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Copy number variation (CNV) is a well-known type of genomic mutation that is associated
with the development of human cancer diseases. Detection of CNVs from the human
genome is a crucial step for the pipeline of starting from mutation analysis to cancer
disease diagnosis and treatment. Next-generation sequencing (NGS) data provides an
unprecedented opportunity for CNVs detection at the base-level resolution, and currently,
many methods have been developed for CNVs detection using NGS data. However, due
to the intrinsic complexity of CNVs structures and NGS data itself, accurate detection of
CNVs still faces many challenges. In this paper, we present an alternative method, called
KNNCNV (K-Nearest Neighbor based CNV detection), for the detection of CNVs using
NGS data. Compared to current methods, KNNCNV has several distinctive features: 1) it
assigns an outlier score to each genome segment based solely on its first k nearest-
neighbor distances, which is not only easy to extend to other data types but also improves
the power of discovering CNVs, especially the local CNVs that are likely to be masked by
their surrounding regions; 2) it employs the variational Bayesian Gaussian mixture model
(VBGMM) to transform these scores into a series of binary labels without a user-defined
threshold. To evaluate the performance of KNNCNV, we conduct both simulation and real
sequencing data experiments and make comparisons with peer methods. The
experimental results show that KNNCNV could derive better performance than others
in terms of F1-score.
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INTRODUCTION

Copy number variations (CNVs) of DNA sequences are accountable for functional phenotypic
diversity in many species and play an important role in human genomic variation and cancer
initiation (Schrider et al., 2013; Unckless et al., 2016). CNV is a commonly reported variation from
the diploid state caused by amplification or deletion of genomic regions ranging from one kilo-base
to several mega-bases (Redon et al., 2006; Li et al., 2020). In cancer, tumor-derived CNVs are one of
the most significant genomic anomalies, alongside somatic mutations and structural variations
(SVs). Tumor suppressor gene inactivation or oncogene activation are frequently ascribed to copy
number loss or gain, respectively (Yuan et al., 2012). Specifically, Gains may contain oncogenes, and
losses may include tumor-suppressor genes (Xie et al., 2021). Consequently, detecting cancer-
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associated copy number occurrences is crucial in identifying
patient subtypes, as well as providing insights into prognosis
and prospective treatment options. Fortunately, next-generation
sequencing (NGS) technology has accelerated the development of
the detection of CNVs (Teo et al., 2012), which provides greater
scope to discover novel CNVs and has a greater resolution to
forecast both breakpoints and shorter CNVs. However, owing to
the intrinsic complexity of CNVs structure and the huge scale of
NGS data, accurate detection of CNVs remains challenging.

Numerous bioinformatics tools for the detection of CNVs
from NGS data have been developed, and these algorithms can be
classified into four main categories: read-pair (RP), split-read
(SR), read-depth (RD), and de novo assembly (DA). The above
four approaches have their strengths, shortcomings, and scope of
implementation, and their details can be referred to (Zhao et al.,
2013; K. Ye et al., 2016). Among these approaches, the RD-based
strategy is most frequently used to detect CNVs, since the strategy
is theoretically more likely to detect CNVs with different sizes
(Zare et al., 2017). A great number of methods under the RD-
based strategy have been developed based on the characteristics of
NGS data. FREEC (Boeva et al., 2010; Boeva et al., 2012) considers
the RD profile from a global context and exploits the variance in
RD values to discover CNVs. When normal matched samples are
not present, FREEC can use GC-content to normalize the RD
values and accurately identify CNVs from tumor samples.
ReadDepth (Miller et al., 2011) and iCopyDAV
(Dharanipragada et al., 2018) are similar approaches. The
m-HMM (Wang et al., 2014) method considers the entire RD
profile as a Markov model and forecasts copy number states.
CNVnator (Abyzov et al., 2011) leverages the multiple-
bandwidth partitioning technique and mean-shift approach to
detect broad CNVs. GROM-RD (Smith et al., 2015) can analyze
multiple biases such as GC-bias and repeat bias and use sliding
windows with variable size to improve breakpoint resolution.

