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Microbial communities are responsible for the bulk of biogeochemical processing
in temporary headwater streams, yet there is still relatively little known about how
community structure and function respond to periodic drying. Moreover, the ability to
sample temporary habitats can be a logistical challenge due to the limited capability to
measure and predict the timing, intensity and frequency of wet-dry events. Unsurprisingly,
published datasets on microbial community structure and function are limited in
scope and temporal resolution and vary widely in the molecular methods applied.
We compared environmental and microbial community datasets for permanent and
temporary tributaries of two different North American headwater stream systems: Speed
River (Ontario, Canada) and Parkers Creek (Maryland, USA). We explored whether
taxonomic diversity and community composition were altered as a result of flow
permanence and compared community composition amongst streams using different
16S microbial community methods (i.e., T-RFLP and Illumina MiSeq). Contrary to our
hypotheses, and irrespective of method, community composition did not respond
strongly to drying. In both systems, community composition was related to site rather
than drying condition. Additional network analysis on the Parkers Creek dataset indicated
a shift in the central microbial relationships between temporary and permanent streams.
In the permanent stream at Parkers Creek, associations of methanotrophic taxa were
most dominant, whereas associations with taxa from the order Nitrospirales were more
dominant in the temporary stream, particularly during dry conditions. We compared
these results with existing published studies from around the world and found a wide
range in community responses to drying. We conclude by proposing three hypotheses
that may address contradictory results and, when tested across systems, may expand
understanding of the responses of microbial communities in temporary streams to natural
and human-induced fluctuations in flow-status and permanence.
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Introduction

Temporary streams are fluvial systems that cease to flow over
some amount of time or space (Acuña et al., 2014). In many
environments, the greatest proportion of temporary streams are
located in headwater systems (Dodds et al., 2004), and there is
a growing appreciation that temporary headwater streams exert
a strong influence on the structure and function of downstream
waterbodies (Acuña et al., 2014). For example, temporary systems
provide critical habitat, foster unique biota and transfer energy
and nutrients (Stehr and Branson, 1938; Williams, 2005; Meyer
et al., 2007). Much like other headwater systems, temporary
headwater streams link terrestrial landscapes to river networks
across space, but also represent a temporal ecotone due to the
highly dynamic nature of environmental conditions in these
systems (Steward et al., 2012).

Alternating wet-dry states in temporary streams are known
to drive environmental gradients and community structure.
Moreover, in the transitions between states (i.e., before a
temporary stream becomes completely dry or as a stream
rewets) environmental conditions are in constant transition.
For example, as flow is reduced in a stream and water settles
into isolated surface pools, surface water temperature increases,
dissolved oxygen decreases, and increased evaporation rates
concentrate solutes causing increased conductivity (Smith and
Pearson, 1987). This leads to changes in sediments as well, such as
decreases in dissolved oxygen and sharper redox gradients with
depth and over time. Subsurface sediments (i.e., the hyporheic
zone) can maintain elevated moisture content long after surface
drying (Schwinning et al., 2011), potentially resulting in hot
spots and hot moments of peak biogeochemical activity in wet
compared to dry sediments (McClain et al., 2003). Residual
moisture left in the hyporheic zone has been known to help
sustain habitat refugia for macroinvertebrates taxa, which rely on
moist conditions (Stubbington, 2012;Williams andHynes, 1974).

The ecological impact of drought as a disturbance in
temporary streams has been previously explored (Lake, 2003)
as have the responses of fish (Labbe and Fausch, 2000; Dodds
et al., 2004; Wigington et al., 2006; Colvin et al., 2009) and
macroinvertebrate communities (Boulton and Lake, 1992;
Stanley et al., 1994; Fritz and Dodds, 2004; Collins et al.,
2007). The variable and often unpredictable hydrologic
regime in temporary systems may be a driving force behind
many ecosystem processes mediated solely by microbial
communities. In such a transitional environment, microbes
represent a continuum from truly terrestrial communities
in soils to aquatically adapted taxa in streambed sediments.
However, unlike other biotic components of temporary systems,
generalizable relationships between microbial community
structure and environmental gradients have not been firmly
established. The lack of relationships are likely complicated
because microbial community shifts have also been associated
with other environmental factors such as organic matter
quality (i.e., leaf litter composition; Artigas et al., 2011; Bruder
et al., 2011), conductivity (Zeglin et al., 2011) and sediment
composition in addition to the degree of desiccation (Marxsen
et al., 2010). Thus, local environmental conditions can interact

with temporary stream drying resulting in varying responses
across ecosystems.

Shifts in stream conditions—such as a drought and
rewetting—serve as filters on community structure. Microbial
communities can exhibit resilient, resistant or functionally
redundant responses (sensu Allison and Martiny, 2008) and
thereby affect ecosystem processes. For microbes in temporary
streams, resistance to and resilience from drought differ in
that the dispersal mechanism is passive and facilitated by water
flow. Although it has been well-established that the majority
of microbial cells among streambed sediments are destroyed
by drying events (Van Gestel et al., 1992), drying can take time
and the effect of drying as a filter on microbial community
structure is less clear. Long periods of desiccation may induce
significant responses by microbial communities than brief
events. For resistant communities, disturbance from drought
causes little or no change to microbial community composition,
whereas resilient communities are impacted by disturbance but
are quickly restored after disturbance ends (i.e., surface water
is restored). A rapid restoration of microbial processing after
substantial portions of the community are lost during a drying
event implies that resilience is an important trait in these highly
dynamic temporary stream environments.

