

Article Exercise-Induced Pulmonary Hypertension Is Associated with High Cardiovascular Risk in Patients with HIV

Rosalinda Madonna ^{1,*}, Silvia Fabiani ², Riccardo Morganti ³, Arianna Forniti ², Filippo Biondi ¹, Lorenzo Ridolfi ¹, Riccardo Iapoce ², Francesco Menichetti ² and Raffaele De Caterina ¹

- ¹ Department of Pathology, Cardiology Division, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56124 Pisa, Italy; f.biondi9@studenti.unipi.it (F.B.); ridolfi4@studenti.unipi.it (L.R.); raffaele.decaterina@unipi.it (R.D.C.)
- ² Infectious Disease Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56124 Pisa, Italy; s.fabiani@ao-pisa.toscana.it (S.F.); arianna.forniti@gmail.com (A.F.); riccardo.iapoce@ao-pisa.toscana.it (R.I.); francesco.menichetti@unipi.it (F.M.)
- ³ Section of Statistics, University Hospital of Pisa, 56124 Pisa, Italy; r.morganti@ao-pisa.toscana.it
- * Correspondence: rosalinda.madonna@unipi.it

Abstract: Background and Aim: Pulmonary hypertension (PH) at rest can be preceded by the onset of exercise-induced PH (ExPH). We investigated its association with the cardiovascular (CV) risk score in patients with human immunodeficiency virus (HIV). **Methods:** In 46 consecutive patients with HIV with low (n = 43) or intermediate (n = 3) probability of resting PH, we evaluated the CV risk score based on prognostic determinants of CV risk. Diagnosis of ExPH was made by cardiopulmonary exercise test (CPET) and exercise stress echocardiogram (ESE). **Results:** Twenty-eight % (n = 13) of the enrolled patients had ExPH at both CPET and ESE, with good agreement between the two methods (Cohen's kappa = 0.678). ExPH correlated directly with a higher CV score (p < 0.001). Patients with a higher CV score also had lower CD4+ T-cell counts (p = 0.001), a faster progression to acquired immunodeficiency syndrome (p < 0.001), a poor immunological response to antiretroviral therapy (p = 0.035), higher pulmonary vascular resistance (p = 0.003) and a higher right atrial area (p = 0.006). **Conclusions:** Isolated ExPH is associated with a high CV risk score in patients with HIV. Assessment of ExPH may better stratify CV risk in patients with HIV.

Keywords: acquired immunodeficiency syndrome; cardiovascular risk; exercise-induced pulmonary hypertension; exercise stress echocardiography; exercise cardiopulmonary test

1. Introduction

HIV infection represents a potential risk factor for pulmonary arterial hypertension (PAH) [1]. PAH is the main cause of mortality in patients with HIV [2]. Reduced pulmonary vascular reserve may be silent at rest, while it occurs with PH during exercise. The onset of exercise-induced pulmonary hypertension (ExPH), therefore, represents the first clinical sign of pulmonary vascular disease that can progress to PAH. Similar to other clinical PAH groups, a significant number of patients with HIV may have ExPH [3–7]. However, the prognostic value of ExPH in patients with HIV is poorly studied and Guidelines from the American College of Cardiology/American Heart Association recommend further investigation [8].

Isolated ExPH is also associated with cardiovascular (CV) events in patients with valvular or ischemic heart disease [9,10], while it is associated with clinical worsening in patients with scleroderma [11].

We have recently shown that the onset of ExPH, diagnosed by exercise stress echocardiogram (ESE), is associated with poor control of HIV infection and ExPH is associated with impaired functional capacity, as measured by the World Health Organization functional class (WHO-FC), suggesting that disease progression in the lung leads to a reduction in

Citation: Madonna, R.; Fabiani, S.; Morganti, R.; Forniti, A.; Biondi, F.; Ridolfi, L.; Iapoce, R.; Menichetti, F.; De Caterina, R. Exercise-Induced Pulmonary Hypertension Is Associated with High Cardiovascular Risk in Patients with HIV. *J. Clin. Med.* 2022, *11*, 2447. https:// doi.org/10.3390/jcm11092447

Academic Editor: Luis Garcia-Marcos

Received: 25 March 2022 Accepted: 25 April 2022 Published: 27 April 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). the vasodilatory reserve of pulmonary circulation and, consequently, PH triggered by exercise [12]. How ExPH correlates with CV risk in patients with HIV has never been previously studied. Here, we hypothesized that an increased CV risk in patients with HIV can be determined early through the work-out for ExPH by ESE and cardiopulmonary stress testing (CPET).

2. Methods

Study Design and Data Collection. We conducted a prospective, observational, cohort study of patients with HIV recruited from the Infectious Disease Clinic at Pisa University Hospital. The study complies with the Helsinki <u>Declaration</u>, and informed consent was obtained from all patients prior to any diagnostic test. Local investigators had full access to patient data and medical records.

All of the enrolled patients underwent evaluation of PH probability at rest by transthoracic echocardiography (TTE) [9,12], followed by ExPH assessment by transthoracic exercise stress echocardiogram (ESE) and cardiopulmonary exercise test (CPET), as detailed in the Supplementary Materials. Patients included had either a "low" PH probability at rest (n = 43) or an "intermediate" PH probability at rest (n = 3). We excluded patients with a "high" PH probability (n = 8). Patients were then classified as either with or without ExPH at ESE or CPET. We evaluated the CV risk score by assessing the presence/absence of the prognostic determinants of cardiovascular (CV) risk, according to the 2015 European Society of Cardiology (ESC)/European Respiratory Society (ERS) Guidelines [1] and, as detailed in the Supplementary Materials. We assigned a severity score of 1–3 to each prognostic determinant and derived an overall CV risk score [11]. We then evaluated the association of a higher CV score with the presence/absence of ExPH, and with several echocardiographic parameters [12] and immuno-virological parameters.

Mono and 2D Transthoracic Echocardiography was performed using a Philips iE33 echocardiograph (Philips iE33 xMATRIX echocardiography system, Andover, MA) [13]. The images were recorded in at least three cardiac cycles. Right atrial pressure (RAP) was assessed by evaluating the inferior vena cava (IVC) diameter and collapsibility during inspirium [13]. Systolic pulmonary arterial pressure (PAPs) was calculated by adding RAP to the maximum systolic pressure gradient from tricuspid regurgitation velocity (TRV). Left atrial volume index (LAVi) was calculated by Simpson's algorithm in apical four-chamber and two-chamber view [13]. Mitral, aortic and tricuspidal regurgitations were assessed by measuring the vena contracta at apical four-chamber view.

