the problem descriptions in

the three formats shown in Table 1.)

concrete suggestions how specific sets are made accessible (by
filtering and framing) and how subset structures are revealed
(by focusing on different parts of a shared representational
structure). In fact, our notion of adopting particular perspectives
provides a mechanism that explains why some formats or
menus facilitate the problem’s solution more than others:
Given a 2×2 matrix, both natural frequencies and short
menu formats enhance the salience of the perspective that
renders the problem’s solution transparent. Various authors
have expressed similar ideas—see, for instance, the notion of
backward reasoning by Johnson and Tubau (2015), the problem-
representation transfer hypothesis by Sirota et al. (2015), or ideas
on the importance of task-compatible reference classes by Ayal
and Beyth-Marom (2014) and Talboy and Schneider (2018)—
but anchoring their hypotheses in a structural account makes
these notions more specific and concrete. Finally, the apparent
discord between natural frequencies and a nested-sets account
dissolves within our model: Natural frequencies are an implicit
result of filtering and framing (see sections 2.1, 2.2). Nested-
sets theory describes how natural frequencies are selected and
explicated, which our model depicts as particular ways of focusing
(section 2.3).

As a practical implication, our representational account
appoints a key role to the systematic study of visualizations for
improving Bayesian reasoning. Researchers in both visualization
(e.g., Cleveland and McGill, 1985; Ziemkiewicz and Kosara,
2010) and psychology (e.g., Talboy and Schneider, 2017;
Böcherer-Linder and Eichler, 2019) agree that proportional

visual mappings are essential for providing useful visual aids.
However, our analysis suggests that experimental designs should
move beyond comparing performance with and without visual
aids (e.g., Brase, 2009b; Garcia-Retamero and Hoffrage, 2013)
or contrasting seemingly haphazard selections of graphical
representations (e.g., Micallef et al., 2012; Khan et al., 2015). As
a comprehensive study of visualizations for Bayesian reasoning
is still lacking, existing classifications of visual representations
are typically described as collections of examples (e.g., Binder
et al., 2015, Figure 1, p. 3; McDowell and Jacobs, 2017,
Figure 2, p. 1283; and Böcherer-Linder and Eichler, 2019,
Figure 3, p. 3). Although some noteworthy structural accounts
of visualizations exist (e.g., Khan et al., 2015; Böcherer-
Linder and Eichler, 2017, 2019), they were mostly framed
in terms of nested-sets. Lacking the mechanisms of adopting
particular perspectives on a shared representation, they could
not benefit from the three-dimensional structure underlying
all Bayesian reasoning problems (see Figure 5) or justify why
some representations are privileged, while others are mis-
leading. As we have shown (in sections 2, 3), contrasting
different visualization types risks comparing apples with oranges
(e.g., a 2×2 matrix with two optional perspectives, with
the particular perspective of a tree or unit square). To
be aware of such categorical distinctions, we must always
specify: Which particular version of each visualization is being
shown? A methodological consequence of our model is that
researchers can identify a visualization’s exact role: Which
problem representation does it imply and which perspective
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does it adopt or suggest? Does a visualization merely explicate
the information provided by the problem, or does it show
the problem’s solution? By mapping particular aspects of the
Bayesian problem space to specific visual features, future studies
of visual aids can measure the interplay between the task’s
psychological demands, visual features of representations, and
viewers’ background knowledge and graphical literacy much
more precisely.

5.2. Perspectives on Bayesian Brain
Teasers
Psychology has a long tradition of studying Bayesian problem
solving with toy tasks that serve as entertaining brain teasers
and appear to show people’s inability for straight thinking (e.g.,
Kahneman and Tversky, 1973; Bar-Hillel, 1980; Bar-Hillel and
Falk, 1982). Such tasks let probabilistic events unfold within some
narrative and lure most naïve participants into providing an
intuitive, but false solution.

To demonstrate the generality of our model, we first use it
to explicate another notorious instance of base rate neglect (e.g.,
Kahneman and Tversky, 1973; Tversky and Kahneman, 1974).
A famous problem in this area is the cab problem (originally
introduced by Kahneman and Tversky, 1972a, and extensively
analyzed by Bar-Hillel, 1980; Birnbaum, 1983; Macchi, 1995):

A cab was involved in a hit-and-run accident at night. Two
cab companies, the Green and the Blue, operate in the city.
You are given the following data:

1. 85% of the cabs in the city are Green and 15% are Blue.
2. A witness identified the cab as a Blue cab. The court

tested his ability to identify cabs under the appropriate
visibility conditions. When presented with a sample
of cabs (half of which were Blue and half of which
were Green) the witness correctly identified each color
in 80% of the cases and erred in 20% of the cases.

What is the probability that the cab involved in the
accident was Blue rather than Green?

This problem description provides base-rate information [i.e., the
prevalence of both types of cabs: p(Green) = 0.85, p(Blue) =
0.15], diagnostic information (i.e., the reliability of the witness
testimony: p(blue |Blue) = p(green |Green) = 0.80), and asks
for an inverse conditional probability (i.e., p(Blue |blue)). The
problem’s correct solution is 41%, but the median and mode of
participants’ answers in empirical studies is 80%, thus coinciding
with the credibility of the witness and appearing to neglect the
base rate information.

The problem information can be used to frame a 2×2 matrix
that cross-tabulates an actual condition (Was the cab Blue or
Green?) with two alternative witness testimonies (Does the witness
report a blue or green cab?). Figure 9 locates the details provided
by the problem (shown in blue) in our explanatory framework.
This reveals the close correspondence of the cab problem to
the mammography problem (see Figure 4). Again, the provided
conditional probabilities (in Figure 4III) adopt a by column
perspective on an implicit 2×2 matrix that can be reconstructed
by multiplying each condition’s specific information (i.e., the

sensitivity and specificity of the witness) by the corresponding
base rates (for Blue vs. Green cabs). Geometrically, solving the
problem by Bayes’ theorem requires first reversing the implicit
by column perspective (to compute the joint probabilities of
Panel I) and then adopting an orthogonal by row perspective (to
derive the desired conditional probability p(Blue |blue), shown
in red, and corresponding to the mammography’s PPV).