Equally, rewetting of a temporary stream environment can
serve as an environmental filter on microbial community
structure. Following rewetting of sediment and soils, microbial
processing rates are higher than equivalent sediments not
subjected to drying (Soulides and Allison, 1961; Van Gestel
et al., 1992). This rapid processing may be driven by microbial
communities accessing resources from cells that were destroyed
during drying (Van Gestel et al., 1992). For heterotrophs,
community composition can be driven by resources that become
released or altered upon rewetting, such as the nature of organic
matter released (Judd et al., 2006). Taxa that are adapted to
rapidly access any available resources may be favored and may
maintain a competitive advantage even after stream flow is fully
restored.

Research to date characterizing microbial communities on
either side of the wet-dry transition has yielded conflicting
results. Some studies suggest that microbial community structure
showed little difference before and after drying (Amalfitano
et al., 2008; Zoppini et al., 2010). Other studies observed
substantial depletion of microbial diversity (Timoner et al.,
2014b) and substantially altered community composition (Rees
et al., 2006; Timoner et al., 2014b) after drying. Similarly, several
studies found microbial communities of temporary streams
to be resilient, quickly regaining functional activity upon re-
saturation of sediments (McIntyre et al., 2009; Timoner et al.,
2014a,c). By contrast, other research observed depleted microbial
activity for extended periods following flow restoration (Rees
et al., 2006). These studies have been typically conducted in
a single system or systems within the same region. Moreover,
the existing studies suggest that flow cessation of a temporary
stream does not necessarily result in a discrete state change to
microbial communities but perhaps a more continuous shift in
community structure. The lack of a definitive microbial response
to wet-dry dynamics in temporary streams suggests that other
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environmental factors play an important role in these systems,
and a regional to global comparison of systemsmay be warranted.

In practice, the ability to rigorously test hypotheses in
temporary streams is a logistical challenge (Lake, 2003). Research
efforts are generally hampered by the ability to measure and
predict the timing, intensity and frequency of wet-dry events.
Unsurprisingly, published datasets are limited in scope and
temporal resolution. Moreover human-induced impacts on
temporary headwater streams are increasing; true temporary
headwater channels are disappearing due to burial (Elmore
and Kaushal, 2008) or conversion to perennial status due to
urbanization (Roy et al., 2009). At the same time, permanent
channels are increasingly becoming temporary and are subjected
to more extreme flooding and drying events due to global
climate change. This increased variability directly interrupts
biotic linkages across the sediment-water interface (Lake et al.,
2000). Comparing temporary systems in different regions, using
datasets collected from similar environmental conditions, may
help address some of these discrepancies and existing knowledge
gaps.

We tested the relationships between microbial community
structure and environmental conditions, particularly drying and
wetting events, in two North American temporary headwater
stream systems. Microbial communities were compared for
Parkers Creek (Maryland, USA) and Speed River (Ontario,
Canada), two different watersheds yet within the temperate zone
of eastern North America. Data were collected during different
years (Parkers Creek was sampled in 2012; Speed River was
sampled in 2007 and 2008). For both systems, we compared
sediment and water community composition in streambed
sediments before and after seasonal drying events. We further
compared stream sediment community composition to that of
the stream water column and catchment soils, two sources of
colonizing microbes in streams, in order to assess the relative
importance of colonization vs. local environmental conditions in
sediments.

We predicted that microbial taxonomic diversity in temporary
streams would be limited to a subset of groups during periods
of stream drying, presumably taxa that are more resistant
to desiccation. Thus, we anticipated a substantial shift in
community composition and a decrease in taxonomic richness
in temporary stream sediments following drying. We also
hypothesized that microbial community composition in stream
sediments during stream flow would be more similar to water
column communities than soil communities. During drying, we
expected that the microbial community in stream sediments
would change to more closely resemble that of soils. We
anticipated that patterns of microbial response to drying would
be comparable in both the Speed River and Parkers Creek systems
regardless of differing ecosystems and molecular methods. The
impacts of temporary stream drying were predicted to persist
following rewetting of a stream, a process likely driven by
dominance of resistant and resilient taxa that are adapted to
dynamic environments.

To place our findings in a broader context, we reviewed
published studies and synthesized evidence on the structural
and functional response of microbes to drying but found little

corroboration across studies due to differences in methodology
and analytical resolution among datasets. Therefore, based on
the results of this study and our review of the existing literature,
three hypotheses are proposed that, when rigorously tested across
systems, may strengthen tenuous knowledge of the linkages
between environment, community structure, and ecosystem
function in temporary headwater streams.

Methods

Study Sites
Speed River Site (Ontario, Canada)
The Speed river watershed is a tributary of Lake Ontario.
Samples were collected from one permanent (second order)
and one temporary (zero order) stream monthly in 2007 and
2008. The stream sites are both tributaries of the Speed River
(Permanent site: 43◦43′N, 80◦16′W; Temporary site: 43◦42′N,
80◦17′W; Figure 1, Supplemental Table 1). At the permanent site,
we focused on a pool-riffle sequence in the stream, measuring
approximately 10m in length and 6m in width. At the temporary
site, we sampled a 15-m section immediately downstream from
the springhead that served as the source of the tributary. The
temporary stream site was no more than 2m in width when
flooded. Streambed sediments remained saturated throughout
the period of study at both sites, however the streambed surface
was dry from July to October 2007 and again in July and
September 2008.