Stress echocardiography. All patients underwent a semi-supine ESE performed with a 2.5-MHz duplex transducer and a Philips iE33 echocardiograph (Philips iE33 xMATRIX echocardiography system, Andover, MA, USA) on a semi-recumbent cycle ergometer (Ergoline, model 900 EL, Germany), according to the European Association of Echocardiography (EAE) Guidelines [13–18]. A detailed protocol of the echocardiographic procedures is reported in the Supplementary Materials.

Cardiopulmonary Exercise Test. We performed the CPET on an electronically-braked cycle ergometer, using Vmax 6200 Spectra Series software (SensorMedics, Hochberg, Germany), according to a graded, cycling workload increase protocol. The test was interrupted when one of the following symptoms or signs occurred: angina; electrocardiographic signs of myocardial ischemia or injury; an excessive blood pressure increase (systolic blood pressure \geq 240 mmHg, diastolic blood pressure \geq 120 mmHg); dyspnea or maximal predicted heart rate. A detailed protocol is reported in the Supplementary Materials [19–21].

Statistical Analyses

Categorical data were expressed by absolute and relative frequency, and continuous data by mean and standard deviation (SD). The Chi square test and the Student's *t*-test for independent (two-tailed) samples were used to compare categorial and continuous variables with ExPH, respectively. Pearson's correlation analysis was used to compare the CV score with continuous factors, while the Student's *t*-test for independent samples

(two-tailed) was used to compare the CV score with categorical factors. All analyses were performed with the SPSS v.26 statistical software, with statistical significance set at 0.05.

3. Results

We enrolled 54 patients from January 2020 to July 2021 in the outpatient clinic dedicated to the diagnosis and treatment of pulmonary hypertension, University Cardiology Division, University Hospital of Pisa.

All patients included in the study had no abnormalities on chest x-ray, lung function tests or electrocardiogram. We excluded eight patients with a high probability of PH on the resting echocardiogram. The remaining 46 were admitted to the study. Tables A1 and A2 report the baseline characteristics, medical and drug histories of the entire study cohort with respect to the presence and absence of isolated ExPH at CPET and ESE, respectively. In our cohort, 72% (n = 33) of the enrolled population did not develop ExPH at ESE and 91% (n = 30) of these patients also did not develop ExPH at CPET, with a Cohen's kappa = 0.678, indicating moderate agreement in the diagnosis of isolated ExPH between the two different methods (Figure 1). The mean age of the 46 participants included in the study was 53 \pm 11. The age of those with ExPH diagnosed by CPET (Table A1) and ESE (Table A2) was 52 \pm 14 years and 51 \pm 13 years, respectively, while the age of those without ExPH at CPET and ESE was 54 ± 10 and 55 ± 10 , respectively. We observed no statistically significant differences in patients with and without ExPH on CPET and ESE in terms of mean body surface index (BSA) age, sex, body mass index (BMI), heart rate, systolic and diastolic blood pressure, history of hypertension, comorbidities, CV risk factors and concomitant drug use, bio-humoral data and proinflammatory markers such as IL-6, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and fibrinogen (Tables A1 and A2). Patients diagnosed with ExPH, both on CPET (Table A1) and ESE (Table A2), had reduced functional capacity compared to patients without ExPH (p < 0.001), while they did not show significant differences in terms of morphology and function of the right or left ventricle (Tables A3 and A4). Patients with ExPH had higher values of sPAP (p < 0.001), TRV (p = 0.048), right atrial area (p = 0.008) and pulmonary vascular resistance (velocity ratio Peak TR and $VTI_{RVOT} > 0.20$, p < 0.003), compared to patients without ExPH (Table A4). We did not observe any correlation between the diagnosis of ExPH at CPET and the echocardiographic parameters associated with the pulmonary circulation and the right chambers, with the exception of sPAP (Table A3).

Figure 1. Concordance of exercise stress echocardiography and the cardiopulmonary exercise test in the diagnosis of isolated exercise pulmonary hypertension. Abbreviations: ESE, exercise stress echocardiogram; ExPH, exercise-induced pulmonary hypertension; CPET, cardiopulmonary exercise test. We evaluated the CV risk score in all 46 patients. The population's overall CV risk score ranged from 8 (low CV risk) to 14 (high CV risk), with an average of 10.2 ± 2.4 . The isolated ExPH diagnosed by both CPET and ESE was directly correlated to a higher CV score (p < 0.001) (Table 1). Patients with a higher CV score also had lower CD4+ T-cell counts (p = 0.001), a higher proportion of clinical progression to AIDS (p < 0.001) and a poor immunological response to anti-retroviral therapy (ART) (p = 0.035) (Table 2) and a higher right atrial area (p = 0.006) at rest TTE compared to patients with a lower CV risk score (Table 3). Furthermore, the proportion of patients with PVRI (ratio of Peak TR velocity to VTI_{RVOT}) > 0.20 and higher CV score was increased compared to patients with a lower CV score (p = 0.003), indicating higher total pulmonary vascular resistance in patients with higher CV risk (Table 3). No associations with time to HIV diagnosis, time to beginning ART, ART discontinuation, virological response to ART, current use of protease inhibitors and proinflammatory markers such as IL-6, ESR, CRP and fibrinogen were found (Table 2).

Table 1. Comparison between score and ExPH.

	CV Score	<i>p</i> -Value
ExPH at CPET		< 0.001
по	8.8 (0.7)	
yes	12.9 (2.1)	
ExPH at ESE		< 0.001
по	8.9 (1.1)	
yes	12.5 (2.4)	

CV score values are shown as mean (SD). Abbreviations: ExPH, isolated exercise pulmonary hypertension; CPET, cardiopulmonary exercise test; ESE, exercise stress echocardiogram.

Table 2. Comparison between score and virological and immunological factors.