Interestingly, this analysis reveals two distinct rationales for
erroneously answering 80%. First, participants could divide the
top-left cell by the row sum, but erroneously use the conditional
probabilities (of Figure 4III), rather than the unconditional
probabilities (of Figure 4I). This error of false inputs (E1)
explicates the essence of base rate neglect as performing the
right calculation with the wrong inputs. A merely informal
account of this notion could easily confuse it with another
error, which also ignores all base rates. This second error fails
to distinguish p(Blue |blue) from its inverse p(blue |Blue) and
reports the testimony’s sensitivity or specificity as the desired
answer. Mistakenly reporting a false measure (E2) as the solution
has been labeled as an inverse fallacy (Eddy, 1982; Koehler,
1996) and attributed to using a Fisherian algorithm (Gigerenzer
and Hoffrage, 1995) or representative thinking (Dawes, 1986;
Zhu and Gigerenzer, 2006). The prominent hypothesis that a
representativeness heuristic, which uses similarity or the degree
of correspondence of an instance to a category as a proxy for
judging its probability, may cause and explain the observed errors
(Kahneman and Tversky, 1972b, 1973), has been criticized as
overly narrow and vague (Gigerenzer, 1991, 1996). As accounts
of representativeness typically invoke notions of saliency and
correspondence, they can be consolidated with our structural
attempt for rendering task representations and problem solutions
more obvious. The fact that our model is much narrower
than an arguably vague notion may actually be a benefit: Not
only does it allow us to pin-point the precise location of
potential errors, but also offers a new role for representativeness
as explaining why people preferentially adopt the mis-leading
by column perspective.

Our framework can accommodate problems that feature more
than two options. For instance, the three-door or Monty Hall
problem (Selvin, 1975; vos Savant, 1990) is named after a TV show
in which a contestant faces a choice between three doors (D1–
D3). Behind one random door lurks the grand price of a car,
whereas each of the other two doors conceals a goat. After
the contestant selects a door (e.g., D1), the host (who knows
all objects’ locations) opens another door (e.g., D3) to reveal a
goat. The question whether the contestant should now switch
to the other door (D2) has sparked an intense public debate
and inspired extensive studies (e.g., Granberg and Brown, 1995;
Krauss and Wang, 2003; Baratgin, 2009).

Explicating the Monty Hall problem by our model extends
the previous examples in two ways: First, accounting for a
probabilistic task with three options renders the mapping from
narrative to diagnostic scenario more challenging. Second, the
standard two-door scenario of the problem (in which the host
reveals a goat and the contestant thus seems to face a choice
between two remaining doors, Krauss and Wang, 2003) departs
from the problems discussed so far by requiring that the interplay
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FIGURE 9 | The cab problem (Kahneman and Tversky, 1972a) corresponds closely to the mammography problem by providing base rate information [e.g., the

prevalence of p(Blue) = 0.15] and two types of diagnostic information (p(blue|Blue) = p(green|Green) = 0.80, indicating the testimony’s sensitivity and specificity). The
problem’s solution is p(Blue|blue) = 0.41, which is the inverse conditional probability of the given sensitivity p(blue|Blue) = 0.80, and corresponds to the PPV of the

mammography problem. The analysis explains the problem’s difficulty and reveals two ways of erroneously answering 80% (E1 vs. E2) that explicate the informal

notions of base rate neglect and representativeness. Panel I contains probabilities, whereas Panels II and III contain conditional probabilities. (Blue cells mark

Blue cabs; shaded cells mark testimonies of “blue”; red areas mark potential errors; yellow areas highlight the solution’s perspective.)

between the situation and the host’s options must be taken into
account. Figure 10 depicts the standard scenario as a 3×3matrix
(on the left): Its X-dimension denotes the three possible locations
of the car (C1–C3) and its Y-dimension denotes the three doors
that the host can open (D1–D3). Figure 10I indicates the number
of possible cases as the host’s options for opening doors given
the contestant’s initial choice and the car’s actual location. As
there are N = 3! = 6 possible arrangements of a car and
two distinct goats and each car location is equiprobable (i.e.,
U{C1,C2,C3}), each column contains two cases. If the contestant
initially selects D1, only D2 or D3 can be opened. Which of
these doors is opened depends mostly on the car’s location: If the
car is at C2 or C3, the host must open D3 or D2, respectively,
to reveal a goat. If the car is at C1, both D2 or D3 hide goats
and could be opened, but we assume that the host has no
preference and hence opens both doors equally often in those
cases. The lower 3×3 matrix (Figure 10III) expresses the same
setup in terms of probabilities that are conditionalized on car
location (i.e., by column). Whereas, only the host can know
which of the four possible combinations (i.e., non-zero cells in
Figures 10I,III) is realized in an actual game, a savvy contestant

could reconstruct all possible cases and their probabilities from
the problem description. But even if an appropriate matrix is
framed, a crucial element for solving the problem consists in
adopting the right perspective on it.

To further clarify the contestant’s dilemma, we frame the
initial 3×3 matrix as a 2×2 matrix that collapses C2 and C3 into
one column (to only distinguish C1 from C2∨3) and removes the
impossible row D1 (Figure 10II). As in our previous examples,
we can now adopt a by row or a by column perspective on this
matrix. The problem’s solution is derived by conditionalizing C1

on the identity of the opened door (i.e., by row). Using either
a 3×3 or the 2×2 matrix (Figures 10I–III), this shows that
p(C1 |D3) = p(C1 |D2) = 1

3 . Thus, the conditional probability
that the car is at C1 given that either D3 or D2 has been
opened is identical to its original probability p(C1) = 1

3 . By
contrast, adopting the same perspective on any alternative door
shows that p(C2∨3 |D2) = p(C2∨3 |D3) = 2

3 , implying that the
contestant should switch in both cases.

Although switching doors would double the contestant’s
chances for winning the car, 87% of naïve participants prefer
to stick with their initial choice (Granberg and Brown, 1995).
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FIGURE 10 | Explicating the Monty Hall problem (vos Savant, 1990) in its standard two-door scenario (Krauss and Wang, 2003). The 3×3 matrices map three

equiprobable car locations (C1–C3) to the three doors that the host can open (D1–D3) and depict all possible combinations after the contestant selects D1 in terms of

frequencies (I) and conditional probabilities (III). Removing the distinction between C2 and C3 and the impossible row D1 frames a 2×2 matrix that illustrates the

contestant’s dilemma (II). Adopting a by row perspective yields the solution p(C1 |D3)= 1
3 and p(C2∨3 |D3)= 2

3 , indicating that the contestant should switch doors.

Adopting a by column perspective on the same matrix yields p(Di |Cj ) = .50 for all combinations (IV), indicating that conditionalizing the host’s action on the car’s

location is uninformative. The fact that three potential errors (i.e., false framing, E1, false inputs, E2, and reporting a false measure, E3) all yield the same erroneous

value of 50% explains why this false intuition is so compelling. (Blue cells mark the contestant’s initial choice; red areas mark potential errors; yellow areas highlight the

solution’s perspective.)