Parkers Creek Site (Maryland, USA)
The Parkers Creek watershed is located in the Coastal Plain in
Maryland, USA and drains directly into the Chesapeake Bay
(Figure 1, Supplemental Table 1). Samples were collected from
three headwater streams sites, two first order stream reaches

FIGURE 1 | Location map of the two study systems: Speed River
(Ontario, Canada) and Parkers Creek (Maryland, USA). See Hosen et al.
(2014) and Febria et al. (2010, 2012) for detailed maps of Parkers Creek and
Speed River sites, respectively.
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and one second order stream reach, and are described elsewhere
(Hosen et al., 2014). One of the two first order sites was temporary
(Site T1: 38◦32′51′′ N, 76◦32′29′′ W), the second was permanent
(Site P1: 38◦33′01′′ N, 76◦32′39′′ W) as was the second order site
(Site P2: 38◦32′57′′ N, 76◦32′35′′ W).

Sample Collection
At the Speed sites, surface water fluctuated regularly at the
temporary site but logging data were not collected due to limited
logistical access. Sediment samples were collected monthly in
2007 and 2008 at the permanent site using a standard PVC
sampling core (diameter 2.67 cm). Watershed soil samples were
grab samples collected on a single occasion (October 2007) from
forested and agricultural soils within 100m of the stream sites
(total n = 53). At the Parker’s sites, both water column and
sediment samples were obtained from all sites. Sites P1 and P2
flowed for the duration of the study while surface flow ceased
and site T1 became dry from late July through early October 2012
(Supplemental Table 1).

Water Samples
Stream water temperature, specific conductivity, dissolved
oxygen, and pH were determined in the field using a Hydrolab
all-in-one Quanta Probe (Hach Inc., Loveland, Colorado, USA)
at the Speed site and a YSI Professional Plus multimeter (YSI
Inc., Yellow Springs, Ohio, USA) at the Parkers creek site.
Water samples from the Speed sites were collected in previously
acid washed Nalgene HDPE bottles; water samples from the
Parkers Creek sites for chemical analysis were collected in amber
borosilicate bottles that had been acid washed and subsequently
combusted at 450◦C for 4 h and were sealed with Teflon-
coated lids. All samples were placed on ice for transport to
the laboratory. Samples for genetic analysis were subsequently
stored at−80◦Cprior to further processing. Samples for chemical
analysis were stored at 4◦C until sample analysis. Dissolved
organic carbon and total dissolved nitrogen were determined on
stream water samples using a Shimadzu TOC-Vcph total organic
carbon analyzer with attached TNM-1 total nitrogen analyzer
(Shimadzu Corporation, Tokyo, Japan). The Parkers Creek
samples were also analyzed for dissolved organic carbon quality
using the fluorescence index (FI), which indicates whether DOM
in a water sample is primarily allochthonous or autochthonous
(McKnight et al., 2001). The fluorescence index was determined
as the ratio of fluorescence emission intensities at 450 and
500 nm when a water sample was excited at 370 nm (McKnight
et al., 2001) on a Horiba Scientific Fluoromax-4 (Horiba Limited,
Kyoto, Japan). Physicochemical parameters measured at both
sites are summarized in Supplemental Table 1.

Microbial Community Composition (Speed Site)
Sediment samples were stored at −20◦C until DNA analysis
in the laboratory. DNA was extracted from approximately 1
g of sediment using PowerSoil DNA extraction kits (MoBio
Laboratories, Carlsbad, California, USA). Bacterial communities
were characterized using terminal-restriction fragment length
polymorphism (T-RFLP) and resultant DNA fragments
were digested using MspI and HhaI as described in Febria

et al. (2012). Bacterial communities were identified by the
different operational taxonomic units (OTUs) and their relative
abundance within a given sample. In total, we included
only sample dates for which physicochemistry and bacterial
community data were available (n = 53).

Microbial Community Composition (Parkers Site)
Water column samples were collected following Crump et al.
(2003). Briefly, in the field, 300–600mL of stream water were
passed through a Millipore Sterivex-GP 0.22μm filter. Residual
water was expelled from the filter and approximately 2mL of
DNA extraction buffer were added after which both ports of
the filter were sealed. Sediment samples were collected from
streambeds to a depth of 3 cm using 2.67 cm diameter sterile
plastic coring devices. Twenty cores were taken from random
points along a 20m reach at each site on each sampling date.
All cores taken at a site were combined in a single sterile Nasco
Whirlpak bag.

Water column microbial DNA was extracted from Sterivex-
GP filters using phenol-chloroform based on established
protocols (Crump et al., 2003). Filters were defrosted and 20μL
of 1% proteinase-K and 20μL of 10% lysozyme. Samples were
frozen at −80◦C for 15min and then thawed at 37◦C for
5min a total of three times. Samples were then incubated in a
water bath for 37◦C for 30min. Fifty μL of 20% filter-sterilized
SDS were added to each sample before a 2 h incubation in
a 65◦C water bath. Samples were washed twice with buffered
phenol-chloroform-isoamyl alcohol and then precipitated at
room temperature overnight by adding isopropyl alcohol at
60% of sample volume. Microbial sediment DNA was extracted
using PowerSoil DNA Isolation Kits (Mo Bio Laboratories,
Inc., Carlsbad, CA). To account for the high water content of
stream sediment samples, 0.5 grams of sediment was used for
each extraction. PCR amplicons were produced using standard
methods for high-throughput sequencing (Caporaso et al., 2012).
Amplification of 16S rDNA was conducted using forward primer
515f and barcoded reverse primer 806r obtained from the Earth
Microbiome Project. For each sample 12μL of UV-sterilized
PCR-grade water, 10μL 5-prime HotMasterMix, 1μL 5mM
forward primer, 1μL of 5mM reverse primer, and 1μL of
template DNAwere combined in a 96-well PCR plate. Conditions
for PCR were as follows: Initial denaturation for 3min at
94◦C followed by 30 cycles first at 94◦C for 0.75min, 50◦C
for 1min, and 72◦C for 1.5min. At the conclusion of PCR,
temperature was held at 72◦C for 10min before temperature
was reduced to 10◦C. Amplicons were quantified with Pico-
Green dsDNA quantification kit (Life Technologies; Carlsbad,
CA), combined in equimolar quantities, and cleaned using
an UltraClean PCR Clean-Up kit (MO BIO Laboratories, Inc;
Carlsbad, CA). Illumina MiSeq 2 × 150 bp sequencing was
conducted at Argonne National Laboratory (Lemont, IL).

