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ABSTRACT

DNA–protein interactions play essential roles in all
living cells. Understanding of how features embed-
ded in the DNA sequence affect specific interac-
tions with proteins is both challenging and impor-
tant, since it may contribute to finding the means to
regulate metabolic pathways involving DNA–protein
interactions. Using a massive experimental bench-
mark dataset of binding scores for DNA sequences
and a machine learning workflow, we describe the
binding to DNA of T7 primase, as a model system
for specific DNA–protein interactions. Effective bind-
ing of T7 primase to its specific DNA recognition se-
quences triggers the formation of RNA primers that
serve as Okazaki fragment start sites during DNA
replication.

INTRODUCTION

Specific protein–DNA recognition is essential for a wide
range of cellular processes, including DNA replication, re-
pair and recombination (1). Determination of the specific
binding preferences of proteins both in vivo (2–7) and in
vitro (8–17) has been facilitated by recent technological
advances in high-throughput testing. Computational anal-
ysis combined with high-throughput assays have identi-
fied protein–DNA binding preferences at the whole-genome
level (8,11,16,18–25), and the information so obtained has
been used to elucidate the mechanisms of gene expression
regulation by transcription factors (TFs) and RNA poly-
merases in different organisms (20,24,26,27). While most
studies on protein-DNA specificity rely on base readout
through the major and the minor grooves and on shape
readout through global and local shapes of double stranded
DNA (28), little is known about the principles that govern
the specific binding of a protein to single-stranded DNA.
A clue may perhaps be drawn from a structural study of

the binding of cold-shock proteins to single-stranded DNA,
which revealed that sequence-specific DNA binding is medi-
ated by base-stacking interactions of aromatic amino acids
and that additional H-bonding is important for sequence
recognition (29). Nonetheless, in-depth work to elucidate
the specific binding of proteins to single-stranded DNA is
still required.

In all cells, DNA replication serves as a metabolic path-
way in which specific DNA–protein interactions take place
(30). During DNA replication, double-stranded DNA is
unwound to expose the two individual DNA strands; one
is copied continuously (the leading strand) and the other
is copied discontinuously (the lagging strand). On the lag-
ging DNA strand, a DNA primase recognizes the DNA
sequence used as the template for the synthesis of RNA
primers and is thus responsible for elongating these RNA
primers into the DNA segments known as Okazaki frag-
ments. This process of RNA-primed DNA synthesis by a
DNA polymerase is triggered exclusively by the recognition
of a specific DNA sequence by the primase. This recogni-
tion is thus fundamental to the establishment of Okazaki
fragments and consequently to the whole process of proper
DNA replication. In prokaryotes, RNA primer formation
occurs on pre-defined sequences on the genome that are
specifically recognized by a DnaG-type primase (31) (Fig-
ure 1). Against this background, the focus of our study is
the activity of the N-domain of gene 4 protein (helicase-
primase, gp4) of bacteriophage T7 (known as T7 primase).
The activity of this N-domain (comprising residues 1–271)
is initiated by the sequence-specific binding of a DNA pri-
mase to 5′-GTC-3′ (32–34), which is then followed by the
synthesis of a functional primer (35). Importantly, it is now
known that even though a DNA primase recognizes a spe-
cific trinucleotide sequence, flexibility in the selection of ini-
tiation sites for Okazaki fragments is allowed (36), i.e. not
every primase-DNA recognition sequence (PDRS) will be-
come an Okazaki fragment start site. The reason for this
flexibility is, however, not understood, and it is this enigma
that we address in the current study: Although extensive
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Figure 1. Schematic representation of primase binding to a single-stranded
DNA template and synthesis of an RNA primer. Enzymes used in this
study: a truncated primase domain (residues 1–271, 27 kDa) and a helicase-
primase (residues 1–566, 63 kDa).

research has been carried out on the interactions of DNA
primase with DNA, it is still not clear why a DNA primase
ignores the majority of trinucleotide recognition sites. In Es-
cherichia coli, for example, DnaG primase ignores ∼97%
of the trinucleotide recognition sites and initiates Okazaki
fragments only every 1.5–2 kb (and not more frequently)
(37). The literature offers two possible explanations for
the effect of selective DNA sequence recognition by a pri-
mase: The first, well-explored possibility, is that other DNA
replication proteins, such as DnaB (38–41), single-stranded
DNA-binding protein (SSB) (42), or a clamp loader (43),
affect the binding of the primase (DnaG) to DNA or even
change the preferences for PDRSs on the genome. The sec-
ond possibility is that a sequence larger than a trinucleotide
is required for the specific binding of a primase. On the basis
of the mismatch between the frequency of GTC sequences
on the bacteriophage T7 genome and the actual size of the
Okazaki fragments, it is reasonable to assume that only a
sequence larger than a trinucleotide will lead to ‘effective
binding’ of a DNA primase, i.e. binding yielding an RNA
primer that marks the start site of an Okazaki fragment.
It is known that a tetraribonucleotide (44), but not a di-
or tri-ribonucleotide (45), can serve as a primer for the T7
DNA polymerase. However, it is still not known whether
longer primers are required for more efficient DNA repli-
cation. The requirement for a primer of at least tetranu-
cleotide size indicates that a primase recognition sequence
must be larger than 5′-GTC-3′ [note that the 3′-cryptic C
is essential for recognition but is not copied into the RNA
primer (46)]. Many questions regarding such larger primase
recognition sequences remained unanswered: In particular,
what is the effect of sequences flanking the 5′-GTC-3′ on
primase activity? Does primase-DNA binding affinity cor-
relate with RNA primer synthesis? These questions cannot
be addressed by using ‘classical’ techniques, and we have
therefore developed a dedicated workflow to answer open
questions of this type. In our first steps to investigate the
above-described possibility of a larger DNA binding deter-
minant, we applied high-throughput primase profiling (47),
in which binding scores (median fluorescence intensities) for
tens of thousands of DNA primase–DNA binding events
on a protein-DNA binding microarray (PBM) were com-
bined with biochemical analysis (47). This technology facil-
itated the analysis of the composition of sequences flanking
the specific recognition site and their corresponding bind-
ing scores and confirmed that a GTC sequence is not suf-