A key argument for their inertia is the intuition that the host’s
elimination of a losing option creates a new situation that implies
a 50–50 chance of winning with each of the remaining doors. This
uniformity belief (Falk, 1992, p. 202) ignores that the host’s action
depends on both the contestant’s choice and the car’s location
and falsely assumes that the game is re-set after a goat has been
revealed (see Baratgin, 2009, for an analysis of this updating
interpretation). In our model, the false assumption of two equi-
probable options (i.e., U{C1,C2∨3}) would frame an erroneous
2×2 matrix in which all cell values were equal. As such a matrix
would fail to reflect the actual situation, we refer to this error
as false framing (E1). Once such a misleading 2×2 matrix has
been framed, the illusion that the chance of winning is 50% for
either option is inevitable, as it would follow from adopting any
arbitrary perspective on it.

Interestingly, our analysis shows two additional options for
the same conclusion. Adopting a by column perspective on the
correct 2×2 matrix (Figure 10II) yields a 2×2 matrix that
contains values of 0.50 in all of its cells p(Di |Cj) (Figure 10IV).
This essentially means that the door opened by the host is an
uninformative diagnostic test when conditionalizing on the car’s
location (by column), rather than on the identity of the open
door (by row). Assuming this unhelpful perspective on a correct
2×2matrix, the error of false inputs (E2) would perform the right

calculation on the wrong inputs and constitute another instance
of base rate neglect. Similarly, computing the inverse of the
actually relevant conditional probability [i.e., p(D3 |C1), rather
than p(C1 |D3)] would report a false measure (E3) and could
be described as an inverse fallacy or resulting from a Fisherian
algorithm or representative thinking (see above). However, the
fact that all of these errors yield the same value of 50% may
explain why this false intuition is so compelling.

Having explicated three notorious problems of Bayesian
reasoning by our framework, we trust that analogous accounts
could illuminate related problems—like the engineer-lawyer
problem (Kahneman and Tversky, 1973), the conjunction fallacy
(Tversky and Kahneman, 1983), or the three-prisoners problem
(Falk, 1992)—and more remote phenomena, like the class-
inclusion task (Politzer, 2016), or Simpson’s paradox (Simpson,
1951). Our model explains their difficulty by the interplay of
two factors: (a) the challenge of constructing an appropriate
problem representation, and (b) a discrepancy between an
implicit perspective adopted by the problem information and
the perspective required for the solution. The first obstacle lies
in framing an appropriate 2×2 matrix. This is particularly
challenging when the problem involves three or more options
that obscure the binary nature of the underlying diagnostic
test. But even if an appropriate 2×2 matrix has been framed,
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the specific information provided by the problem can still
be misinterpreted or may shift the reasoner’s focus into a
misleading direction. A purely analytic account can reveal
and distinguish between potential errors, but not disentangle
them any further. While adopting the right perspective on an
appropriate representation may also make a problem’s solution
transparent, our model’s main purpose consists in explicating
problems structures and pinpointing potential errors, rather than
resolving them.

Despite their theoretical appeal and practical ramifications,
textbook problems of Bayesian reasoning require only a small
part of our overall framework. In fact, the scope of the matrix
lens model also extends beyond the domain of classification
and clinical diagnostics that comprise the majority of measures
defined in Table 3. To illustrate its generality, we now address a
pertinent question raised in our introductory example.

5.3. Perspectives on Surviving the Titanic
When using the population of Titanic passengers to illustrate the
initial steps of ourmodel (in sections 2.1, 2.2), we evaded themost
obvious question: Who survived the disaster? A more nuanced
version of this query would aim to identify factors that contribute
to a passenger’s survival. Given that an emergency protocol
known as the Birkenhead drill demands the preferential rescue
of women and children when abandoning a ship, a seemingly
straightforward question would ask: Were women and children
successfully rescued first?

Before addressing this question, we need to prohibit two
simplistic answers. For instance, a categorical interpretation of
the drill would require that all women and children must be
saved prior to rescuing any adult male. However, given that the
disaster killed over two thirds of the ship’s population (67.7%,
see Figure 3), demanding that the victims must not contain
a single female or child seems overly conservative. Similarly,
adopting a continuous approach but merely counting the victims
or survivors per group would ignore their base rates, which
are heavily skewed toward adults and males. Rather than
comparing the frequencies of individual cells, our model should
enable us to derive a comprehensive measure that provides a
quantitative answer to the question: To what degree was the
policy implemented? Interestingly, this is surprisingly difficult
and implies making several choices that substantially shape
our answer.

Our analysis assumes a binary grid of the Titanic’s population
(see section 2.1) and begins by framing an appropriate
2×2 matrix (section 2.2). Although Figures 3A–C provide three
alternative perspectives on the three-dimensional Titanic data,
none of them allows answering our question. For rather than
expressing Survival as a function of Age (Figure 3B) or Sex
(Figure 3C), measuring the drill’s success requires a 2×2 matrix
that collapses female adults and children of both sexes into a
combined Rescue category and contrasts their Survival status with
that of male adults. This matrix can be constructed from the
binary grid and is shown in Figure 11. Evaluating this matrix
is a matter of perspective: For an individual of either group,
being Alive is certainly better than beingDead. However, viewing
the 2×2 matrix from the drill’s normative angle implies that

saving a female or child is preferable to saving a male adult. If
there are victims among female and children, any adult male
survivor may face misgivings. Due to this constellation, the
diagonal of the 2×2 matrix does not denote accuracy, but rather
whether a category combination can or cannot conflict with the
policy. Our model’s crucial step of focusing (section 2.3) adopts a
particular perspective on the 2×2matrix to derive ameasure that
captures the desired aspect. To illustrate that this step includes
important choices, we adopt two distinct perspectives:

1. Comparing survival rates: To control for the base rates of
both Rescue categories, we adopt a by column perspective
on the 2×2 matrix and compute each group’s chances
of survival (see the measures of absolute risk, AR, in
Table 3). This reveals that the survival rate of male adults
was only 20%, whereas the survival rate among women
and children was 70% (or mortality risks of 80 and 30%,
respectively). The difference between both risks can be
expressed as an absolute risk reduction (ARR) of 50% for
women and children or—possibly inflating the effect—
as an increase of the relative survival rate of women
and children by a factor of 2.5 (relative to adult males).
As relative risks are notoriously misleading (Gigerenzer
et al., 2007), simply contrasting the absolute magnitude
of both survival rates suggests that women and children
were prioritized.

2. Computing odds for conflict cases: An alternative perspective
on the same matrix directly contrasts the cells that can
conflict with the rescue policy. Re-framing the matrix
arranges it so that its former diagonals form its rows.
Focusing exclusively on the top row contrasts 161 women
and children who died with 338 adult men who survived.
Importantly, the larger number of the latter group implies
that there was sufficient rescue capacity for saving allwomen
and children. Computing the odds between both numbers
reveals that for any dead woman or child there were 2.1 seats
in lifeboats occupied by adult men. Although the magnitude
of this value seems similar to the relative risk factor of 2.5
(in 1), it points in the opposite direction and suggests that
women and children were not prioritized.