Data Analysis
Both Sites
Beta diversity across space and time was analyzed using
principal coordinate analysis (PCoA) of Bray-Curtis distances
calculated between individual samples. Analysis of similarity
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(ANOSIM) was conducted to compute similarity between
groups. Replication was insufficient to apply statistical tests, but
ANOSIM can still be applied to determine the similarity between
groups with only one or two members (Cornils et al., 2005).
For the Parkers Creek dataset, microbial species richness was
estimated using CatchAll (Bunge et al., 2012) on rarified OTU
tables. All analysis and plotting were conducted in R version 3.1.2.
(R Core Team, 2014). PCoA and ANOSIMwere conducted in the
vegan package (Oksanen et al., 2013).

Parkers Site and Network Analysis
Data were analyzed using the package Quantitative Insights into
Microbial Ecology (QIIME). Paired end reads were matched
using FLASh (Magoc and Salzberg, 2011). USEARCH 6.1 (Edgar,
2010) was used to identify OTUs at 97% similarity from the
Silva 111 database (Quast et al., 2013; Yilmaz et al., 2014) and
to identify chimeric sequences. Taxonomy was assigned using
the RDP Classifier (Wang et al., 2007) at a threshold of 80%.
Sequences were subsequently aligned using PyNAST (Caporaso
et al., 2010). Sequences identified as belonging to chloroplasts,
mitochondria, and the order Thermales were removed from the
dataset as well as any OTU that was not identified taxonomically
to at least the class level. Each sample was then rarified to 8960
sequences.

Co-occurrence network analysis of microbial OTU data
was applied following existing methods (Barberán et al., 2011;
Lupatini et al., 2014; Widder et al., 2014; Williams et al., 2014).
To avoid spurious correlations and to aid in the interpretation
of results, low abundance taxa that represented less than 0.1%
of total sequences were filtered prior to analysis. Pairwise
correlations were calculated for each pair of OTUs using
Spearman’s rank correlation. For a co-occurrence event to be
included in the final network a threshold of ρ > 0.75 and p < 0.05
was adopted. To confirm that the network generated is not the
product of random correlations, a comparison was made with
randomly generated networks following (Lupatini et al., 2014).
One thousand random networks with size (i.e., number of nodes
and vertices) equal to the network generated from the microbial
dataset were produced using the Erdös-Rényi model (Erdős and
Rényi, 1960). Mean clustering coefficient, mean path length, and
networkmodularity were calculated for each randomly generated
network and were compared to the values generated from the
experimentally derived network. The p-value of rejecting the
null hypothesis that the experimental network was obtained
at random was calculated as the proportion of values derived
from the randomly generated models that were greater than
the values obtained from the experiment for each of the three
test statistics. For all three statistics the p-value was less than
0.001, indicating the experimental network was not obtained at
random.

For each node network, centrality metrics including degree,
closeness centrality, and betweenness centrality were calculated.
Degree is defined as the number of vertices connected to
a node. Betweenness centrality is defined as the number of
geodesics that pass through a node when all possible geodesics
are considered. Closeness centrality is calculated as the inverse
of the average length of all the geodesics connecting one

node to each other node in the network (Freeman, 1978).
These metrics have the potential to identify keystone species
within community networks (Williams et al., 2014). Microbial
co-occurrence network analysis on simulated communities
with known relationships indicate that both node degree and
closeness centrality are positively linked to keystone taxa (Berry
and Widder, 2014). Network analysis was conducted using R
3.1.2 with the vegan and igraph (Csardi and Nepusz, 2006)
packages.

Results

Speed Site (Ontario, Canada)
Monthly samples over a two-year period confirmed differences
in several environmental parameters between the permanent
and temporary stream tributaries of the Speed River. Several
parameters were found to be higher at the temporary than
the permanent stream: conductivity (temporary stream =
542 μS/cm, permanent stream 431 μS/cm), total dissolved
nitrogen concentrations (temporary stream = 4.63mg L−1,
permanent stream= 1.86mg L−1), and dissolved organic carbon
concentrations (temporary stream = 8.6mg L−1, permanent
stream= 4.6mg L−1; Supplementary Figure 1).

In the Speed River system, temporary stream sediment
microbial communities were highly similar despite seasonal
and hydrologic variation over a 2-year period. The most
noticeable difference was that despite the environmental
changes, sediment microbial communities were most related
to specific sites and sample types (i.e., permanent, temporary,
or soil; Figure 2) and not necessarily season or hydrological
status. PCoA revealed that sediment and soil microbial
community composition were in large part distinct among
sites. Further, wetting and drying did not appear to impact
community composition of temporary stream sediments.
Samples from both wet and dry sediments had similar PCoA
scores.