ficient for the recognition of DNA templates by T7 pri-
mase (47,48). Specifically, we showed that T7 primase has
a high affinity for PDRSs composed of GTC with G/C/T-
rich flanking sequences, leading to the formation of longer
RNA primers (47). Although the development of high-
throughput primase profiling facilitated the acquisition of
massive amounts of data on DNA-primase-binding events,
the means to systematically analyze this data in a way that
will facilitate a comprehensive understanding of the recog-
nition process are yet to be put in place. Specifically, analysis
of this data will throw light on the principles for selection of
PDRSs on a genome during DNA replication by enabling
us to answer three key questions: (i) Is there information
stored in the DNA sequence that is important for T7 pri-
mase binding? (ii) If we understand the principles of specific
primase–DNA recognition, can we predict binding scores
of T7 primase for a given DNA sequence? And (iii) Can we
generate new DNA sequences with desired binding scores
based on the sequence features embedded in the DNA? An-
swering the third question will enable us to ascertain which
features embedded in specific DNA binding sequences gov-
ern the binding of DNA primase.

In concert with cutting-edge developments in biochemi-
cal technologies, current progress in computational science
provides us with the opportunity to construct knowledge-
based models that will help us to answer the above ques-
tions. Here, we describe an intelligent learning workflow
that provides a comprehensive view of the principles that
govern the design and activity of PDRSs with unprece-
dented flexibility and accuracy. We applied this workflow to
elucidate the link between the larger context, i.e. the flank-
ing nucleotides, of the primase recognition sequence and the
synthesis of RNA primers that initiate Okazaki fragments.
Whereas our initial data (47) showed that TA is better than
GA, in the current study––using state-of-the-art machine
learning analysis––we found a set of rules that allowed us
to quantitatively predict primase binding and catalysis for
any DNA sequence.

MATERIALS AND METHODS

Materials

All chemical reagents were of molecular biology grade and
were obtained from Sigma. ATP and CTP were purchased
from Roche Molecular Biochemicals.

Protein overexpression and purification

Full length gene 4 protein (gp4, residues 1–566, 63 kDa) was
overexpressed and purified as previously described (49). The
T7 primase domain (residues 1–271, 27 kDa) was overex-
pressed and purified as previously described (50).

Design of the DNA library

The analysis was based on previously collected data
(47,48), specifically, on 25220 DNA sequences that include
the T7 DNA-primase recognition sequence (5′-GTC-3′).
The general pattern of each sequence was 5′-(N)17-GTC-
(N)16-GTCTTGATTCGCTTGACGCTGCTG-3′, where
(N)17 and (N)16 represent the variable regions flanking the
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GTC recognition site. The above data �set contained ac-
curate binding scores for T7 primase to each DNA se-
quence, obtained by PBMs as described previously (47).
Data acquisition was performed using a GenePix 4400A
scanner (Molecular Devices), and data was analyzed us-
ing custom scripts to obtain fluorescence intensities for all
sequences represented on the array.

Data preprocessing

Each PBM consisted of 5076 unique sequences and 25220
samples, 6 repetitions per sequence, and overall 151320
samples (instances). All scripts were written in Python
(Python Software Foundation, version 3.7, http://www.
python.org), Scikit learn (51), and the software PyCharm
(community edition, https://www.jetbrains.com/pycharm/).
The source code for the machine learning algorithms
is available in the Github repository (https://github.com/
csbarak/T7pdrs). This git repository also contains the data
used for the analysis.

By extracting the coefficient of variation (52) for scores
associated with each sequence (six repetitions), we observed
that the stronger the score, the more stable the coefficient
of variation (Supplementary Figure S1). Finally, each se-
quence’s score was determined as its median score. For the
stability evaluation, it was necessary to account for the dif-
ferent binding score ranges; thus, to eliminate the different
scales of the standard deviation, we evaluated the binding
score stability of each sequence by using the coefficient of
determination (COD, Equation 1):

COD (x) = σ (x)
μ (x)

(1)

where x is a set of binding score repeats for a specific se-
quence; � is the standard deviation of that sequence; and �
is the mean value of x.

Method for sequence-based feature extraction

We tried out linear, quadratic and root weighting of the K-
mers according to their distance from the GTC; e.g. while
the 3-mer ‘ACA’ appears twice in the sequence ‘ACATGT-
CACAT’, the weighted linear count of ‘ACA’ would multi-
ply its distance plus 1 from the kernel (GTC). However, this
approach did not improve the performance of the model.
While proper usage of the mer’s location might lead to
different results, using advanced algorithms to produce a
more complex connection between features would limit our
work’s explainability and further exploration of the mer’s
effect. We therefore used simple K-mer counts and normal-
ized by the length of the sequence to increase the general-
ization and prevent bias.