	Statistics	<i>p</i> -Value
Time to HIV diagnosis (y)	-0.155	0.309
CD4+ T-cell count at diagnosis (cell/mmc)	-0.402	0.012
CD4+ T-cell count at diagnosis (%)	-0.380	0.020
CD4+ T-cell count last determination (cell/mmc)	-0.386	0.009
CD4+ T-cell count last determination (%)	-0.480	0.001
Clinical progression to AIDS		< 0.001
110	8.8 (1.1)	
yes	12.9 (2)	
Development of resistance to ART		0.451
110	9.8 (2.1)	
yes	10.4 (2.7)	
HIV-RNA levels at diagnosis (cp/mL)	-0.116	0.502
HIV-RNA levels last determination (cp/mL)	0.010	0.949
HIV-RNA levels last determination (cp/mL)		0.949
<20 cp/mL	9.9 (2.3)	
>20 cp/mL	10 (2.3)	
Time to beginning of ART	-0.182	0.226
Current use of protease inhibitors		0.101
110	9.8 (2.2)	
yes	11.5 (2.7)	
Combination of ART with booster (ritonavir		0.827
or cobicistat)		0.027
110	10.1 (2.4)	
yes	9.9 (2.4)	
Virologic response to ART		0.690
<20 copies/mL	9.7 (2.2)	
20–50 copies/mL	10.1 (2.3)	
50–200 copies/mL	11.5 (3.5)	

Table 2.	Cont.
----------	-------

Statistics	<i>p</i> -Value
10.7 (2.9)	
	0.035 *
9.3 (1.8)	
10.6 (2.6)	
12.3 (2.9)	
	0.536
10.2 (2.4)	
9.7 (2.3)	
0.289	0.152
-0.247	0.224
0.194	0.354
-0.053	0.789
	Statistics 10.7 (2.9) 9.3 (1.8) 10.6 (2.6) 12.3 (2.9) 10.2 (2.4) 9.7 (2.3) 0.289 -0.247 0.194 -0.053

Statistics: Pearson's r or mean (SD). Abbreviations: HIV, Human immunodeficiency virus; ART, antiretroviral therapy; IL-6, interleukin-6; PCR, reactive C protein; VES, Erythrocyte sedimentation rate; FBG, fibrinogen. * only the comparison between "optimal" and "not acceptable" was statistically significant with a p = 0.040, by Dunnett correction using "not acceptable" as the reference category.

Table 3. Comparison between score and ultrasound parameters.

Parameter	Statistics	<i>p</i> -Value
Concentric remodeling		0.557
110	9.9 (2.2)	
yes	10.3 (2.6)	
Normal geometry		0.755
110	10.1 (2.4)	
yes	9.9 (2.3)	
Concentric hypertrophy		0.014
по	10.2 (2.4)	
yes	8.7 (0.6)	
Eccentric hypertrophy		0.383
по	10 (2.3)	
yes	11.5 (3.5)	
LAD	-0.055	0.718
LAV	-0.076	0.620
iLAV	-0.067	0.667
LVEF	-0.164	0.281
FwSV	-0.097	0.527
iFwSV	-0.112	0.465
MR	-0.102	0.503
AO	-0.146	0.339
MS	-0.069	0.651
AS	-0.069	0.651
E wave	0.116	0.448
A wave	0.153	0.315
Septal e wave	0.025	0.871
E/A	-0.107	0.485
E/e	0.178	0.242
iRVESA	0.133	0.385
iRVEDA	0.069	0.652
iRVESV	0.124	0.419
iRVEDV	-0.133	0.385
RD1	0.075	0.626
RD2	-0.215	0.157
RD3	-0.275	0.068
RVOT prox.	-0.081	0.596
RVOT dist.	0.071	0.644
Eccentricity index	-0.207	0.171

 Table 3. Cont.

Parameter	Statistics	<i>p</i> -Value
RV/LV basal diameter ratio	-0.192	0.205
TAPSE	0.088	0.564
FAC	0.179	0.240
RV E/A	-0.140	0.358
RV E/e	-0.026	0.869
RV S vel	0.151	0.322
RV S VTI	-0.245	0.104
TR	-0.127	0.407
sPAP	-0.018	0.906
aPAP at exercise peak	0.269	0.074
mPAP	0.036	0.814
TRV	0.115	0.454
TRV at exercise peak	0.032	0.834
RV outflow AT	0.207	0.173
VCI diameter	-0.048	0.753
RA area	0.401	0.006
iRAV	0.273	0.070
VTI at rvot	-0.583	0.000
VRT/VTI at rvot	0.197	0.196
TAPSE/PAPs	0.101	0.508
PVRI		0.003
<0.20	8.88 (1.23)	
>0.20	12.10 (2.55)	

Statistics: Pearson's r or mean (SD). Abbreviations: LVEDD, left ventricle end-diastolic diameter; LVESD, left ventricle end-systolic diameter; LVEDV, left ventricle end-diastolic volume; LVESV, left ventricle end-systolic volume; iLVEDV, indexed LVEDV; iLVESV, indexed LVESV; LAD, left atrial diameter; LAV, left atrial volume; iLAV, indexed LAV; LVEF, left ventricle ejection fraction; FwSV, forward stroke volume; iFwSV, indexed FwSV; iRVESA, indexed right ventricle end-systolic area; iRVEDA, indexed right ventricle end-diastolic area; iRVESV, indexed right ventricle end-diastolic area; iRVESV, indexed right ventricle end-diastolic volume; RD, right diameter; RVOT, right ventricle outflow; TAPSE, tricuspid annular plane excursion; FAC, fractional area change; VTI, velocity time integral; sPAP, systolic pulmonary arterial pressure; mPAP, mean PAP; TR, tricuspid regurgitation; IVC, inferior vena cava; iRAV, indexed right atrial volume; TRV, tricuspid regurgitation velocity; PVRI, Pulmonary Vascular Resistance Index.

4. Discussion

We investigated whether isolated ExPH is associated with a higher CV risk score in patients with HIV without a high probability of PH at resting echocardiogram. We have found that patients who develop ExPH have a higher CV risk score, as assessed by the ESC/ERS Guidelines [1]. We have found that isolated ExPH is associated with worse WHO-FC, shorter walk distance at the 6MWT and a lower VO₂ peak, indicating worse functional capacity. The worst CV risk score was actually clustered into the isolated ExPH group, suggesting the usefulness of ExPH in assessing CV risk of patients with HIV. This is supported by the fact that patients with a worse CV risk score who also had isolated ExPH showed worse echo parameters related to PH and its consequences on the right cardiac chambers, as these patients had a higher total pulmonary vascular resistance and a higher right atrial area at rest TTE. Our results suggest that the work-out of ExPH using the combined ESE and CPET approach allows for the identification of those patients with HIV who develop ExPH due to reduced pulmonary vasodilatory reserve and who have a worse CV risk profile.