We further examined the distribution of taxa shared across
stream types and soils (Figure 3). The number of unique OTUs
was roughly comparable in the permanent and temporary stream
(134 and 133, respectively) and greater than in watershed soil
(72 OTUs). Thirty-one OTUs were shared among the three
habitat types with a large proportion of the total number of
OTUs found in samples from at least two sites. The permanent
stream communities shared a similar number of OTUs with both
the temporary and soil habitats (47 and 48, respectively) while
fewer OTUs were shared between the soil and temporary stream.
Despite being adjacent to riparian areas including watershed
soils, the temporary steam sediments had microbial communities
that were more similar to the permanent downstream waterway
than riparian soils.

Parkers Site (Maryland, USA)
Stream water temperatures, DOC and TDN concentrations,
and carbon quality (as measured by fluorescence index)
were similar across all three sites. At temporary stream
site T1, mean conductivity was 316 μS/cm, which was
substantially higher than sites P1 (137 μS/cm) and P2 (139
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FIGURE 2 | Ordination of the first two axes of the principal coordinate
analysis (PCoA) of microbial community composition Bray-Curtis
distances for the Speed River sites. Indicated are communities from
multiple dates at the permanent stream, temporary stream, and watershed
soils. Points closer together in the plots indicate similar community
composition than that those farther apart. Variance explained in PCoA Axis
1 = 22.1% and PCoA Axis 2 = 12.6%.

μS/cm). Dissolved oxygen levels were consistently lower at
site T1 (mean: 6.0mg/L) compared to sites P1 (8.4mg/L) and
P2 (7.5mg/L).

As in the Speed River study, microbial community
composition in temporary stream sediments at site T1 did
not differ substantially between wet and dry conditions when
comparing the percent of sequences belonging to the most
common taxonomic classes (Figure 4). To provide a more
detailed examination of microbial beta-diversity, PCoA was
conducted on the 16S rDNA dataset using Bray-Curtis distances
between OTUs for each sample collected and the first two
principal coordinates were plotted (Figure 5). The first axis
accounted for the 34.4% of variance and separated sediment
samples on the left from water column samples on the right.
Interestingly, site location appeared to be a stronger factor
than stream drying; community composition at site T1 was
more similar between the wet (Nov.) and dry (Aug.) seasons
than between this site and other sites (Figure 5). This pattern
was confirmed by comparing global and pairwise R statistics
obtained by ANOSIM. The global R statistic, comparing all
four combinations of temporary vs. permanent and sediment
vs. water column, was 0.75. Lower R statistic values were
identified for sediment vs. water column communities (0.67) and
permanent vs. temporary (0.39) comparison.

As in the Speed River system, levels of taxa shared were similar
among temporary and permanent sites in the Parkers Creek

FIGURE 3 | Venn diagram describing overlap in OTUs in the complete
dataset.

watershed. Sediment microbial community richness was lower
at site T1 during drying conditions in August 2012 (4664; s.e.:
184) than in November 2012 (9523; s.e.: 1693), however this
pattern was also true for site P1 which had an estimated 4791
(s.e.: 276) OTUs in August and 6679 (s.e.: 1472) in November.
The number of OTUs exclusive to temporary stream site T1
was greater than either permanent stream site (Figure 6). The
proportion of shared OTUs in sediments across sampling dates
was similar in both first order streams; 30.7% of OTUs at site T1
and 34.8% of OTUs at site P1 were shared between August and
November. The microbial community at site P2 appeared to be
more stable; 56.7% of OTUswere found in both sediment samples
taken at site P2.

Network Analysis Identifies Distinct Assemblages in
Permanent and Temporary Streams
Network analysis of microbial co-occurrence patterns
incorporated a total of 167 nodes, each representing a distinct
OTU, and 1085 edges connecting these nodes. The resulting
network clusters OTUs into two groups (Figure 7). Each OTU
was labeled according to the site type—permanent, temporary
(flowing), and temporary (dry)—and assigned the maximum
sequence abundance observed among samples (Figure 7B).
The resultant clusters generated represented two distinct
communities: one associated with permanent sites, and, a second
associated with temporary sites.

The network statistics and taxonomic classification of the
OTUs with greatest degree of centrality are identified in Table 1.
High-centrality OTUs from the network cluster associated with
permanent stream sites were almost entirely members of the
Proteobacteria phylum with only one of the top ten OTUs
from this group belonging to Bacteroidetes. Seven of the ten
permanent stream OTUs were from the order Methylococcales,
which is comprised of methantrophs (Bowman, 2005). Another
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FIGURE 4 | Class level microbial taxonomic composition of sediment samples. The 10 most abundant classes are identified in the legend.

FIGURE 5 | Principal coordinate analysis (PCoA) of microbial
community composition Bray-Curtis distances between samples
based on OTU tables. Points individual microbial sediment or water column
samples. Arrows indicate temporal relationship between samples (April 2012,
August 2012, and November 2012).

permanent stream OTU that had high network centrality was
from the order Methylophilales, a group of methylotrophic
bacteria (Qiu et al., 2009). The OTU with the highest closeness
centrality was from the family Nitrosomonadaceae; a family
that exclusively includes ammonia oxidizing bacteria (Arp et al.,
2007).