Principal component analysis

PCA is commonly used to reduce dimensions of datasets
by de-correlating the features and extracting the linear
combinations that hold the greatest variance. Thus, non-
informative features are dropped, and the remaining fea-
tures consist of highly variant linear combinations (prin-
cipal components) of the original features. We used PCA

on overlapping K-mer count instances so as to visualize
the projected distribution of binding scores upon the three
most significant principal components. Features were ob-
tained by counting every combination of dimers, trimers,
and tetramers in the DNA sequence (K-mer, Supplemen-
tary Figure S2). Different K values were used for the K-mer
feature extraction, and all experiments resulted in a clear 5-
cluster construct for the entire dataset. To compare data be-
tween clusters, we applied MinMax normalization (Equa-
tion 2) and colored each instance according to its relative
strength.

y′
i = yi − min (y)

max (y) − min (y)
(2)

where y = binding scores of the entire dataset, yi = the ith
binding score.

Conversion of the categorical DNA variables

The DNA data was converted to an array of integers by
OHE, a process in which each nucleotide is represented by
the following scheme: (A = [1000], C = [0100], G = [0010], T
= [0001]). The N × 4 matrix represents every DNA oligonu-
cleotide, and is used as input for both the Kmeans model
and the WD-based hierarchical clustering model (53).

Kmeans

In the initial step of Kmeans, the distances of the sequence
vectors in the training set from randomly located centroids
are measured, with the number of centers (K) being consid-
ered as a hyperparameter. Then, the distance of every se-
quence from the centroid is computed using the Euclidean
distance (d (x) = min

j=0,1,...,K
‖ x − μ j‖l2). For the optimiza-

tion step, each centroid’s position (μ j ) is moved to its own
cluster’s geometric mean. This process is repeated until a
stop condition is met, which is usually determined by an
improvement in the loss function. The loss function of the
i th iteration is the sum of the distances between all instances
and their matching centroids (Equation 3):

Li (X, μi ) =
∑

x∈X

d (x) (3)

where i is the iteration number, X denotes the entire data
matrix, x represents an OHE vector and μi represents the
set of centroids at the beginning of the i th iteration.

An optimized model is obtained when the difference in
the value of the loss function between consecutive iterations
is small enough (typically 10−4) or the maximal number of
iterations has been reached.

Hierarchical clustering

Ward’s criterion is used to determine which clusters should
be merged by creating new data partitions in such a way that
the sum of cluster variances of the newly offered partitions
is kept low; in our case, it amounts to the smallest num-
ber of nucleotide changes between same-cluster sequences.
Since the sum of the squared errors is minimized when each
‘word’ acts as its own cluster, the common way to choose the

http://www.python.org
https://www.jetbrains.com/pycharm/
https://github.com/csbarak/T7pdrs


11450 Nucleic Acids Research, 2021, Vol. 49, No. 20

number of clusters K is to choose the K that maximizes the
WD gap. Using this method, we can extract both K and the
evolutionary stages of each cluster. WD calculates the simi-
larity of two clusters (Ca, Cb) as the normalized distance of
their corresponding cluster means (μa, μb, Equation 4):

WD (Ca, Cb) = |μa − μb|2l2
|Ca| |Cb| (4)

The first step of the method initiates a cluster for each in-
stance, and the second seeks the two most similar clusters
in terms of WD. When found, these two clusters are united,
and the second step is repeated until only one cluster re-
mains.

Supervised learning: linear regression with L1 regularization
(Lasso)

The Lasso algorithm performs linear regression under L1
regularization. Its output is a closed form equation that is
generated under the constraint of having the smallest num-
ber of variables as possible. The algorithm complies with
this constraint by applying a penalty for each variable taken
into account in the closed form equation. Simple linear re-
gression uses a weighted combination of features to gener-
ate a prediction based on (Equation 5):

Y =
∑

i=1,2,...,p

wi xi + b (5)

where xi is the ith feature chosen from p features, while wi
and b are the learned weights (usually found by minimizing
the mean square error over the training set) and the learned
bias, respectively.

While a simple linear model uses the entire set of fea-
tures, Lasso applies a loss function on the number of fea-
tures. Moreover, compared to L2 regularization, L1 regu-
larization facilitates the zeroing out of features rather than
minimizing their weights, leading to the selection of a smart
subset of features. Using Lasso on our data required two
preprocessing stages; the first was extracting K-mer counts
for obtaining a simple and general solution, and the second
was applying a square root on the binding scores to bet-
ter match their values for linear regression. The MinMax-
wise normalized scores yielded a cross-validated result with
a mean absolute error (MAE) value of 0.10, calculated us-
ing (Equation 6):

MAEE (X) =
∑

pxi ∗xi (6)

where xi is the MAE of bin i of the bins obtained by
Kmeans, and pxi is the percentage of samples in that bin
out of the entire data set.

We evaluated the results with MAE, and obtained the ex-
pected error in terms of a weighted MAE, where the weights
refer to the percentage of clustered sequences (Equation 7).

WMAEprimo =
4∑

i=0

|Ci |
|dataset|MAECi (7)

where Ci is the ith cluster, |Ci | is the number of sequences
belonging to the ith cluster, |dataset| is the size of the entire

dataset and MAECi is the mean absolute error of the ith
cluster.