Obtaining two results with opposite conclusions presents us with
a puzzle: Which answer is correct? Actually, as either result
is incomplete, rather than wrong, both results together allow
for a more balanced assessment of the rule’s success: While
women and children survived at a considerably higher rate
than male adults, a better allocation of seats in lifeboats would
have boosted their survival chances even further. Interestingly,
each individual result could easily be mistaken as the only
one and be used to mislead people. By accurately reflecting a
particular aspect of the problem, each result obscures the original
information and prevents an alternative perspective. Especially
when only communicating the value of some cryptic measure and
showing a seemingly informative, but decidedly non-transparent
visualization (see Figures 11A,B), the manipulative potential of
any such analysis is substantial.

The lesson to be learned here is not to stop analyzing data
or to avoid drawing conclusions. Instead, we must learn to
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FIGURE 11 | Applying the matrix lens model to evaluate whether women and children on the Titanic were successfully rescued first. Any answer depends on the

policy’s interpretation and the perspectives adopted on the data. Comparing survival rates between groups suggests that women and children received preferential

treatment, but computing row odds for cases in conflict with the policy supports the opposite conclusion. Presenting only one measure in a non-transparent fashion

(as in A vs. B) would obfuscate the problem, rather than solving it.

be skeptical about seemingly objective measures that remain
non-transparent. As we have shown, adopting perspectives
is an inevitable part of the scientific process and the price
to be paid for the benefits of abstraction and specialization
that come with particular measures. Thus, the antidotes to
ignorance and pseudo-scientific propaganda are not doubts or
disdain for highly-specialized scientific tools, but their profound
comprehension and transparent communication within a
risk-savvy society (Gigerenzer and Gray, 2011; Gigerenzer, 2014).
Dealing flexibly and responsibly with alternative perspectives
and results requires a level of insight into the meaning and
limits of measures that goes beyond mere rote learning of
definitions and formulas. While our theoretical model may
contribute to a better understanding of metrics and their proper
interpretation, the key challenge for educators and instructors
is to design effective training programs that render scientific
insights more transparent for scientists, their audiences, and
students (Martignon and Hoffrage, 2019).

6. DISCUSSION

In this article, we link the basic construct of a 2×2 matrix
to the typical semantic interpretations of binary dimensions
that are of interest in different domains. This explains a large
variety of scientific measures in a unifying framework. We
illustrate how our model can be applied to explicate notorious
problems of Bayesian reasoning, as well as to address scientific
questions of a more general nature. While this highlights the
problems’ structural similarities and pinpoints potential errors
more precisely than previous explanations, it also reveals that the
selective and organizational processes of filtering, framing, and
focusing imply characteristic trade-offs: The price of increasing
resolution on some particular aspect is a loss of detail and
context. Importantly, any perspective adopted in the derivation
of a measure is rendered implicit and encapsulated in its numeric

value. Thus, a transparent communication and visualization of
scientific results needs to explicate the perspective adopted in
their derivation.

Although we trust that our approach makes contributions
to various fields, some caveats may help to pre-empt possible
misunderstandings. Rather than providing a unique account.
our model stands in a long tradition of expressing cognitive
phenomena in visual metaphors (see Supplement 2). Regarding
our goals, we provide an analytic tool for studying problems,
not a recipe for resolving them. Although our model is
abstract and flexible enough to be applied to other problems,
its structural mapping to a specific problem is not always
straightforward. Thus, our approach may help others in solving
similar problems, but such benefits are not automatic and
yet to be shown. Similarly, this article uses visualizations to
render our model’s steps and processes more concrete (see
Figures 2–5), but the model itself is abstract, rather than visual
in nature. Whereas, most steps of our model (i.e., the steps
of filtering, framing, and focusing) are descriptive, its final step
(presenting) allows for prescriptive applications. But even when
using our notion of transparency for evaluating visualizations
of numeric measures, there is no guarantee that those that
conform to our definition will yield benefits in comprehension
or performance. Thus, our model can be used to generate
hypotheses, but their success and reach remains to be tested in
empirical studies.

Overall, analyzing tasks in the form and terms of
2×2 matrices is primarily a methodological tool for revealing
structural similarities between problems and suggests where
to look for possible errors and solutions. By contrast, our
framework is silent about which perspective solves a given
problem, nor provides us with a magic potion that adopts the
right perspective on all problems. As all models are wrong on
some level, ours must prove its worth by changing our reader’s
perspectives on related problems.
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7. CONCLUSION

Could you restate the problem?
Could you restate it still differently?

(Polya, 1957, p. 75)

In the 1999 science fiction movie The Matrix, swallowing a red
pill reveals the world as a technological projection: Everything
perceived to be real turns out to be a mere illusion. Real science is
less spectacular, but also full of projections. And in sharp contrast
to the action thriller, adopting particular perspectives is in fact a
theoretical tool for gaining insights and discovering meaningful
relations about the world.

The matrix lens model illustrates a sequence of steps that
filter information, frame it as a 2×2 matrix, and focus on
increasingly specific aspects of the world. Adopting distinct
perspectives on the shared structural construct of the 2×2matrix
yields a rich variety of measures that enable high levels of
abstraction and specialization. But any gain in the resolution of
details comes at the cost of reducing generality and limiting the
scope of possible conclusions. Beyond explicating the dialectic
epistemology of scientific measures, the model integrates a
rich variety of concepts into a common framework. Our
geometric approach shows the shared underlying structure of
many semantic domains, highlights links between a confusing
range of measures, and may help to clarify or resolve several
academic debates.

Applying our model to both theoretical and practical
problems provides new perspectives on them. From a theoretical
stance, our model suggests structural explanations for the well-
known facilitation effects of frequency formats, and precisely
describes potential errors in related problems of Bayesian
reasoning. By explicating the representational nature of such
problems, we show how a shift in perspective essentially
solves them. With regard to solving scientific problems by
analyzing data, our model reveals the choices inherent in the
selection of measures and cautions against drawing premature
conclusions on the basis of seemingly objective values. As
any quantitative measure selectively illuminates some aspect
of the world and encapsulates the perspective adopted in its
derivation, we should be skeptical whenever facing results
that we do not fully understand or are not presented in a
transparent fashion.

Visual illusions do not disappear by explaining them.
But once we become aware that an ambiguous image can
alternatively be seen as a rabbit or a duck, our familiarity
with the image can ease the flip between both interpretations.
Consequently, it should not surprise us that representational
problems persist even when their underlying mechanisms
become transparent. For students of clinical diagnostics,
it will remain perplexing that medical tests with high
sensitivity and specificity can still exhibit poor predictive
values. Similarly, it will continue to seem peculiar and vexing
when two measures that adopt different angles on the same

data support opposite conclusions. But realizing that such
phenomena are neither paradoxical nor inconsistent is an
intellectual step that requires instruction and training. Thus,
understanding that conflicts between measures—or between
people reporting them as facts—are an inevitable consequence of
their inherent perspectives is an important insight on the path to
scientific literacy.