In contrast to the network cluster associated with permanent
stream sites, the temporary stream cluster included a much lower
proportion of Proteobacteria OTUs. Six out of the 10most central
OTUs were from the Phylum Nitrospirae, which is dominated
by nitrite-oxidizing bacteria often found in wastewater treatment

FIGURE 6 | A venn diagram of sediment OTUs collected from sites T1,
P1, and P2 on August and November 2012.

systems (Daims et al., 2001). A heatmap of the OTUs presented
in Table 2 (Figure 8) shows that following re-wetting at site
T1 (11/2012), OTUs associated with the dry temporary stream
decreased in sequence abundance. Despite this shift there were
no concomitant increases in sequence abundances of OTUs
associated with permanent stream samples.

Discussion

Weak Relationship between Community
Composition and Drying
The Speed River and Parkers Creek have different climates
and exist in landscapes with distinct geologies, yet microbial
communities responded similarly to temporary stream drying
in both systems. Contrary to our hypothesis, results suggest
that drying events did not lead to large changes in microbial
communities in streambed sediments. Instead, for both systems,
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FIGURE 7 | Results of network analysis conducted on temporary and
permanent stream samples. Nodes represent individual OTUs and edges
represent significant spearman correlations (ρ > 0.75 and p < 0.05). Node

size is determined by weight of that node (i.e., the number of edges
connected). Nodes are color-coded according to (A) class and (B) the site
type for which that OTU is most abundant.
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TABLE 1 | Parkers Creek PCoA loadings of principal coordinate axis 1 and principal coordinate axis 2 for the taxa with greatest loadings from PCoA
displayed in Figure 4.

Taxonomy PCo-1 PCo-2 Description of Taxa

Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales;
Comamonadaceae

2.2383 −1.4288 Family Comamonadaceae have been identified as primary denitrifiers in
activated sludge (Khan et al., 2002) and associated with younger soils
following deglaciation (Nemergut et al., 2007). Multiple taxa in this family
have been identified as motile rods (Willems et al., 1991; Khan et al., 2002;
Spring et al., 2005). Also includes iron reducing bacteria (Ramana and
Sasikala, 2009).

Bacteria;Proteobacteria; Betaproteobacteria; Nitrosomonadales;
Gallionellaceae

1.1895 0.7054 Iron-oxidizing bacteria commonly found in streams (Hedrich et al., 2011;
Reis et al., 2014).

Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales;
Burkholderiaceae

0.8038 −0.6179 Found with increasing depth in soils (Sait et al., 2002). Includes pathogenic
taxa (Ulrich et al., 2006).

Bacteria; Actinobacteria; Actinobacteria; Frankiales;
Sporichthyaceae

0.7306 −0.4518 Slow growing taxa associated with compost (Normand, 2006). Grows on a
medium containing soil humic acid as the sole source of carbon (Suzuki
et al., 1999).

Bacteria; Proteobacteria; Gammaproteobacteria;
Xanthomonadales; Sinobacteraceae

−0.7111 −0.0170 Includes non-motile gram-negative taxa obtained from polluted soils (Zhou
et al., 2008).

Bacteria; Proteobacteria; Epsilonproteobacteria;
Campylobacterales; Helicobacteraceae

0.4602 0.5021 Includes potential anaerobic, nitrate-reducing taxa found in the Baltic Sea
(Labrenz et al., 2007) and wetlands in rural Spain (Ansola et al., 2014).

Bacteria; Proteobacteria; Gammaproteobacteria;
Methylococcales; CABC2E06

0.6389 0.1747 Includes type 1 methanotroph taxa that have been found in association with
iron-oxidizing bacterial communities in riparian wetlands (Wang et al., 2012)
and anoxic reservoir water (Quaiser et al., 2014).

microbial community structure was strongly tied to a location
with changes across time apparently related more to seasonal
changes than flow status. Thus, the hypothesis that temporary
stream sediment communities would resemble soil communities
during drying was also not supported as temporary stream
communities did not change substantially during drying
(Figure 2). In contrast to sediment communities, Febria et al.
(2012) found that surface and pore water communities varied
significantly within days to weeks of a re-wetting event, whereas
sediment microbial communities remained more stable over
the same time period and across seasons. Instead community
composition was more related to individual sites and site
type (i.e., soils, permanent stream sediments, temporary stream
sediments).

The weak relationship between community composition
and drying was demonstrated in both systems by comparing
communities associated with different flow regimes or sample
types (e.g., sediments from permanent vs. temporary streams,
water vs. sediments). We reported results for comparisons
between the four categories (temporary sediment, temporary
water, permanent sediment, and permanent water) and
confirmed that habitat (sediment and water) or stream type
alone (i.e., temporary and permanent) was less compelling.
Despite differences between temporary and permanent stream
microbial communities at the Parkers site, samples from
permanent sites P1 and P2 each shared as many OTUs with
temporary site T1 as with each other.