Our main goal was to develop a predictive model with
as small an error as possible, while maintaining model ex-
plainability and simplicity. Examining the results of differ-
ent regression models (Supplementary Table S1), we see that
the smallest error was achieved using XGBoost, yet the dif-
ference between the errors of XGBoost and those of Lasso
is about 0.5% MAE. In contrast to the decision-tree-based
XGBoost, Lasso generates a closed predictive equation
(i.e. score = α0 + α1MER1 + α2MER2 . . .), and combined
with Lasso’s L1 regularization, it constrains the number
of features and the coefficients needed for the prediction.
In addition, in contrast to support-vector-machine (SVM)-
based models, Lasso enables limiting the coefficients to pos-
itive values, which could lead to a meaningful K-mer addi-
tion approach. Lastly, with Lasso the bias can be neutral-
ized, meaning that the prediction is dependent solely on the
K-mer count. Increasing the bias further enables a decrease
in the variance and therefore a precise prediction.

In summary, in this study, we chose to use Lasso, since
it provides good performance and a closed predictive ex-
pression that is short and (intentionally) consists of non-
negative coefficients. Other regression models also gener-
ated an expected error that was less than 10% MAE (Sup-
plementary Table S1), meaning that the data collection and
preprocessing techniques were highly informative regarding
the researched binding score.

Oligoribonucleotide synthesis assay

Synthesis of oligoribonucleotides by DNA primase was per-
formed as described previously (47). The reaction mixture
contained 5 �M DNA sequences generated by our machine-
learning prediction algorithms described above, 1 mM ATP,
1 mM [�-32P]ATP, and T7 primase in a buffer containing 40
mM Tris–HCl, pH 7.5, 10 mM MgCl2, 10 mM DTT and 50
mM potassium glutamate. After incubation at room tem-
perature for 10 min, the reaction was terminated by adding
an equal volume of sequencing buffer containing 98% for-
mamide, 0.1% bromophenol blue, and 20 mM EDTA. The
samples were loaded onto 25% polyacrylamide sequencing
gel containing 7 M urea and visualized using autoradiogra-
phy.

RESULTS

The overall structure of our study comprised the follow-
ing stages of analysis of the data obtained using PBMs for
quantitative measurements of T7 primase–DNA binding,
after preprocessing of the data (Scheme 1): (step 1) prepa-
ration of a PBM-driven benchmark data; (step 2) cluster-
ing the PDRSs containing DNA sequences; (step 3) train-
ing a regression model and (step 4) predicting the score
of new DNA sequences, and generating novel DNA se-
quences with the desired binding scores for T7 primase.
These steps are elaborated below, as are the data pre-
processing and step 5 (Scheme 1), which is biochemical
validation.
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Scheme 1. Analysis workflow after preprocessing the data from the
primase–DNA binding microarray. The benchmark dataset containing
DNA sequences for the training set was preprocessed (step 1). The DNA
sequences were clustered into five bins using exploratory data analysis
(EDA), i.e. unsupervised algorithms (step 2). A different regressor was
trained for every cluster. Several regression algorithms were used; linear
regression with L1 regularization provided the best results. To predict the
binding scores of a new DNA sequence, the sequence was assigned to a spe-
cific bin, and its score for primase binding was predicted using that bin’s
regressor (step 3). Novel DNA sequences (PDRSs) with high binding score
for primase were generated (step 4). It was then possible to examine the
ability of those PDRSs to bind primase and induce the synthesis of RNA
primers (step 5).

Data preprocessing and vectorization of DNA sequences

Data were acquired for His-tagged T7 primase produced
and purified as described previously (47). All algorithms
described for data preprocessing and analysis are written
in Python and are publicly available (https://github.com/
csbarak/T7pdrs). Before the data analysis, considerable at-
tention was paid to data preprocessing, as the success of the
subsequent application of machine-learning algorithms de-
pended on the explicit presentation of the data in a way that
facilitated the extraction of meaningful features and the re-
moval of distracting outliers. The preprocessing of PBM-
derived DNA-primase binding data comprised four steps:
data cleansing, data filtration, embedding of the sequences
into vectors, and data normalization, as follows. Using the
PDRSs as meaningful ‘words’ on the basis of their sequence
features, where each sequence was assigned to its PBM-
driven binding score, we focused on the sequences that
could potentially serve as Okazaki fragment start sites. We
started with the preparation of a ‘lexicon’ of DNA ‘words’,
each comprising a larger context of GTC-containing se-
quences that allow effective binding of T7 primase, i.e. the
binding of T7 primase that yields RNA primers. The start-
ing point for the preprocessing was the notion that while an
average size of ∼64 nucleotides (Figure 2A) is the expected
distance between two GTC sequences, the experimentally
obtained size of an Okazaki fragment is 1000–6000 nu-

cleotides (Figure 2B, marked in the red range box). We thus
posited that GTC-containing PDRSs must be larger than a
trinucleotide sequence to meet the frequency on the genome
that would allow the creation of Okazaki fragments of sizes
that were observed previously.

Since DNA sequences constitute a form of categorical
data represented by nucleotides, the preprocessing step was
required to convert the plain representation of DNA se-
quences into a meaningful numeric representation. Such a
representation of DNA sequences was obtained by using
One Hot Encoding (OHE). In this way, a categorical se-
quence was converted into an array of integers in which
each nucleotide was represented by four unit vectors: (A =
[1000], C = [0100], G = [0010], T = [0001]), e.g. the sequence
ACCG was encoded as 1000|0100|0100|0010. Every DNA
sequence, represented by a 144-dimensional vector, was fed
as an input into both a Kmeans model (using Euclidian dis-
tance) and a Ward-method-based (53) hierarchical cluster-
ing model (see below).