Unlike the previous study, where we only used the echocardiographic approach in diagnosing ExPH [12], here we used a combined CPET-ESE approach to non-invasively assess cardiovascular and pulmonary responses to exercise. Several studies have shown that in different clinical settings, CPET is more sensitive and specific than ESE in identifying pulmonary vascular abnormalities precipitated by exercise [22]. In our cohort we could not evaluate the differential performance of CPET and ESE in detecting ExPH as we did not perform right stress cardiac catheterization, which is the reference gold standard [1]. However, we have shown that there is good agreement in diagnosis between the two

different methods, as demonstrated by the high Cohen's kappa index. However, the benefit of performing a combined CPET-ESE is the identification of concomitant left heart disease as the cause of exertional dyspnea and ExPH. Increased left ventricle filling pressure is known to lead to pulmonary venous congestion and post-capillary pulmonary hypertension, regardless of LVEF [23,24]. In our cohort, TEE at rest and ESE ruled out the existence of left heart disease as a possible cause of ExPH, regardless of the method used for diagnosis.

We have recently shown that the onset of ExPH, as diagnosed by ESE, is associated with poor immunological control of HIV infection [11]. Here we have found that those patients who have worse immunological control of the disease also have a higher CV risk score. Finally, patients with a higher CV risk score also had greater clinical progression to AIDS and poorer immunological response to ART. This confirms previous studies demonstrating the role of a weakened or dysfunctional immune system in determining CV risk and prognosis of HIV-related PAH [2,25,26]. Thus, isolated ExPH can identify patients with HIV at higher CV risk as a consequence of poorer immune control of the disease. PAH often complicates HIV infection and this leads to the increased mortality of these patients. We are now demonstrating that the development of isolated ExPH in such patients without a high PH probability at rest can be considered an early marker of a worsening outcome.

HIV proteins can trigger an inflammatory response, leading to PAH [27]. Patients with HIV have elevated levels of interleukin 6 (IL-6), tumor necrosis factor α (TNF α) and nitric oxide synthase (NO) inhibitors [28,29]. The inflammation theory of PAH is biologically and clinically plausible, as PAH continues to manifest significantly in patients with HIV as an expression of the persistence of this inflammatory component, despite a good response to ART [30]. However, so far there are no clinical studies that correlate high levels of these proinflammatory mediators with the development of PAH in patients with HIV. An exploratory Phase 1 clinical study, the first of its kind to our knowledge, is still ongoing to test the effects of a combination of the HIV protease inhibitors saquinavir and ritonavir on proinflammatory mediators and pulmonary hemodynamics in patients with idiopathic PAH (ClinicalTrials.gov identifier: NCT02023450). Therefore, the blood levels of these mediators may currently be useful biomarkers in the stratification of patients with HIV with a higher atherosclerotic CV risk, but not those who have a propensity to develop HIVrelated PAH. On the other hand, these biomarkers are not included in any of the validated risk scores in patients with PAH group 1, including patients with HIV. In our cohort, we did not observe any significant association between levels of IL-6 or other proinflammatory markers and ExPH or a worse CV risk score. However, only a few patients had such biomarkers evaluated. Further investigation with more patients is needed to establish the role of proinflammatory biomarkers in the development of PAH and a worse CV risk score.

Study Limitations

This study has several limitations: (1) the small sample size, for which our report should be intended as a pilot study on the role of ExPH in risk stratification of patients with HIV; (2) patients with ExPH at ESE and CPET did not undergo cardiac catheterization, which is, however, not indicated, and therefore unethical in such patients with low and intermediate probability of PH [1]. Finally, adequate follow-up could allow us to verify if patients with ExPH develop PH at rest, and if this is associated with a worsening of CV risk over time. Our research group is carrying out a long-term follow-up, which will help to clarify the prognostic significance of ExPH in the HIV population.

In conclusion: Isolated ExPH associates with a higher CV risk score in patients with HIV. Assessment of ExPH by CPET or ESE can contribute to the risk stratification of patients with HIV.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/jcm11092447/s1, online text: methods.

Author Contributions: Conceptualization, R.M. (Rosalinda Madonna); methodology, R.M. (Rosalinda Madonna); software, R.M. (Riccardo Morganti); validation, RDC, F.M. (Francesco Menichetti)

and R.I.; formal analysis, R.M. (Riccardo Morganti); investigation, R.M. (Rosalinda Madonna), F.B., S.F., L.R. and A.F.; resources, R.D.C.; data curation, R.M. (Rosalinda Madonna) and S.F.; writing—original draft preparation, R.M. (Rosalinda Madonna); writing—review and editing, R.D.C. and S.F.; visualization, R.M. (Rosalinda Madonna); project administration, R.D.C. and F.M.; funding acquisition, R.M. (Rosalinda Madonna). All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by from Ministero dell'Istruzione, Università e Ricerca Scientifica, grant number 549901_2020_Madonna:Ateneo. The APC was funded by 549901_2020_Madonna:Ateneo.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki, and approved by Comitato Etico di Area Vasta Nord Ovest (CEAVNO) (protocol code 21315_DE_CATERINA, date of approval 15 March 2022).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. Written informed consent has been obtained from the patient(s) to publish this paper.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Demographics, medical history and medication use according to presence and absence of ExPH at CPET.

Clinical Parameter	ExPH at CPET	Mean	SD	<i>p</i> -Value
Ago	по	54.21	9.76	0.(15
Age	yes	52.38	13.86	0.615
BC A	по	1.91	0.20	0.475
DSA	yes	1.86	0.24	0.475
SAP	по	126.36	12.20	0.652
JAI	yes	124.62	10.50	0.032
DAP	по	74.24	7.08	0 745
	yes	75.00	7.07	0.745
		ExPH a	t CPET	
		no	yes	
Sex	F	11	5	0.742
	М	22	8	
Smoke	no	16	3	0.264
	yes	16	9	
	1	32	3	0.001
Functional class FC-WHO		1	0	<0.001
	111	0	10	
Chronic liver disease	110	10	5	0.425
	yes no	29	12	
Kidney disease	1/05	4	1	0.664
	no	29	11	
Thyroid disease	ves	4	2	0.767
	no	29	13	
Arterial hypertension	yes	4	0	0.189
Dyslipidemia	по	10	6	0.000
	yes	23	7	0.309
Diabetes mellitus	по	29	11	0 7/7
	yes	4	2	0.767
Familiarity for CAD	по	26	10	0.901
Familiarity for CAD	yes	7	3	0.891

Clinical Parameter	ExPH at CPET	Mean	SD	<i>p</i> -Value
	по	29	12	0.000
Calcium channel blockers	yes	4	0	0.206
Hypoglycomic drugs	по	10	6	0.200
Trypogrycenne drugs	yes	23	7	0.309
Data bla share	по	32	13	0 526
Beta blockers	yes	1	0	0.526
ACE in hitema an aantaniaa	по	32	13	0 52(
ACE inhibitors or sartanics	yes	1	0	0.526
Thuroid hormones	по	29	11	0.767
Thyroid normones	yes	4	2	0.707
Lipid lowering drugs	по	10	6	0.200
Lipid lowering drugs	yes	23	7	0.309

Table A1. Cont.