Again at the Parkers site, differences across season were
related to seasonal impacts exerted on all samples, rather

than a specific effect from stream drying (Figure 4). For
example, observed community shifts from August to November
was driven by an increase in sequences from the families
Comamonadaceae, Burkholderiaceae, Sporichthyaceae, and to a
lesser extent Gallionellaceae, and uncultured clone CABC2E06
from the order Methylococcales. There was also a decrease in
the number of sequences from the family Sinobacteraceae. These
taxonomic shifts from August to November across the study sites
suggest establishment of community assemblages associated with
iron oxidizing bacteria. Members of the family Gallionellaceae,
iron-oxidizers found in stream environments (Hedrich et al.,
2011; Reis et al., 2014), increased from summer to fall. The same
was true of the family Comamonadaceae, which includes iron-
reducing (Ramana and Sasikala, 2009) and denitrifying (Khan
et al., 2002) taxa. Another family that increased in sequence
abundance from August to November was Helicobacteraceae,
which includes potential anaerobic nitrate-reducing taxa that
have been found in high abundance in wetland sediments in
northern Spain (Labrenz et al., 2007; Ansola et al., 2014). The
sequence abundance of Methylococcales clone CABC2E06, a
methanotroph that has previously been associated with iron-
oxidizing communities also increased from August to November
(Wang et al., 2012; Quaiser et al., 2014). Similar assemblages of
bacteria have been found in in association with iron-oxidizing
bacterial communities in both riparian zones (Wang et al., 2012)
and anoxic reservoir water (Quaiser et al., 2014). While more
data are needed, this suggests that anoxic conditions near the
sediment water interface impact microbial communities in both
permanent and temporary headwater streams.
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FIGURE 8 | A heatmap of OTUs presented in Table 2. OTUs are
color-coded as in Figure 7B to indicate whether they are most common in
permanent (blue), wet temporary (green), or dry temporary (red) samples.
Samples are also color coded using the same scheme.

Muted impacts of streambed drying on microbial
community structure highlight an important question for
future research: What factors control microbial community
structure in these streams? In both systems, water column and
sediment communities were distinct from sediment microbial
communities, suggesting that dispersal via the water column
did not have a strong impact on streambed sediment microbial
dynamics. While stream drying did not have a strong impact
on microbial community composition, environmental gradients
associated with drying may play a role. Temporary streams in
both the Speed and Parkers Creek systems demonstrated higher
stream water conductivity and lower stream water dissolved
oxygen compared to permanent reaches. These differences are
seen typically in association with drying as evaporation increases
solute concentrations and low flows decrease oxygen mixing
(Boulton and Lake, 1990; Boulton, 2003). Both conductivity and
dissolved oxygen levels have been related to stream microbial
community structure in studies of other ecosystems (Lawrence
et al., 2004; Zeglin et al., 2011). This suggests that drying may
indirectly impact microbial community structure via changes to
environmental conditions.

Determining whether functional impact is tied to
environmental conditions or the microbial community
composition of a temporary headwater stream is an important
avenue of future research and beyond the scope of this study
and many studies to date. Biogeochemical function may be
related more to which fraction of the microbial community is
most active, rather than which fraction is the most numerically
abundant (Fulthorpe et al., 2008; Shi et al., 2012; Manis et al.,

2014). Such a pattern has been observed in studies attempting
to link denitrification rates to the abundance of denitrifying
taxa. Studies have failed to find a relationship between microbial
structure and denitrification rates (Iribar et al., 2008; Song
et al., 2012), including one conducted in an ephemeral stream
system (Manis et al., 2014). Comparisons between microbial
community composition and functional measurements using
RNA expression are needed to determine what proportion of
temporary stream communities are active and to uncover the
sources of functional diversity in temporary streams.

Central Microbial Associations Differ between
Temporary and Permanent Streams
While the overall microbial community structure in Parkers
Creek temporary stream sediments was largely similar to the
communities in permanent stream sediments, network analysis
revealed that different taxonomic associations were dominant
in the two types of samples. In permanent stream samples,
OTUs from the order Methylococcales and a single OTU
from the family Methylophilales were highly central to the
microbial network. Taxa from the order Methylophilales do not
oxidize methane, but experimental results have indicated that
taxa from this group utilizes byproducts of methane oxidation
from methanotrophic taxa like Methylococcales (Qiu et al.,
2009; Beck et al., 2013; Liu et al., 2014). Similar evidence
of cooperative metabolism between the Methylococcaceae and
Methylophilaceae families has also been identified (Beck et al.,
2013; Liu et al., 2014). Thus, it appears that the network
cluster identified in this study represented a community of
methanotrophs and other microbes adapted to oxidize methane
and associated compounds produced in saturated, anoxic
sediments. By contrast, the dominant microbial associations in
temporary stream sediments are among OTUs from the order
Nitrospirales, indicating that nitrite-oxidizing bacteria play an
important role in temporary stream sediments.

Multivariate analysis using Bray-Curtis distances and PCoA
demonstrated that bacterial community composition responded
weakly or not at all to temporary stream drying. Network
analysis presents a useful complement to this approach, revealing
that different microbial associations were favored in sediments
of temporary vs. permanent streams. Although analysis of
overall community composition showed little difference between
temporary and permanent stream sediments, network analysis
indicated that different assemblages were dominant in the
respective stream types and are indicative of functional
differences between temporary and permanent stream sediments.
Whether this change is representative of functional shifts must
be explored with more direct analysis. Network analysis also
revealed the presence of microbial associations between taxa
that have previously been identified experimentally. This result
highlights the utility of this approach as a screening technique to
identify previously unrecognized microbial associations.

Published Studies of Temporary Stream Microbial
Communities Yield Conflicting Results
The results reported here indicated that temporary stream drying
and rewetting is not strongly related to shifts in sediment
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microbial communities of Speed and Parkers sites. To place
these findings in context, we compared the results presented
here with the limited but growing dataset from temporary
headwater streams across the globe (Table 3). This review found
that temporary stream studies, including those reported here,
report a range of responses to changes in temporary stream flow
status.