The red pill to swallow for the scientific enlightenment
of modern societies lies in translating these insights into an
educational strategy. Given the key role of perspectives for the
meaning and interpretation of scientificmeasures, understanding
how measures encapsulate particular viewpoints is an important
skill for scientists and their audiences. The costs incurred by
this explication are outweighed by the fact that scientists stand
to benefit twice from embracing the representational nature
of their investigations: Beyond enabling them to choose their
measures more responsibly and wisely, a more transparent
communication of their results may also enable more trust in
their findings.

The notion of insight implies suddenly seeing a solution.
As we have shown, adopting the right perspective on a
problem makes its solution obvious—it becomes simple and
transparent. We show that capturing scientific measures
and explicating problems in terms of adopting particular
perspectives on the structural construct of a 2×2 matrix reveals
aspects that remain obscure in any isolated treatment. We
trust that readers will discover additional opportunities for
framing problems in this form and hope that viewing them
through the lens of a 2×2 matrix will render their solutions
more transparent.

AUTHOR CONTRIBUTIONS

HN, NG, and DS contributed to the conceptual development of
the work. HN wrote the first draft of the manuscript. NG and
DS provided substantial revisions. DK andWG provided general
guidance and critical revisions. All authors contributed to the
article and approved the submitted version.

FUNDING

The publication of this work was supported by the University of
Konstanz Open Access Publication Fund.

ACKNOWLEDGMENTS

We thank both reviewers and the editors LM and Karin Binder
for their critical and constructive feedback.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyg.
2020.567817/full#supplementary-material

Frontiers in Psychology | www.frontiersin.org 28 February 2021 | Volume 11 | Article 567817

https://www.frontiersin.org/articles/10.3389/fpsyg.2020.567817/full#supplementary-material
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Neth et al. 2 × 2 Matrix

REFERENCES

Akobeng, A. K. (2005). Understanding measures of treatment effect in clinical
trials. Arch. Dis. Childh. 90, 54–56. doi: 10.1136/adc.2004.052233

Allan, L. G. (1980). A note on measurement of contingency between two
binary variables in judgment tasks. Bull. Psychon. Soc. 15, 147–149.
doi: 10.3758/BF03334492

Andrikopoulou, E., and Morgan, C. (2017). Calculating measures of
treatment effect for use in clinical practice. J. Nucl. Cardiol. 24, 188–190.
doi: 10.1007/s12350-016-0394-6

Ayal, S., and Beyth-Marom, R. (2014). The effects of mental steps and compatibility
on Bayesian reasoning. Judg. Decis. Mak. 9, 226–241.

Baeza-Yates, R., and Berthier, R.-N. (2011). Modern Information Retrieval: The

Concepts and Technology Behind Search. New York, NY: Addison-Wesley.
Baratgin, J. (2009). Updating our beliefs about inconsistency: the Monty-

Hall case. Math. Soc. Sci. 57, 67–95. doi: 10.1016/j.mathsocsci.2008.
08.006

Barbey, A. K., and Sloman, S. A. (2007). Base-rate respect: From
ecological rationality to dual processes. Behav. Brain Sci. 30, 241–297.
doi: 10.1017/S0140525X07001653

Bar-Hillel, M. (1980). The base-rate fallacy in probability judgments. Acta Psychol.
44, 211–233. doi: 10.1016/0001-6918(80)90046-3

Bar-Hillel, M., and Falk, R. (1982). Some teasers concerning conditional
probabilities. Cognition 11, 109–122. doi: 10.1016/0010-0277(82)90021-X

Bartlett, F. (1958). Thinking: An Experimental and Social Study. New York, NY:
Basic Books.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57,
289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Binder, K., Krauss, S., and Bruckmaier, G. (2015). Effects of visualizing statistical
information: an empirical study on tree diagrams and 2x2 tables. Front. Psychol.
6:1186. doi: 10.3389/fpsyg.2015.01186

Binder, K., Krauss, S., and Wiesner, P. (2020). A new visualization for probabilistic
situations containing two binary events: the frequency net. Front. Psychol.
11:750. doi: 10.3389/fpsyg.2020.00750

Birnbaum, M. H. (1983). Base rates in Bayesian inference: signal detection analysis
of the cab problem. Am. J. Psychol. 96, 85–94. doi: 10.2307/1422211

Böcherer-Linder, K, and Eichler, A. (2017). The impact of visualizing nested sets.
An empirical study on tree diagrams and unit squares. Front. Psychol. 7:2026.
doi: 10.3389/fpsyg.2016.02026

Böcherer-Linder, K., and Eichler, A. (2019). How to improve performance in
Bayesian inference tasks: a comparison of five visualizations. Front. Psychol.
10:267. doi: 10.3389/fpsyg.2019.00267

Braine, M. D., and O’Brien, D. P. (1991). A theory of if: A lexical entry,
reasoning program, and pragmatic principles. Psychol. Rev. 98, 182–203.
doi: 10.1037/0033-295X.98.2.182

Brase, G. L. (2008). Frequency interpretation of ambiguous statistical
information facilitates Bayesian reasoning. Psychon. Bull. Rev. 15, 284–289.
doi: 10.3758/PBR.15.2.284

Brase, G. L. (2009a). How different types of participant payments alter task
performance. Judg. Decis. Mak. 4:419. Available online at: http://journal.sjdm.
org/9416/jdm9416.html

Brase, G. L. (2009b). Pictorial representations in statistical reasoning. Appl. Cogn.
Psychol. 23, 369–381. doi: 10.1002/acp.1460

Brin, S., Motwani, R., Ullman, J. D., and Tsur, S. (1997). Dynamic itemset counting
and implication rules for market basket data. SIGMOD Record 26, 255–264.
doi: 10.1145/253260.253325

Brodersen, K. H., Ong, C. S., Stephan, K. E., and Buhmann, J. M. (2010).
“The balanced accuracy and its posterior distribution,” in 2010 20th

International Conference on Pattern Recognition (Istanbul), 3121–3124.
doi: 10.1109/ICPR.2010.764

Cheng, P. W., and Holyoak, K. J. (1985). Pragmatic reasoning schemas. Cogn.
Psychol. 17, 391–416. doi: 10.1016/0010-0285(85)90014-3

Chicco, D. (2017). Ten quick tips for machine learning in computational biology.
BioData Mining 10:35. doi: 10.1186/s13040-017-0155-3

Cleveland, W. S., and McGill, R. (1985). Graphical perception and
graphical methods for analyzing scientific data. Science 229, 828–833.
doi: 10.1126/science.229.4716.828

Cosmides, L., and Tooby, J. (1992). “Cognitive adaptations for social exchange,” in
The Adapted Mind: Evolutionary Psychology and the Generation of Culture, Vol.