Abbreviations: ExPH, isolated exercise pulmonary hypertension; CPET, cardiopulmonary exercise test; BSA, body surface area; SAP, systolic arterial pressure; DAP, diastolic arterial pressure; CAD, coronary artery disease; F, female; M, male; ACE, angiotensin converting enzyme.

Table A2. Demographics, medical history and medication use according to presence and absence of ExPH at ESE.

Factor	ExPH at ESE	Mean	SD	<i>p</i> -Value
Δσο	по	54.58	9.94	0 201
nge	yes	51.46	13.33	0.391
BSA	no	1.90	0.20	0.932
DON	yes	1.89	0.25	0.952
Heart rate	по	69.03	6.30	0.839
Treattrate	yes	68.62	5.98	0.007
	yes	126.92	9.47	
DAP	no	73.79	7.18	0.308
	yes	76.15 E::DII	6.50	
Factor		EXPH	at ESE	a valua
Factor	E	12	yes	<i>p</i> -value
Sex	M	21	9	0.720
	no	15	4	
Smoke	ex	1	1	0.570
chiche	ves	17	8	0107 0
	I	31	4	
Functional class FC-WHO	Π	1	0	< 0.001
	III	1	9	
	по	15	9	0.146
Chronic liver disease	yes	18	4	0.140
Kidney disease	по	29	12	0.664
Runey discuse	yes	4	1	0.004
Thyroid disease	по	28	12	0 499
	yes	5	1	0.177
Arterial hypertension	по	30	12	0.880
51	yes	3	1	01000
Dyslipidemia	по	9	7	0.088
	yes	24	6	
Diabetes mellitus	110	20	12	0.499
	yes	27	9	
Familiarity for CAD	110	6	4	0.351
Calcium channel blockers	no	30	11	
	yes	3	1	0.937
I I-m - alexandra doura -	no	9	7	0.000
nypogrycemic arugs	yes	24	6	0.088

Factor	ExPH at ESE	Mean	SD	<i>p</i> -Value
Beta blockers	по	33	12	0.107
	yes	0	1	0.107
ACE inhibitors or sartanics	no	32	13	0 506
	yes	1	0	0.526
Thyroid hormones	no	28	12	0.400
	yes	5	1	0.499
Lipid lowering drugs	по	9	7	0.000
	yes	24	6	0.088

Abbreviations: ExPH, isolated exercise pulmonary hypertension; ESE, exercise stress echocardiography; BSA, body surface area; F, female; M, male; CAD, coronary artery disease; ACE, angiotensin converting enzyme.

Continuous Ultrasound Parameters	ExPH at CPET	Mean	SD	<i>p</i> -Value
LVEDD	110 1185	43.656 43.558	5.522 5.978	0.959
	yes 110	26 656	6 4 3 9	
LVESD	1105	20.000	7 090	0.442
	yc3 110	103 875	31 270	
LVEDV	Wes	93.000	28.451	0.299
	100 110	36.676	10.597	
iLVEDV	ves	31.559	10.808	0.163
	no	38.219	14.041	
LVESV	yes	33.167	16.219	0.314
	по	13.416	4.944	0.204
1LV ESV	yes	11.923	5.184	0.384
137	по	152.884	48.281	0.442
Lv	yes	140.817	38.913	0.445
ilVmass	по	79.132	29.520	0.255
ILV IIId35	yes	68.110	24.111	0.200
ΙΑD	по	48.359	8.571	0 919
	yes	48.083	5.744	0.919
LAV	по	38.778	20.368	0 294
LITY	yes	32.317	7.786	0.271
iLAV	110	13.683	7.657	0.468
	yes	12.000	3.149	
LVEF	по	65.147	6.406	0.584
	yes	66.500	9.200	
FwSV	<i>n0</i>	72.300 63.750	22.197	0.268
	yes	25 367	24.000	
iFwSV	110	21 745	8 944	0.195
	yc3 110	0.688	0.741	
MR	Wes	0.250	0.452	0.027
	100 110	0.250	0.672	
AO	ves	0.250	0.622	1.000
-	no	69.769	17.989	
E wave	yes	69.817	14.658	0.993
A	по	71.397	30.384	0.700
A wave	yes	74.167	26.889	0.783
Sontal e wave	по	9.959	3.003	0.827
Septar e wave	yes	9.767	1.837	0.837
F/Δ	по	1.067	0.394	0 000
L/A	yes	1.085	0.629	0.909
E/e	по	6.458	3.408	0 299
2/ 0	yes	7.575	2.193	0.277
iRVESA	по	4.055	1.879	0.396
	yes	4.578	1.542	0.070