Defining the mathematical descriptors (features) of the
PDRSs

The challenge in the selection of descriptors in the DNA
sequences derives from the fact that only a limited num-
ber of features that have chemical/physical meaning are
useful for model construction and from difficulties in con-
verting DNA sequences into vectors of numbers. Impor-
tantly, nucleotides, being categorical variables, cannot be
treated in terms of ordinal data. Since ‘hand-crafted’ fea-
tures extracted from DNA sequences did not improve pre-
diction of primase binding scores (Supplementary Figure
S1), we utilized the K-mer method for feature extraction
(54). In brief, the K-mer is a frequency vector that counts
all possible combinations of short sequences (of size K) in
larger DNA sequences. As the K parameter increases, the
number of possible combinations increases, while the fre-
quency of each mer decreases (Supplementary Figure S2),
giving sparser, yet more detailed, data. Since the K-mer
method can be implemented with different normalization
and striding techniques, even with insufficient structural
information, we used a 1-step stride to allow overlap be-
tween mers and we then normalized the extracted K-mer
counts.

Extracting features from the DNA sequences of the mi-
croarray using the K-mer approach allowed us to find as-
sociation rules for those DNA sequences (unsupervised al-
gorithms). The sequential features obtained were also used
to generate a prediction model of primase–DNA binding,
based on primase-binding data collected from PBM exper-
iments (supervised algorithms).

Exploratory data analysis

As is customary, we started with exploratory data analy-
sis, which is unsupervised in nature (i.e. the primase bind-
ing scores were ignored). The goal here was to produce a
meaningful visualization of the data with the aim to obtain
new insights. To this end, we reduced the dimensionality of
the data using principal component analysis (PCA), and ap-
plied various clustering algorithms, which revealed a mean-
ingful cluster structure with respect to the binding score.

https://github.com/csbarak/T7pdrs
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Figure 2. Frequency and distribution of GTC-containing primase–DNA recognition sequences (PDRSs) on the bacteriophage T7 genome. (A) The fre-
quency of the occurrence of GTC in a random sequence is every 43 = 64 bases (approximately as indicated by the orange line). (B) Calculated size
distribution of the DNA sequence between GTC-containing PDRSs on the T7 genome that matches the actual size of Okazaki fragments. These PDRSs
consist of 0–3 nucleotides flanking the GTC sequence and are distributed at an inter-PDRS distance that ranges between 1000–6000 nucleotides, which
yield Okazaki fragments of the same size. (C) All combinations of possible T7 PDRSs (5′-GTC-3′) on the genome are considered. Black lines represent
the frequency of GTCs; red lines represent the frequency of large-context GTC-containing PDRSs that match experimental values for Okazaki fragment
sizes (62); black lines: frequency of GTC every 64 bases.

After applying PCA to the data, i.e. to the 4k dimensions
existing for each 36-mer oligonucleotide, we found that the
top three principal components explained 64% of the total
variance. Therefore, we concluded that this number of prin-
cipal components enables the production of a meaningful
3D picture.

To interpret the clusters generated using PCA, the bind-
ing values obtained for the T7 primase of all the DNA
sequences were normalized and used to color code the
data points in the clusters (Figure 3A). The most strik-
ing result to emerge from the color-coded data was its
arrangement into five clusters––one homogeneous cluster
of DNA sequences that are strongly bound to T7 pri-
mase (colored red in Figure 3A), two homogeneous clus-
ters of DNA sequences with weaker binding to T7 pri-
mase (colored blue), and two inhomogeneous clusters with
uniformly distributed binding scores. This organization of
the data points into meaningful clusters indicates that: (i)
there are hidden descriptors within the DNA sequence
that are essential for primase binding and (ii) the sequence
descriptors obtained by the K-mer approach (Figure 3B)
are more than adequate for describing primase–DNA
binding.

Using the Kmeans algorithm, we were able to shed light
on the distributions of the binding scores within the five
clusters. Interestingly, preprocessing using OHE, converge

into clusters containing similar score distributions to the
five-cluster structure obtained by PCA. The Kmeans iter-
ative algorithm partitions the data space into sub-spaces,
thereby assigning a matching label (the cluster number) to
each instance according to its location.

Clustering of the unlabeled DNA sequences in Kmeans
relied on the sequence distances from the corresponding
cluster centroids. As each sequence was represented using
OHE, the distance between two sequences could be de-
scribed as the number of changes needed in one sequence to
convert it into the other sequence. In the Kmeans analysis,
aligning the PBM-driven binding score for each DNA se-
quence revealed that each cluster exhibited a clear trend, as
the group of binding scores to the primase was distributed
unevenly with long tails (Figure 3C), which means that each
cluster held exceptions.