163, eds J. H. Barkow, L. Cosmides, and J. Tooby (Oxford: Oxford University
Press), 163–228.

Dawes, R. M. (1986). Representative thinking in clinical judgment. Clin. Psychol.
Rev. 6, 425–441. doi: 10.1016/0272-7358(86)90030-9

Dawson, R. J. M. (1995). The “unusual episode??? data revisited. J. Stat. Educ. 3.
doi: 10.1080/10691898.1995.11910499

Duncker, K. (1945). On problem-solving. Psychol. Monogr. 58, 1–113.
doi: 10.1037/h0093599

Eddy, D. M. (1982). “Chapter 18: Probabilistic reasoning in clinical medicine:
problems and opportunities,” in Judgment Under Uncertainty, eds D.
Kahneman, P. Slovic, and A. Tversky (Cambridge: Cambridge University
Press), 249–267. doi: 10.1017/CBO9780511809477.019

Edwards, A. W. F. (1963). The measure of association in a 2×2 table. J. R. Stat. Soc.
Ser. A 126, 109–114. doi: 10.2307/2982448

Eichler, A., Böcherer-Linder, K., and Vogel, M. (2020). Different visualizations
cause different strategies when dealing with Bayesian situations. Front. Psychol.
11:1897. doi: 10.3389/fpsyg.2020.01897

Erman, A. B., Collar, R. M., Griffith, K. A., Lowe, L., Sabel, M. S., Bichakjian, C.
K., et al. (2012). Sentinel lymph node biopsy is accurate and prognostic in head
and neck melanoma. Cancer 118, 1040–1047. doi: 10.1002/cncr.26288

Everitt, B. S. (1977). The Analysis of Contingency Tables. London: Chapman and
Hall. doi: 10.1007/978-1-4899-2927-3

Falk, R. (1992). A closer look at the probabilities of the notorious three prisoners.
Cognition 43, 197–223. doi: 10.1016/0010-0277(92)90012-7

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recogn. Lett. 27,
861–874. doi: 10.1016/j.patrec.2005.10.010

Ferguson, E., and Starmer, C. (2013). Incentives, expertise, and medical decisions:
Testing the robustness of natural frequency framing. Health Psychol. 32,
967–977. doi: 10.1037/a0033720

Fiedler, K., Brinkmann, B., Betsch, T., and Wild, B. (2000). A sampling
approach to biases in conditional probability judgments: beyond
base rate neglect and statistical format. J. Exp. Psychol. 129, 399–418.
doi: 10.1037/0096-3445.129.3.399

Fiedler, K. and Juslin, P. (eds.). (2006). Information Sampling and

Adaptive Cognition. New York, NY: Cambridge University Press.
doi: 10.1017/CBO9780511614576

Garcia-Retamero, R., and Hoffrage, U. (2013). Visual representation of statistical
information improves diagnostic inferences in doctors and their patients. Soc.
Sci. Med. 83, 27–33. doi: 10.1016/j.socscimed.2013.01.034

Gentner, D., and Stevens, A. L. (eds.). (1983). Mental Models. Mahwah, NJ:
Lawrence Erlbaum Associates.

Gigerenzer, G. (1991). How to make cognitive illusions disappear:
beyond heuristics and biases. Eur. Rev. Soc. Psychol. 2, 83–115.
doi: 10.1080/14792779143000033

Gigerenzer, G. (1996). On narrow norms and vague heuristics: a
reply to Kahneman and Tversky. Psychol. Rev. 103, 592–596.
doi: 10.1037/0033-295X.103.3.592

Gigerenzer, G. (2014). Risk Savvy: How to Make Good Decisions. New York, NY:
Penguin.

Gigerenzer, G., Gaissmaier, W., Kurz-Milcke, E., Schwartz, L. M., and Woloshin,
S. (2007). Helping doctors and patients make sense of health statistics.
Psychol. Sci. Publ. Interest Suppl. 8, 53–96. doi: 10.1111/j.1539-6053.2008.
00033.x

Gigerenzer, G., and Gray, J. A. M. (eds.). (2011). Better Doctors, Better Patients,
Better Decisions: Envisioning Health Care 2020. Boston, MA: MIT Press.
doi: 10.7551/mitpress/9780262016032.001.0001

Gigerenzer, G., and Hoffrage, U. (1995). How to improve Bayesian reasoning
without instruction: frequency formats. Psychol. Rev. 102, 684–704.
doi: 10.1037/0033-295X.102.4.684

Gigerenzer, G., Krauss, S., and Vitouch, O. (2004). “The null ritual: what you always
wanted to know about significance testing but were afraid to ask,” in The Sage

Handbook of Quantitative Methodology for the Social Sciences (Thousand Oaks,
CA: Sage), 391–408. doi: 10.4135/9781412986311.n21

Glas, A. S., Lijmer, J. G., Prins, M. H., Bonsel, G. J., and Bossuyt, P. M. (2003). The
diagnostic odds ratio: a single indicator of test performance. J. Clin. Epidemiol.
56, 1129–1135. doi: 10.1016/S0895-4356(03)00177-X

Frontiers in Psychology | www.frontiersin.org 29 February 2021 | Volume 11 | Article 567817

https://doi.org/10.1136/adc.2004.052233
https://doi.org/10.3758/BF03334492
https://doi.org/10.1007/s12350-016-0394-6
https://doi.org/10.1016/j.mathsocsci.2008.08.006
https://doi.org/10.1017/S0140525X07001653
https://doi.org/10.1016/0001-6918(80)90046-3
https://doi.org/10.1016/0010-0277(82)90021-X
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.3389/fpsyg.2015.01186
https://doi.org/10.3389/fpsyg.2020.00750
https://doi.org/10.2307/1422211
https://doi.org/10.3389/fpsyg.2016.02026
https://doi.org/10.3389/fpsyg.2019.00267
https://doi.org/10.1037/0033-295X.98.2.182
https://doi.org/10.3758/PBR.15.2.284
http://journal.sjdm.org/9416/jdm9416.html
http://journal.sjdm.org/9416/jdm9416.html
https://doi.org/10.1002/acp.1460
https://doi.org/10.1145/253260.253325
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1016/0010-0285(85)90014-3
https://doi.org/10.1186/s13040-017-0155-3
https://doi.org/10.1126/science.229.4716.828
https://doi.org/10.1016/0272-7358(86)90030-9
https://doi.org/10.1080/10691898.1995.11910499
https://doi.org/10.1037/h0093599
https://doi.org/10.1017/CBO9780511809477.019
https://doi.org/10.2307/2982448
https://doi.org/10.3389/fpsyg.2020.01897
https://doi.org/10.1002/cncr.26288
https://doi.org/10.1007/978-1-4899-2927-3
https://doi.org/10.1016/0010-0277(92)90012-7
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1037/a0033720
https://doi.org/10.1037/0096-3445.129.3.399
https://doi.org/10.1017/CBO9780511614576
https://doi.org/10.1016/j.socscimed.2013.01.034
https://doi.org/10.1080/14792779143000033
https://doi.org/10.1037/0033-295X.103.3.592
https://doi.org/10.1111/j.1539-6053.2008.00033.x
https://doi.org/10.7551/mitpress/9780262016032.001.0001
https://doi.org/10.1037/0033-295X.102.4.684
https://doi.org/10.4135/9781412986311.n21
https://doi.org/10.1016/S0895-4356(03)00177-X
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Neth et al. 2 × 2 Matrix