Continuous Ultracound Baramators	EvDU at CDET	Maan	6D	" Value
Continuous Oltrasound Parameters	EXPH at CPE I	A OFF	2 142	<i>p</i> -value
iRVEDA	110	6 947	2.143	0.991
	no	7.161	4.907	
iRVESV	ves	7.338	2.902	0.908
	no	16.048	6.550	
iRVEDV	yes	13.507	4.273	0.220
PD1	по	36.128	7.270	0.822
RDI	yes	36.667	6.372	0.822
RD2	по	33.472	5.483	0.116
102	yes	30.333	6.513	0.110
RD3	по	20.503	6.485	0.041
	yes	16.083	5.351	
RVOT prox.	110	31.710	3 905	0.627
	yes	32 353	7 471	
RVOT dist.	ves	29.042	5.163	0.166
	no	0.941	0.110	
eccentricity index	yes	0.914	0.103	0.475
	no	0.864	0.162	0.017
RV/LV basal diameter ratio	yes	0.808	0.162	0.317
TADCE	по	21.913	7.104	0 707
TAPSE	yes	22.842	7.665	0.707
FΔC	по	45.053	9.607	0.210
IAC	yes	49.083	8.554	0.210
RV E/A	по	4.338	13.318	0 389
	yes	0.963	0.408	0.007
RV E/e	по	3.673	1.829	0.683
·	yes	3.938	1.891	
RV S vel	1105	10.993	4.400 5 301	0.630
	ycs 10	3 608	4 050	
RV S VTI	nes ves	1.810	0.926	0.024
	no	1.219	0.491	
TR	yes	1.250	0.622	0.862
DAD	no	22.375	5.752	0 740
SPAP	yes	21.750	5.675	0.749
sPAP at exercise peak	по	32.847	10.602	0.028
SIAI at exercise peak	yes	40.767	9.452	0.028
mPAP	по	16.333	3.623	0 969
1111711	yes	16.385	4.636	0.909
TRV	по	2.009	0.373	0.622
	yes	2.075	0.449	
TRV at exercise peak	10	2.544	0.555	0.557
	yes	2.636	42 717	
RV outflow AT	110	138 167	34 821	0.014
	no	15.016	3.777	
VCI diameter	ves	14.158	5.896	0.571
	no	14.709	3.227	
KA area	yes	15.875	3.294	0.295
:D AV	no	5.356	2.191	0.410
ΙΚΑΥ	yes	5.924	1.420	0.410
VTI at rvot	по	15.843	3.811	<0.001
v 11 at 1 vot	yes	11.167	2.916	10.001
VRT/VTI at rvot	по	0.156	0.142	0.414
	yes	0.191	0.051	

Table A3. Cont.

Continuous Ultrasound Parameters	ExPH at CPET	Mean	SD	<i>p</i> -Value
TAPSE/PAPs	по	1.033	0.347	0.000
	yes	1.100	0.471	0.609
Categorical ultrasound parameters	ExPH at ESE	по	yes	<i>p</i> -value
Concentric remodeling	по	19	5	0.202
	yes	13	7	0.293
Normal geometry	по	18	7	0.001
	yes	14	5	0.901
Concentric hypertrophy	по	29	12	0 272
	yes	3	0	0.272
Eccentric hypertrophy	по	31	12	0 536
	yes	1	0	0.550

Abbreviations: ExPH, isolated exercise pulmonary hypertension; CPET, cardiopulmonary exercise test; LVEDD, left ventricle end-diastolic diameter; LVESD, left ventricle end-systolic diameter; LVEDV, left ventricle end-diastolic volume; LVESV, left ventricle end-systolic volume; iLVEDV, indexed LVESV; LAD, left atrial diameter; LAV, left atrial volume; iLAV, indexed LAV; LVEF, left ventricle ejection fraction; FwSV, forward stroke volume; iFwSV, indexed FwSV; iRVESA, indexed right ventricle end-systolic area; iRVEDA, indexed right ventricle end-diastolic area; iRVEDV, indexed right ventricle end-systolic volume; RD, right diameter; RVOT, right ventricle outflow; TAPSE, tricuspid annular plane excursion; FAC, fractional area change; VTI, velocity time integral; sPAP, systolic pulmonary arterial pressure; mPAP, mean PAP; TR, tricuspid regurgitation; IVC, inferior vena cava, iRAV, indexed right atrial volume; TRV, tricuspid regurgitation velocity; ESE, exercise stress echocardiogram.

Table A4. ExPH at ESE vs. continuous or categorical ultrasound parameters.

Continuous Ultrasound Parameters	ExPH at ESE	Mean	SD	<i>p</i> -Value
LVEDD	по	43.459	5.322	0.745
	yes	44.083	6.445	0.745
LVESD	по	26.625	6.460	0.472
	yes	25.000	7.058	
IVEDV	по	100.938	31.460	0.992
LVEDV	yes	100.833	29.489	
IVEDV	по	35.857	10.955	0 569
	yes	33.743	10.596	0.508
IVESV	по	36.406	14.555	0.752
	yes	38.000	15.486	0.752
ilVESV	по	12.992	5.205	0 971
	yes	13.054	4.604	0.971
IV	по	149.453	44.358	0.974
LV	yes	149.967	51.515	0.774
il V mass	по	77.544	28.061	0 593
	yes	72.343	29.882	0.595
IAD	по	48.531	8.481	0.737
LAD	yes	47.625	6.057	
LAV	по	38.844	19.955	0.276
LAV	yes	32.142	10.252	
il AV	по	13.895	7.507	0.290
ILAV	yes	11.452	3.692	0.290
IVEE	по	66.459	7.437	0 157
	yes	63.000	6.030	0.157
FiazSV	по	73.022	24.849	0 155
1000	yes	62.000	13.671	0.155
iFwSV	по	25.663	8.952	0.090
	yes	20.957	4.347	0.090
MR	по	0.656	0.787	0 103
	yes	0.333	0.492	0.175
40	по	0.313	0.738	0.304
AU	yes	0.083	0.289	

Table A3. Cont.