While Kmeans computes distances of instances from the
centroids, clustering of unlabeled DNA sequences using
Ward’s minimum variance method (53) allowed us to track
of the evolution of clusters (Figure 3D). The maximal Ward
distance (WD) gap was obtained using five clusters, as ob-
served from PCA and Kmeans for the same dataset of DNA
sequences. Furthermore, we can see in Figure 3D that each
colored branch holds a sub-group with two highly repeating
letters (CT, GT, AC, AG) or a uniform distribution of the
letters (ACGT).
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Figure 3. Inference from DNA sequences without labeled responses for T7 primase binding (unsupervised learning). (A) Dimensionality reduction al-
gorithm PCA tri-plot used to visualize the data by selecting the top three principal components. Assignment of the binding scores (labels) to each data
point shows an uneven distribution across two clusters (2, 3) and a homogeneous distribution in three clusters (0, for strong binding to T7 primase,
and 1 and 4 for weak binding). (B) Correlation between the primase binding score and feature extraction (FE) using different methods: OHE, 2-mer,
3-mer and 4-mer counts. K-mers were used as descriptors for the PCA analysis. (C) Kmeans clustering on one-hot encoded DNA sequences. Clustering
was performed by measuring pairwise distances of DNA sequences from the centroid of each cluster. Violin plots representing the distribution of the
binding scores assigned to each data point in the clusters are shown. Three clusters show evenly distributed scores (0, 1, 4) and two show a less homoge-
neous score distribution (2, 3). Each cluster is represented by a ‘mean word’ (centroid): (0) GTTTTGTTTTGTTTTTGTC GTGTGGTTGTGGTGGTA;
(1) CTTTTTTTCTTTTTTCGTCCTTTTTT TTTTTCCCCA; (2) GAAGAAAATCCATAGGGTCAACCGGGTTATG TTAAA; (3) CCACAAAAAA
AAAAAAGTCCAACCCACAAAACCCC A; (4) GGAAAGGAGAGAAAAAGTCAAAAAAGAAAGAAAGAA. (D) Hierarchical clustering. The x-
axis shows DNA sequences emerging into clusters, and the y-axis shows the induced Ward distance of each stage. Letter sizes indicate the letter’s frequency
in each cluster. The maximal Ward distance gap is indicated between the dashed black lines. The figures were created using the Python package Seaborn
and Matplotlib.

Predicting the binding score

After clustering the DNA sequences in the microarray into
groups with common features, the next step was to predict
the outcome of T7 primase–DNA binding for a given DNA
sequence. To increase the accuracy, each cluster was fitted
separately. We used GTC-containing DNA sequences and
their corresponding PBM-driven binding scores as input
and output pairs for the training set, respectively. The PBM-
driven data comprises the continuous numerical binding
values for DNA sequences, i.e. the type of data that regres-
sion models are aimed to solve.

We extracted sequence-based features (SBF) inspired by
pseudo K-tuple nucleotide composition (55). We modi-
fied the ordinary method for SBF extraction by neglecting
locality-based features, since distance was interpreted as the
number of nucleotides between a mer and its closest 5′-GTC
start site. Our modified method for feature extraction pro-
vided us with sequence-wise normalized K-mers (see Ma-

terials and Methods for normalization of the K-mers). We
then tested several regression algorithms using criteria that
can differentiate between uninformative and highly infor-
mative SBFs (Supplementary Table S1). Thereafter, we ap-
plied the L1 regularized linear regression [least absolute
shrinkage and selection operator (Lasso) (56)] model on
each bin separately with the aim to emphasize meaning-
ful mers and to prevent overfitting of the model. (Lasso’s
output is a closed form expression that is generated un-
der fewer, yet more meaningful, coefficients by applying a
penalty for each variable.) In addition, we extracted an ex-
pected performance measure separately for each bin ob-
tained by Kmeans, as the mean absolute errors (MAE, an
error estimate for the regression) for our results were un-
even across bins (Table 1). As we trained five Lasso models
on five bins, each bin’s prediction was obtained using a dif-
ferent set of coefficients. While the overall performance of
the prediction model is obvious, examining the performance
for each bin is more precise. Lasso’s performance differed
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Table 1. Results summary of 5-Fold-MCCV* in each clusters

Bin MAE* STD
Mean MAE

(%)
Mean STD

(%)

Bin weight (% of
instances from

data)

0 0.168 0.005 16.8 0.5 15.0
1 0.138 0.007 13.8 0.7 19.4
2 0.067 0.004 6.7 0.4 13.3
3 0.060 0.003 6.0 0.3 25.3
4 0.077 0.003 7.0 0.3 26.8

*MAE, mean absolute error; MCCV, Monte Carlo cross-validation.

Table 2. Effect of K-mers on model prediction

MAE* K = 1 K = 2 K = 3 K = 4

BNS = 1 0.171 0.112 0.103 0.084
BNS = 5 0.110 0.102 0.093 0.079
Ratio error no bins

error with bins 1.55 1.09 1.10 1.06
Decrease in error in %
100 × (1 − error with bins

error no bins )
35% 9% 10% 6%

*MAE, mean absolute error.

across bins, where bins 0 and 1 each generated an error of
about 15%, and bins 2, 3 and 4 generated a relatively small
error of 6% (Table 1). We found that pre-treating the data
using Kmeans decreased the prediction error by approxi-
mately 10% (Table 2).

To force all the coefficients of the Lasso model to be pos-
itive for every K-mer feature, we extracted the largest 10 co-
efficients of each bin and investigated the effect of the K-
mer features on the model. The trained models were cross
validated on 5-fold of the training dataset and tested on a
small test-set taken from the PBM results; the set consisted
of 16 sequences, divided into two groups with significantly
different primase binding signals (Figure 4A), namely, eight
sequences that showed weak binding to primase, and eight
sequences with strong binding. Given the training data dis-
tribution, our models predicted binding of primase with any
GTC-containing sequence, with an MAE of <12% (Fig-
ure 4).