Granberg, D., and Brown, T. A. (1995). The Monty Hall dilemma. Pers. Soc.
Psychol. Bull. 21, 711–723.

Green, D. M., and Swets, J. A. (1974). Signal Detection Theory and Psychophysics.
Huntington: Krieger.

Hasenclever, D., and Scholz, M. (2016). Comparing measures of
association in 2x2 probability tables. Open Stat. Probabil. J. 7, 20–35.
doi: 10.2174/1876527001607010020

Henle, M. (1962). On the relation between logic and thinking. Psychol. Rev. 69,
366–378. doi: 10.1037/h0042043

Hoffrage, U., Gigerenzer, G., Krauss, S., and Martignon, L. (2002). Representation
facilitates reasoning: what natural frequencies are and what they are not.
Cognition 84, 343–352. doi: 10.1016/S0010-0277(02)00050-1

Hoffrage, U., Lindsey, S., Hertwig, R., and Gigerenzer, G. (2000).
Communicating statistical information. Science 290, 2261–2262.
doi: 10.1126/science.290.5500.2261

Howell, D. C. (2013). Statistical Methods for Psychology, 8th Edn. Belmont, CA:
Wadsworth, Cengage Learning.

Hutchins, E. (1995). Cognition in the Wild. Cambridge, MA: The MIT Press.
doi: 10.7551/mitpress/1881.001.0001

Jastrow, J. (1899). The mind’s eye. Popul. Sci. Month. 54, 299–312.
Johnson, E. D., and Tubau, E. (2015). Comprehension and computation in

Bayesian problem solving. Front. Psychol. 6:938. doi: 10.3389/fpsyg.2015.00938
Johnson-Laird, P. N. (1983). Mental Models: Towards a Cognitive Science of

Language, Inference and Consciousness. Cambridge, UK: Cambridge University
Press.

Kahneman, D., and Tversky, A. (1972a). On prediction and judgement. ORI Res.
Monogr. 1, 430–454.

Kahneman, D., and Tversky, A. (1972b). Subjective probability:
a judgment of representativeness. Cogn. Psychol. 3, 430–454.
doi: 10.1016/0010-0285(72)90016-3

Kahneman, D., and Tversky, A. (1973). On the psychology of prediction. Psychol.
Rev. 80, 237–251. doi: 10.1037/h0034747

Khan, A., Breslav, S., Glueck, M., and Hornbæk, K. (2015). Benefits of visualization
in the mammography problem. Int. J. Hum. Comput. Stud. 83, 94–113.
doi: 10.1016/j.ijhcs.2015.07.001

Koehler, J. J. (1996). The base rate fallacy reconsidered: descriptive,
normative, and methodological challenges. Behav. Brain Sci. 19, 1–17.
doi: 10.1017/S0140525X00041157

Köhler, W. (1925). The Mentality of Apes. New York, NY: Harcourt Brace
Jovanovich.

Kotovsky, K., Hayes, J. R., and Simon, H. A. (1985). Why are some
problems hard: evidence from Tower of Hanoi. Cogn. Psychol. 17, 248–294.
doi: 10.1016/0010-0285(85)90009-X

Krauss, S., and Wang, X.-T. (2003). The psychology of the Monty Hall problem:
discovering psychological mechanisms for solving a tenacious brain teaser. J.
Exp. Psychol. 132, 3–22. doi: 10.1037/0096-3445.132.1.3

Kuhn, T. S. (1962). The Structure of Scientific Revolutions. Chicago, IL: University
of Chicago Press.

Larkin, J. H., and Simon, H. A. (1987). Why a diagram is
(sometimes) worth ten thousand words. Cogn. Sci. 11, 65–100.
doi: 10.1111/j.1551-6708.1987.tb00863.x

Linn, S. (2004). A new conceptual approach to teaching the interpretation of
clinical tests. J. J. Stat. Educ. 12, 1–11. doi: 10.1080/10691898.2004.11910632

Luchins, A. S. (1942). Mechanization in problem solving: the effect of Einstellung.
Psychol. Monogr. 54, 1–95. doi: 10.1037/h0093502

Macchi, L. (1995). Pragmatic aspects of the base-rate fallacy. Q. J. Exp. Psychol. 48,
188–207. doi: 10.1080/14640749508401384

Martignon, L., and Hoffrage, U. (2019). Wer wagt gewinnt? Wie Sie die
Risikokompetenz von Kindern und Jugendlichen fördern können. Hogrefe,
Göttingen. doi: 10.1024/85726-000

Massart, D. L., Vandeginste, B. G.M., Buydens, L. M. C., De Jong, S., Lewi, P. J., and
Smeyers-Verbeke, J. (eds.). (1998). “Chapter 16: The 2 x 2 contingency table,”
inHandbook of Chemometrics and Qualimetrics: Part A, (Amsterdam: Elsevier),
475–518.

McDowell, M., and Jacobs, P. (2017). Meta-analysis of the effect of natural
frequencies on Bayesian reasoning. Psychol. Bull. 143, 1273–1312.
doi: 10.1037/bul0000126

Mellers, B. A., and McGraw, A. P. (1999). How to improve Bayesian reasoning:
comment on Gigerenzer and Hoffrage (1995). Psychol. Rev. 106, 417–424.
doi: 10.1037/0033-295X.106.2.417

Micallef, L., Dragicevic, P., and Fekete, J.-D. (2012). Assessing the effect
of visualizations on Bayesian reasoning through crowdsourcing. IEEE

Trans. Visual. Comput. Graph. 18, 2536–2545. doi: 10.1109/TVCG.20
12.199

Mihalisin, T., Timlin, J., and Schwegler, J. (1991). Visualizing multivariate
functions, data, and distributions. IEEE Comput. Graph. Appl. 11, 28–35.
doi: 10.1109/38.79451

Moro, R., Bodanza, G. A., and Freidin, E. (2011). Sets or frequencies? How to help
people solve conditional probability problems. J. Cogn. Psychol. 23, 843–857.
doi: 10.1080/20445911.2011.579072

Morrison, A. S. (1998). “Screening,” in Modern Epidemiology, eds K. J. Rothman
and S. Greenland (Philadelphia, PA: Lippincott-Raven), 499–518.