Continuous Ultrasound Parameters	ExPH at ESE	Mean	SD	<i>p</i> -Value
F wave	по	68.084	18.606	0 284
L wave	yes	74.308	10.979	0.204
A wave	110	71.400	30.367	0.784
	yes	74.158	26.943	
Septal e wave	1105	9 317	2.938	0.384
	yes no	1 037	0.397	
E/A	yes	1.166	0.613	0.415
	no	6.251	3.400	0.077
E/e	yes	8.129	1.778	0.077
iRVFSA	по	4.083	1.862	0 492
	yes	4.505	1.622	0.172
iRVEDA	по	7.029	2.113	0.708
	yes	6./49 7.182	2.405	
iRVESV	110 1185	7.183	4.000	0.950
	no	16.217	6.461	
iRVEDV	yes	13.058	4.326	0.126
101	no	35.987	6.920	0.660
KDI	yes	37.042	7.344	0.000
RD2	по	33.188	5.538	0 297
ND2	yes	31.092	6.712	0.277
RD3	<i>no</i>	20.031	6.699 5.520	0.222
	yes no	31 119	5.520	
RVOT prox.	11es	32.383	4.882	0.505
	no	31.656	7.305	
RVOT dist.	yes	30.900	6.468	0.754
Eccentricity index	no	0.943	0.112	0.225
Lecentricity maex	yes	0.908	0.096	0.335
RV/LV basal diameter ratio	по	0.852	0.157	0.815
·	yes	0.839	0.179	
TAPSE	110 1105	21.707	0.949 7 958	0.495
	no	45.397	9.376	
FAC	yes	48.167	9.609	0.391
	no	4.333	13.319	0.201
RV E/A	yes	0.976	0.431	0.391
RV E/e	по	3.729	1.882	0 946
	yes	3.774	1.739	0.710
RV S vel	110 1100	10.950	4.497 5.251	0.561
	yes	3 174	3 328	
RV S VTI	ves	2.968	4.289	0.867
	no	1.313	0.471	0.077
TR	yes	1.000	0.603	0.077
εΡΔΡ	по	22.344	6.003	0 794
	yes	21.833	4.896	0.774
sPAP at exercise peak	110	30.909	8.846	< 0.001
-	yes	40.933	7.504	
mPAP	110	16.337	4,212	0.991
	no	2.009	0.389	
TRV	yes	2.075	0.409	0.622
TRV at exercise peak	по	2.472	0.502	0.049
	yes	2.850	0.659	0.040

Continuous Ultrasound Parameters	ExPH at ESE	Mean	SD	<i>p</i> -Value
RV outflow AT	по	105.027	43.990	0.065
	yes	132.000	36.352	0.065
VCI diameter	по	14.722	4.534	0.885
	yes	14.942	4.191	
DA arroa	по	14.253	3.127	0.009
KA area	yes	17.092	2.710	0.008
:D AV	по	5.266	2.186	0.190
IKAV	yes	6.166	1.300	0.189
VTI at much	по	16.065	3.552	<0.001
V 11 at rvot	yes	10.575	2.703	<0.001
VDT /VTL at much	по	0.153	0.143	0.289
VRI / VII at rvot	yes	0.198	0.041	
	по	1.024	0.321	0.448
IAI SE/TAI S	yes	1.123	0.516	
Categorical ultrasound parameter	ExPH at ESE	no	yes	<i>p</i> -value
Concentric remodeling	по	19	5	0.293
Concentric remodeling	yes	13	7	
Normal geometry	по	18	7	0.901
	yes	14	5	
Concentric hypertrophy	по	29	12	0.272
	yes	3	0	
Eccentric hypertrophy	по	31	12	0.536
	yes	1	0	

Table A4. Cont.

Abbreviations: ExPH, isolated exercise pulmonary hypertension; ESE, exercise stress echocardiogram; LVEDD, left ventricle end-diastolic diameter; LVESD, left ventricle end-systolic diameter; LVEDV, left ventricle end-diastolic volume; LVESV, left ventricle end-systolic volume; iLVEDV, indexed LVESV; iLAD, left atrial diameter; LAV, left atrial volume; iLAV, indexed LAV; LVEF, left ventricle ejection fraction; FwSV, forward stroke volume; iFwSV, indexed FwSV; iRVESA, indexed right ventricle end-systolic area; iRVEDA, indexed right ventricle end-systolic volume; iRVEDV, indexed right ventricle end-systolic volume; RD, right diameter; RVOT, right ventricle outflow; TAPSE, tricuspid annular plane excursion; FAC, fractional area change; VTI, velocity time integral; sPAP, systolic pulmonary arterial pressure; mPAP, mean PAP; TR, tricuspid regurgitation; IVC, inferior vena cava, iRAV, indexed right atrial volume; TRV, tricuspid regurgitation velocity.

References

- Galie, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). *Eur. Heart J.* 2016, *37*, 67–119. [PubMed]
- Nunes, H.; Humbert, M.; Sitbon, O.; Morse, J.H.; Deng, Z.; Knowles, J.A.; Le Gall, C.; Parent, F.; Garcia, G.; Hervé, P.; et al. Prognostic factors for survival in human immunodeficiency virus-associated pulmonary arterial hypertension. *Am. J. Respir. Crit. Care Med.* 2003, 167, 1433–1439. [CrossRef] [PubMed]
- Tolle, J.J.; Waxman, A.B.; Van Horn, T.L.; Pappagianopoulos, P.P.; Systrom, D.M. Exercise-induced pulmonary arterial hypertension. *Circulation* 2008, 118, 2183–2189. [CrossRef] [PubMed]
- Doukky, R.; Lee, W.Y.; Ravilla, M.; Lateef, O.B.; Pelaez, V.; French, A.; Tandon, R. A novel expression of exercise induced pulmonary hypertension in human immunodeficiency virus patients: A pilot study. *Open Cardiovasc. Med. J.* 2012, 6, 44–49. [CrossRef]
- 5. Alkotob, M.L.; Soltani, P.; Sheatt, M.A.; Katsetos, M.C.; Rothfield, N.; Hager, W.D.; Foley, R.J.; Silverman, D.I. Reduced exercise capacity and stress-induced pulmonary hypertension in patients with scleroderma. *Chest* **2006**, *130*, 176–181. [CrossRef]
- Saggar, R.; Sitbon, O. Hemodynamics in pulmonary arterial hypertension: Current and future perspectives. *Am. J. Cardio.* 2012, 110, S9–S15. [CrossRef]
- Lewis, G.D.; Bossone, E.; Naeije, R.; Grünig, E.; Saggar, R.; Lancellotti, P.; Ghio, S.; Varga, J.; Rajagopalan, S.; Oudiz, R.; et al. Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. *Circulation* 2013, 128, 1470–1479. [CrossRef]
- McLaughlin, V.V.; Archer, S.L.; Badesch, D.B.; Barst, R.J.; Farber, H.W.; Lindner, J.R.; Mathier, M.A.; McGoon, M.D.; Park, M.H.; Rosenson, R.S.; et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: A report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: Developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. *Circulation* 2009, 119, 2250–2294.