To identify the most influential nucleotides for accurate
prediction of a binding score for a given PDRS, we used a
different perspective on the data. Each nucleotide position
before and after the GTC sequence was regarded as a fea-
ture and trained against gradient boosting machine (GBM)
and random forest models. GBM and random forest models
can handle categorical data, such as DNA sequences, and
can easily explore the importance of each feature for the
model. The results indicate that nucleotides adjacent to the
GTC sequence are the most essential for primase binding,
whereas distant nucleotides are much less influential (Sup-
plementary Figure S3).

Biochemical validation

On the genome, the initial step of sequence specific (PDRS)
binding is followed by synthesis of a dinucleotide (5′-AC-
3′), which is then extended into a functional primer by
DNA primase. It has previously been shown that A/G-
containing sequences that flank the specific recognition site
increase primase–DNA binding affinity in comparison to

Figure 4. Results for linear regression with L1 regularization (Lasso). Af-
ter cleaning, the training set contained 3150 instances (DNA sequences),
whereas the test set contained 16 instances. Prediction of scores by using
the regression model was performed on 16 DNA sequences with known
scores, eight of which showed weak binding to T7 primase (blue graph) and
eight showed strong binding to T7 primase (red graph). In accordance with
the training-set double distribution (black graph), the predicted binding of
the two test groups are distributed in weak and strong binding scores ar-
eas, respectively. Although the probability of finding DNA sequences with
strong binding to primase is low, the model accurately predicted all DNA
sequences that belong to the strong binding group. DNA sequences and
their empirical and predicted scores are presented in Supplementary Table
S2.

T/G-containing sequences (14). Since binding to DNA is
a pre-requisite for primase activity, the strength of binding
affects the catalytic activity of the primase and the yield of
the RNA product. We used qualitative biochemical assays
to experimentally validate the prediction model described
above. The validation provided insights into the features
embedded in the DNA sequences that are important for the
binding and catalytic activity of DNA primase.

I. Correlation between prediction of primase binding to
PDRS and catalytic activity. The eight sequences with
strong binding and the eight with weak binding to pri-
mase, which were used as the test set in the supervised
learning part of this study (Figure 4), yielded RNA
primers, as was expected from their PBM-driven binding
values. Longer RNA primers were formed on DNA tem-
plates that were predicted to have higher binding affin-
ity to the T7 primase (Supplementary Figure S4). This
finding shows, for the first time, that the sequence de-
scriptors embedded in the DNA sequence are sufficient
to predict binding scores and that prediction of a binding
sequence correlates well (96.9% Pearson correlation coef-
ficient) with the formation of RNA primers (Supplemen-
tary Figure S4). The understanding of how sequential
features embedded in the DNA are related to the binding
of primase allows us not only to predict binding scores of
a given PDRS but also to design novel PDRSs that yield
high primase binding scores.

II. Exhaustive search for flanking sequences that yield novel
PDRSs. Features important for DNA–primase binding
were used in formulating design principles to gener-
ate novel GTC-containing DNA sequences with desired
binding scores. Assuming that the DNA sequences orig-
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inate from five different clusters (Figure 3) that require
five different models, we generated two types of DNA se-
quence, as follows: (i) We selected DNA sequences from
two homogeneous clusters of primase binding scores and
exhaustively altered the non-‘GTC’ nucleotides to gener-
ate primase recognition DNA sequences (new PDRSs).
Three altered sequences that did not exist in the training
set and yielded the 10th, 50th and 90th percentile bind-
ing strengths were selected from the two clusters (clus-
ters 0 and 4, Figure 3) for further biochemical evaluation.
(ii) DNA sequences were generated in the same way, and
two novel DNA sequences from each Kmean cluster, one
that represented the strongest binding prediction and the
other that represented weakest, were selected (overall 10
sequences). DNA sequences and their predicted binding
scores are presented in Supplementary Table S3.

To characterize the effect of the DNA sequences (PDRSs)
generated as described above, we quantified and compared
RNA primer formation by T7 primase, where the gener-
ated PDRSs were used as templates for the synthesis (the
complete list of the DNA sequences is presented in Supple-
mentary Table S3). Specifically, we used [�–32P]ATP to 5′
end-label the RNA primers, which ensured that each primer
was labeled only once, and thus the intensity of the gel
bands is proportional to the absolute amounts of the syn-
thesized RNA primers. We found that the DNA sequences
with higher binding scores for T7 primase showed improved
RNA primer synthesis activity for each cluster (Figure 5).
Moreover, the overall difference in the binding scores be-
tween the two clusters, 0 and 4, remained proportional to
the amounts of RNA primers synthesized by the primase
as evident from the intensities of the gel bands (Figure 5).
Thus, larger amounts of RNA primers were synthesized
against DNA templates of cluster 0 in comparison to the
amounts of RNA primers synthesized by T7 primase if
DNA templates from cluster 4 were used (Figure 5B). For
the 10 DNA templates that represented weak/strong bind-
ing to primase from each of the five clusters (Figure 3), we
found that the newly designed DNA sequence flanking the
5′-GTC-3′ sequence with higher binding scores for T7 pri-
mase showed improved RNA primer synthesis activity, as
was to be expected (Supplementary Figure S5B).