Navarrete, G., and Mandel, D. R. (eds.). (2016). Improving Bayesian

Reasoning: What Works and Why? Lausanne, CH: Frontiers Media SA.
doi: 10.3389/978-2-88919-745-3

Neth, H., Gaisbauer, F., Gradwohl, N., andGaissmaier,W. (2018). riskyr: A Toolbox

for Rendering Risk Literacy More Transparent. Konstanz: Social Psychology and
Decision Sciences; University of Konstanz.

Neth, H., Sims, C. R., and Gray, W. D. (2016). Rational task analysis: a
methodology to benchmark bounded rationality. Minds Mach. 26, 125–148.
doi: 10.1007/s11023-015-9368-8

Newell, A., and Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs,
NJ: Prentice Hall.

Nickerson, R. S. (1998). Confirmation bias: a ubiquitous phenomenon in many
guises. Rev. Gen. Psychol. 2, 175–220. doi: 10.1037/1089-2680.2.2.175

Noordzij, M., van Diepen, M., Caskey, F. C., and Jager, K. J. (2017). Relative risk
versus absolute risk: one cannot be interpreted without the other. Nephrol.
Dialys. Transpl. 32(Suppl. 2), ii13?ii18. doi: 10.1093/ndt/gfw465

Pearson, K. (1904). On the Theory of Contingency and Its Relation to Association

and Normal Correlation. London: Dulau and Co.
Politzer, G. (2016). The class inclusion question: a case study in applying

pragmatics to the experimental study of cognition. SpringerPlus 5:1133.
doi: 10.1186/s40064-016-2467-z

Polya, G. (1957).How To Solve It: A New Aspect of Mathematical Method, 2nd Edn.
Princeton, NJ: Princeton University Press.

Powers, D.M.W. (2011). Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness & correlation. J. Mach. Learn. Technol. 2, 37–63.
https://arxiv.org/abs/2010.16061

Radcliffe, N. J., and Surry, P. D. (2011). Real-World Uplift Modelling With

Significance-Based Uplift Trees. White Paper TR-2011-1, Stochastic . . . , 1–33.
Ranganathan, P., Pramesh, C. S., and Aggarwal, R. (2016). Common pitfalls in

statistical analysis: absolute risk reduction, relative risk reduction, and number
needed to treat. Perspect. Clin. Res. 7, 51–53. doi: 10.4103/2229-3485.173773

Rescher, N. (1998). Predicting the Future: An Introduction to the Theory of

Forecasting. Albany, NY: SUNY Press.
Rijsbergen, C. J. V. (1979). Information Retrieval. London: Butterworth.
Ruscio, J. (2003). Comparing Bayes’s Theorem to frequency-based approaches to

teaching Bayesian reasoning. Teach. Psychol. 30, 325–328. Available online at:
https://psycnet.apa.org/record/2003-09372-012

Sackett, D. L., Deeks, J. J., and Altman, D. G. (1996). Down with odds ratios! Evid.
Based Med. 1, 164–166.

Sauerbrei, W., and Blettner, M. (2009). Interpreting results in 2 x 2 tables. Part
9 of a series on evaluation of scientific publications. Deutsches Arzteblatt 106,
795–800. doi: 10.3238/arztebl.2009.0795

Schaefer, J. T. (1990). The Critical Success Index as an
indicator of warning skill. Weath. Forecast. 5, 570–575.
doi: 10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2

Sedlmeier, P., and Gigerenzer, G. (2001). Teaching Bayesian reasoning in less
than two hours. J. Exp. Psychol. 130, 380–400. doi: 10.1037/0096-3445.130.
3.380

Selvin, S. (1975). A problem in probability. Am. Stat. 29:67.
doi: 10.1080/00031305.1975.10479121

Selvin, S. (1996). Statistical Analysis of Epidemiologic Data, 2nd Edn. New York,
NY: Oxford University Press.

Frontiers in Psychology | www.frontiersin.org 30 February 2021 | Volume 11 | Article 567817

https://doi.org/10.2174/1876527001607010020
https://doi.org/10.1037/h0042043
https://doi.org/10.1016/S0010-0277(02)00050-1
https://doi.org/10.1126/science.290.5500.2261
https://doi.org/10.7551/mitpress/1881.001.0001
https://doi.org/10.3389/fpsyg.2015.00938
https://doi.org/10.1016/0010-0285(72)90016-3
https://doi.org/10.1037/h0034747
https://doi.org/10.1016/j.ijhcs.2015.07.001
https://doi.org/10.1017/S0140525X00041157
https://doi.org/10.1016/0010-0285(85)90009-X
https://doi.org/10.1037/0096-3445.132.1.3
https://doi.org/10.1111/j.1551-6708.1987.tb00863.x
https://doi.org/10.1080/10691898.2004.11910632
https://doi.org/10.1037/h0093502
https://doi.org/10.1080/14640749508401384
https://doi.org/10.1024/85726-000
https://doi.org/10.1037/bul0000126
https://doi.org/10.1037/0033-295X.106.2.417
https://doi.org/10.1109/TVCG.2012.199
https://doi.org/10.1109/38.79451
https://doi.org/10.1080/20445911.2011.579072
https://doi.org/10.3389/978-2-88919-745-3
https://doi.org/10.1007/s11023-015-9368-8
https://doi.org/10.1037/1089-2680.2.2.175
https://doi.org/10.1093/ndt/gfw465
https://doi.org/10.1186/s40064-016-2467-z
https://arxiv.org/abs/2010.16061
https://doi.org/10.4103/2229-3485.173773
https://psycnet.apa.org/record/2003-09372-012
https://doi.org/10.3238/arztebl.2009.0795
https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
https://doi.org/10.1037/0096-3445.130.3.380
https://doi.org/10.1080/00031305.1975.10479121
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Neth et al. 2 × 2 Matrix

Simon, H. A. (1981). The Sciences of the Artificial, 2nd Edn. Cambridge, MA: MIT
Press.

Simpson, E. H. (1951). The interpretation of interaction in contingency tables. J. R.
Stat. Soc. Ser. B 13, 238–241. doi: 10.1111/j.2517-6161.1951.tb00088.x
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