In a study of two European temporary streams, researchers
found that the microbial community structure in sediments was
resistant to desiccation and rapidly regained function following
re-wetting, whereas sediment communities in a stream another
system did not (Marxsen et al., 2010). The authors of that study
hypothesized that microbial communities in the first stream
were protected by higher sediment moisture content (Marxsen
et al., 2010). Sediment composition, size distribution, and organic
matter content are just a few of the factors that impact sediment
drying rate (Gupta and Larson, 1979). Thus, temporary stream
pore water, which has been identified as harboring substantial
microbial diversity (Febria et al., 2012), may be an important
refuge during brief periods of drying. Given that drying periods
are predicted to lengthen with climate change (Brooks, 2009;
Palmer et al., 2009), we anticipate that the moisture retention
capacity of temporary streambed sediments will determine
how individual temporary streams respond to climate change.
Antecedent conditions may also explain seemingly contradictory
results. Fierer et al. (2003) showed that microbes from soils that
had been previously exposed to alternating wet/dry conditions
were less impacted by experimental drying and re-wetting.

In the studies reviewed, the methods employed to measure
microbial community structure or function varied; community
composition was largely measured using techniques based
on the amplification of the 16S rDNA gene including clone
library analysis (Zeglin et al., 2011), degenerating gradient
gel electrophoresis (DGGE; Frossard et al., 2013), terminal
restriction fragment length polymorphism (T-RFLP; Fierer et al.,
2003; Rees et al., 2006; Febria et al., 2012; Manis et al., 2014;
this study, Speed River), automated ribosomal intergenic spacer
analysis (ARISA; Amalfitano et al., 2008; Frossard et al., 2013),
phospholipid-derived fatty acid (PLFA) analysis (McIntyre et al.,
2009), fluorescence in-situ hybridization (FISH; Amalfitano et al.,
2008; Zoppini et al., 2010), pyrosequencing (Timoner et al.,
2014b), and Illumina MiSeq (this study, Parkers Creek). A wide
variety of PCR primers were used, the only primer pair that was
repeated across studies was 27F/1492R (Rees et al., 2006; Febria
et al., 2012, this study, Speed River; Table 3), which limited our
ability for direct comparison across systems. While inconsistent
methods may be one factor contributing to conflicting results,
it is important to note that the results obtained from these two
systems were largely similar despite different community analysis
techniques. Thus, at least some of the disparate results found
across studies is likely due to true differences in environment.

Conclusions and Future Research
In this study, community composition was weakly linked to
flow status, with variability in community structure in temporary
streams related to other factors. This adds some support to
the idea that changes in the function of temporary stream

microbes over time is a factor more of changing environmental
conditions than shifting microbial community composition. By
contrast, network analysis did show that the dominant microbial
interactions shifted with streamwetting and drying. This suggests
that a subset of the overall microbial community is more
responsive to stream flow status than the overall microbial
population. Future research should be conducted to determine
the functional impacts of these changing associations. Our review
of data from the Speed and Parkers systems and others from
around the globe suggests that research on sediment microbial
communities in temporary headwater streams is a rich but not
yet unified pursuit. Identification of key controls on microbial
community structure in temporary headwater streams hinders
efforts to develop predictive models that elucidate links between
microbial structure and function to ecosystem-scale processes
and the impacts of human actions on these processes.

Thus, future research should directly address these knowledge
gaps by identifying the factors leading to the inconsistent findings
highlighted here. We identified the following hypotheses that
may explain our results, and when tested across other systems,
may fill in critical knowledge gaps and address broader questions
about controls on microbial community structure and function
in temporary headwater streams and related water management
needs:

(1) Degree of sediment water retention, not flow status,
determines whether a temporary microbial community is
resistant to drying. Our analysis suggests that flow status
itself had marginal impact on community structure in
some temporary headwater streams but substantial impact
in other systems. Rather, the degree of sediment drying,
which is controlled by a number of factors including
sediment composition, may be a more important factor.
Prior exposure to highly variable conditions may also
play a role. Experimental studies show that soil microbial
communities previously exposed to drying change less in
response to experimental drying (Fierer et al., 2003). Studies
that directly examine these factors are needed to address this
issue.

(2) Contradictory results can be resolved by standardized field
and molecular methods. The collection of physicochemical
data including the timing and frequency of wet-dry events
is especially challenging. Our limited ability to generalize
findings across studies are due to the intermittent nature of
surface flow in these headwater systems and the resultant
lack of temporal and spatial resolution in the available
datasets. For example, in both the Speed and Parkers systems,
in situ data collection was either logistically infeasible (due
to their remote location or unpredictable surface flow
conditions), or instrumentation were either damaged or
stolen during critical periods. Moreover, the tools with
which to characterize microbial communities vary widely,
making cross-site comparisons difficult. New technology and
lowering costs promise tomake high-throughput sequencing
a standard practice and allow for more comparable datasets.

(3) Functional rates in temporary streams are more related to
environmental conditions than to community composition.
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Evidence reviewed here suggests that microbial community
structure is often similar between wet and dry conditions
even as the processing rates of some functions, such as
denitrification, change between wet and dry conditions. This
suggests that environmental changes may alter functional
processing rates of stream microbial communities, a pattern
that must be tested for other microbial functions.

Despite increasing human-induced impacts on headwater
streams, appreciation for temporary streams and the
contributions of these systems to ecosystem processes are
building. Understanding the critical drivers of microbial
community diversity and function in these systems will inform
restoration efforts focused on enhancing or supporting nutrient
cycling and food web interactions across space and time.
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