- Madonna, R.; Bonitatibus, G.; Vitulli, P.; Pierdomenico, S.D.; Galie, N.; De Caterina, R. Association of the European Society of Cardiology echocardiographic probability grading for pulmonary hypertension with short and mid-term clinical outcomes after heart valve surgery. *Vasc. Pharm.* 2020, 125–126, 106648. [CrossRef]
- 10. Borlaug, B.A.; Nishimura, R.A.; Sorajja, P.; Lam, C.S.; Redfield, M.M. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. *Circ. Heart Fail.* **2010**, *3*, 588–595. [CrossRef]
- Madonna, R.; Morganti, R.; Radico, F.; Vitulli, P.; Mascellanti, M.; Amerio, P.; De Caterina, R. Isolated Exercise-Induced Pulmonary Hypertension Associates with Higher Cardiovascular Risk in Scleroderma Patients. J. Clin. Med. 2020, 9, 1910. [CrossRef] [PubMed]
- Madonna, R.; Fabiani, S.; Morganti, R.; Forniti, A.; Mazzola, M.; Menichetti, F.; De Caterina, R. Exercise-induced pulmonary hypertension in HIV patients: Association with poor clinical and immunological status. *Vasc. Pharmacol.* 2021, 139, 106888. [CrossRef] [PubMed]
- Sicari, R.; Nihoyannopoulos, P.; Evangelista, A.; Kasprzak, J.; Lancellotti, P.; Poldermans, D.; Voigt, J.U.; Zamorano, J.L. Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). *Eur. J. Echocardiogr.* 2008, *9*, 415–437. [CrossRef] [PubMed]
- Nagel, C.; Henn, P.; Ehlken, N.; D'Andrea, A.; Blank, N.; Bossone, E.; Böttger, A.; Fiehn, C.; Fischer, C.; Lorenz, H.M.; et al. Stress Doppler echocardiography for early detection of systemic sclerosis-associated pulmonary arterial hypertension. *Arthritis Res. Ther.* 2015, 17, 165. [CrossRef]
- Argiento, P.; Chesler, N.; Mule, M.; D'Alto, M.; Bossone, E.; Unger, P.; Naeije, R. Exercise stress echocardiography for the study of the pulmonary circulation. *Eur. Respir. J.* 2010, 35, 1273–1278. [CrossRef]
- 16. Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713, quiz 786–688.
- Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Evangelista, A.; Griffin, B.P.; Iung, B.; Otto, C.M.; Pellikka, P.A.; Quiñones, M. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. *J. Am. Soc. Echocardiogr.* 2009, 22, 1–23, quiz 101–102. [CrossRef]
- 18. Cagnina, A.; Michaux, S.; Ancion, A.; Cardos, B.; Damas, F.; Lancellotti, P. European guidelines for the diagnosis and management of acute pulmonary embolism. *Rev. Med. Liege* **2021**, *76*, 208–215.
- 19. Belardine, R., III. Il Test da Sforzo Cardiopolmonare; Midia: Monza, Italy, 2006.
- 20. Wassermann, K. Cardiopulmonary Exercise Testing and Cardiovascular Health; Wiley-Blackwell: Hoboken, NJ, USA, 2002.
- Badesch, D.B.; Champion, H.C.; Gomez Sanchez, M.A.; Hoeper, M.M.; Loyd, J.E.; Manes, A.; McGoon, M.; Naeije, R.; Olschewski, H.; Oudiz, R.J.; et al. Diagnosis and assessment of pulmonary arterial hypertension. *J. Am. Coll. Cardiol.* 2009, 54, S55–S66. [CrossRef]
- 22. Sciume, M.; Mattiello, V.; Cattaneo, D.; Bucelli, C.; Orofino, N.; Gandolfi, L.; Pettine, L.; Lonati, S.; Gianelli, U.; Pierini, A.; et al. Early detection of pulmonary hypertension in primary myelofibrosis: The role of echocardiography, cardiopulmonary exercise testing, and biomarkers. *Am. J. Hematol.* **2017**, *92*, E47–E48. [CrossRef]
- 23. Guazzi, M. Pulmonary hypertension in heart failure preserved ejection fraction: Prevalence, pathophysiology, and clinical perspectives. *Circ. Heart Fail.* **2014**, *7*, 367–377. [CrossRef] [PubMed]
- 24. Kessler, K.M.; Willens, H.J.; Mallon, S.M. Diastolic left ventricular dysfunction leading to severe reversible pulmonary hypertension. *Am. Heart J.* **1993**, *126*, 234–235. [CrossRef]
- Quezada, M.; Martin-Carbonero, L.; Soriano, V.; Vispo, E.; Valencia, E.; Moreno, V.; de Isla, L.P.; Lennie, V.; Almería, C.; Zamorano, J.L. Prevalence and risk factors associated with pulmonary hypertension in HIV-infected patients on regular follow-up. *Aids* 2012, 26, 1387–1392. [CrossRef]
- Degano, B.; Guillaume, M.; Savale, L.; Montani, D.; Jaïs, X.; Yaici, A.; Le Pavec, J.; Humbert, M.; Simonneau, G.; Sitbon, O. HIV-associated pulmonary arterial hypertension: Survival and prognostic factors in the modern therapeutic era. *Aids* 2010, 24, 67–75. [CrossRef] [PubMed]
- Feinstein, M.J.; Hsue, P.Y.; Benjamin, L.A.; Bloomfield, G.S.; Currier, J.S.; Freiberg, M.S.; Grinspoon, S.K.; Levin, J.; Longenecker, C.T.; Post, W.S.; et al. Characteristics, Prevention, and Management of Cardiovascular Disease in People Living With HIV: A Scientific Statement From the American Heart Association. *Circulation* 2019, 140, e98–e124. [CrossRef]
- Pellicelli, A.M.; Palmieri, F.; D'Ambrosio, C.; Rianda, A.; Boumis, E.; Girardi, E.; Antonucci, G.; D'Amato, C.; Borgia, M.C. Role of human immunodeficiency virus in primary pulmonary hypertension—Case reports. *Angiology* 1998, 49, 1005–1011. [CrossRef]
- Parikh, R.V.; Scherzer, R.; Nitta, E.M.; Leone, A.; Hur, S.; Mistry, V.; Macgregor, J.S.; Martin, J.N.; Deeks, S.G.; Ganz, P.; et al. Increased levels of asymmetric dimethylarginine are associated with pulmonary arterial hypertension in HIV infection. *Aids* 2014, 28, 511–519. [CrossRef]
- 30. Tcherakian, C.; Couderc, L.J.; Humbert, M.; Godot, V.; Sitbon, O.; Devillier, P. Inflammatory mechanisms in HIV-associated pulmonary arterial hypertension. *Semin. Respir. Crit. Care Med.* **2013**, *34*, 645–653.