The idea that a sequence impacts the shape of double-
stranded DNA and, as a result, the specific binding of
proteins has been studied extensively (57). However, it
should be remembered that the DNA primase acts on single
stranded DNA after unwinding of the double stranded by
the DNA helicase. In our bacteriophage T7 system, both
enzymes, the helicase and the primase, reside on the same
polypeptide. Therefore, unwinding of the double-stranded
DNA by the helicase is followed immediately by the ac-
tion of the primase, which scans the newly formed single-
stranded DNA for a recognition sequence (illustrated in
Figure 1). Since the primase domain lags just slightly be-
hind the helicase domain of gp4, we expect that folding of
the single-stranded DNA will be negligible when the full
length helicase-primase is used. In the microarray, due to
limiting reaction conditions and the size of the tethered
DNA oligonucleotides, local folding of the DNA may oc-
cur and affect primase–DNA binding (and activity). The

binding values for all the DNA oligonucleotides used for the
biochemical assays were compared to their corresponding
propensity for secondary structure formation (Supplemen-
tary Table S3). Among the 19 DNA oligonucleotides, only
two were predicted to form a stable secondary structure,
and two were predicted to have weak folding propensity.
The remaining 15 sequences were predicted to be unfolded.
Neither of the two templates which showed likelihood to
form secondary structures (Supplementary Table S3, clus-
ter 2 a,b) showed RNA primer formation (Supplementary
Figure S5), despite moderate predicted binding scores (Sup-
plementary Table S2). Formation of secondary structures
by the DNA templates may have an effect on primase bind-
ing and activity, however, no correlation was found be-
tween secondary structure formation and predicted binding
scores.

Previous studies proposed that the helicase may affect the
specific binding of the DNA primase (58–60). To examine
the effect of the helicase on primase binding and activity,
we overexpressed and purified the 63-kDa full-length gp4
that contains both the helicase and the primase domains.
Comparison between the full-length gp4 and the T7 pri-
mase domain showed no significant difference in activities
and identical patterns of RNA primer formation (Supple-
mentary Figures S5 and S6).

These results confirm our machine learning prediction
model and indicate that higher binding affinity for PDRS
recognition sequences is dictated by features embedded in
the DNA sequence. Having completed the exhaustive search
for flanking sequences that yield novel primase-DNA bind-
ing sequences described here, we are now in a position to
design DNA templates that yield: (i) larger amounts of
RNA primers and (ii) longer RNA primers that can serve
as functional primers for T7 DNA polymerase (61). Both
the length and the quantity of the RNA primers are likely
to be essential for the ‘decision’ to start Okazaki fragments
by DNA polymerase on the lagging DNA strand.

DISCUSSION

On the basis of PBM data for primase binding previously
obtained for >150000 DNA sequences, this study set out
to: (i) develop the means to predict the binding score of T7
primase for a given DNA sequence, (ii) describe the DNA
sequence features essential for binding of the enzyme and
(iii) generate novel sequences with a high propensity for
T7 primase binding. The K-mer approach for feature se-
lection in the DNA sequential data that was used here ap-
pears to cover all possible combinatorial pieces of infor-
mation hidden in the DNA sequences and serves as an ef-
ficient strategy for feature extraction. The K-mer method,
which simply counts explicit combinations of nucleotides in
a DNA sequence, was superior to other accepted methods
of ‘hand-crafted’ feature extraction from DNA sequences.
Features obtained by the K-mer method clearly bear the
DNA properties that are important for primase binding, as
demonstrated by the unsupervised analysis in which clus-
tered groups coincided with experimental binding scores.
These DNA properties enable the formation of intermolec-
ular forces (van der Waals, hydrogen, electrostatic and steric
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Figure 5. RNA primer synthesis catalyzed by the T7 primase on computer generated GTC-containing DNA templates. (A) Table summarizes the DNA
template sequences used for the biochemical validation and their corresponded values. Three DNA sequences from each of the Kmeans clusters #0 and
#4 that predicted the 10th, 50th and 90th percentile binding scores were selected in each cluster. (B) Top: Distribution of binding values for the two
clusters. Note that cluster #0 shows stronger primase binding values, on average, than cluster #4. Bottom: Oligoribonucleotide synthesis by T7 primase.
The standard reaction mixture contained oligonucleotides with the primase recognition sequence, a control oligonucleotide 5′-GGGTCA10-3′, and [� -
32P]ATP, CTP, GTP and UTP. After incubation, the radioactive products were analyzed by electrophoresis on a 25% polyacrylamide gel containing 7 M
urea, and visualized using autoradiography. The pattern of primase activity remains identical when using the full-length helicase-primase (gene 4 protein,
gp4) of bacteriophage T7 (Supplementary Figure S5). (C) illustration of the effect of primase-DNA binding affinity on the size of RNA primers.

interactions) with the zinc-binding-motif of the primase im-
portant for specific DNA sequence recognition.

Although this study focused on DNA sequence recogni-
tion by T7 primase, the findings may well have bearing on
rules hidden in DNA sequences that are crucial for other
specific DNA-protein interactions. These findings thus con-
tribute to our understanding of how DNA primase selects
Okazaki fragments start sites on the genome and why only
some of the possible priming sites initiate Okazaki frag-
ments during DNA replication, while others do not, re-
sulting in Okazaki fragments with a larger-than-expected

average length. The implications of this study are that de-
sign principles for any DNA sequence with a desired bind-
ing affinity to T7 primase can indeed be generated compu-
tationally. Furthermore, PDRSs can be designed to yield
an RNA primer with a particular content. In conclusion,
state-of-the-art carefully selected learning methods, such
as those used here, have enormous analytical potential for
predicting specific protein-DNA interactions, but require
large amounts of data, a requirement than can indeed be
met by using PBMs. Our results for T7 DNA primase as
a model system can be generalized to other primases, with
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improved sensitivity and specificity to their DNA recogni-
tion sequence.
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