The above methods take different perspectives on the features
of CNVs, and such methods have the advantage of detecting
broad CNVs. However, the focal (i.e., local) CNVs may be
ignored. To address the above limitation, the CNV-LOF (Yuan
et al., 2021a) takes a local view on the RD values, so the method
avoids some local CNVs being masked by the surrounding
regions. To consider the correlation of copy numbers in
adjacent positions, CNV_IFTV (Yuan et al., 2021b) calculates
outlier scores based upon the isolation forest algorithm and
leverages the total variation model to smooth these scores, and
similar methods include CNV-RF (Onsongo et al., 2016) and
CONDEL (Yuan et al., 2020). In addition, IhbyCNV (Xie et al.,
2021) takes a comprehensive viewpoint on the characteristics of
CNVs, that is, the method treats CNVs detection as outlier events
from five perspectives on the RD profile to be addressed.
Although these methods exhibit their own characteristics and
advantages in different scenarios, it is still necessary to design a
simple and effective method to deal with the intrinsic complexity
of CNVs structure and NGS data itself.

With careful consideration of the challenges above, in this
paper, we propose an alternative method used for whole genome
sequencing, coined KNNCNV (K-Nearest Neighbor based CNV
detection), which can identify CNVs using NGS data. The core

module of the KNNCNV is that the outlier scores for all genome
segments are calculated solely by their kth nearest-neighbor
distances, and then these scores are converted into a
succession of binary labels through the VBGMM (Corduneanu
and Bishop, 2001; Tzikas et al., 2008). In this work, we make two
key contributions as follows.

1) The outlier score for any genome segment can be defined
based solely on its first k nearest-neighbor distances. More
specifically, the average value of these distances is regarded as
the outlier score of the genome segment, which is not only
easy to extend to other data types but also boosts the power of
detection CNVs, especially the local CNVs that are likely to be
masked by their surrounding regions.

2) This paper leverages the VBGMM to convert the outlier scores
for all genome segments into a series of binary labels that can
indicate which genome segments are CNVs. The VBGMM
can approximate the posterior distribution of these scores, so
it can also be considered as a soft clustering method, and these
binary labels are obtained without a pre-specified threshold.

MATERIALS AND METHODS

Overview of KNNCNV
The workflow of the KNNCNV method is shown in Figure 1,
which consists mainly of three steps. In the first step, a sequenced
sample and a reference genome are taken as the input data. The
second step is preprocessing, including the read alignment, read
count (RC) preprocessing, and read depth (RD) profile
generation and segmentation. In the third step, the outlier
score for each genome segment is calculated by the k-nearest
neighbor (KNN) (Ramaswamy et al., 2000; Angiulli and Pizzuti,
2002), and these scores are converted into binary labels via the
VBGMM (Corduneanu and Bishop, 2001; Tzikas et al., 2008). In
addition, the KNNCNV is implemented in Python and R
language, which is freely available at https://github.com/
BDanalysis/KNNCNV.

Preprocessing
After obtaining a sequenced sample (i.e., a Fastq file) and a
reference genome (i.e., a Fasta file), the sequenced sample is
aligned to the reference genome with the BWA algorithm (Li and
Durbin, 2010). Then the alignment result is extracted by the
SAMtools software (Li et al., 2009), and the RC profile, which is
SAM or BAM format, is obtained. The preprocessing of the RC
profile includes the preprocessing of the reference genome,
generating the genome bins, and correcting the GC-bias. The
reference genome has some problems with missing positions and
‘N’ positions. In this paper, the missing positions are filled with
zeros, and the ‘N’ positions are removed. As for generating the
genome bins, the RC profile is partitioned into continuous and
disjoint genome bins with the same length Lb (i.e., the bin size Lb
equals 1,000 bp). The average RC value for each genome bin is
regarded as its RD value, and simultaneously the fraction of GC-
content can be obtained. In terms of the GC-bias, it is corrected
by the prior work (Yuan et al., 2021a). Owing to the correlations
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between adjacent bins (Yuan et al., 2018; Yuan et al., 2021a),
segment-based units have some advantages over bin-based ones
in both computational cost and reliable results. Therefore, the
whole genome is divided into continuous and non-overlapping
regions with the same length Lr (i.e., the region size Lr is equal to
50,000 bp), and then each region is segmented by the circular
binary segmentation (CBS) algorithm (Venkatraman and Olshen,
2007). Thus, a family of genome segments that are different in size
are generated in each region, and the number of genome
segments relies on the fluctuation of the RD values. Let the
number of all genome segments generated by all regions be N,
hence all genome segments are denoted as
R � [r1, r2,/, rN]T ∈ RN×1, where ri represents average RD
values for all genome bins in the ith genome segment, and
[·]T is a transposed matrix.

Calculating Outlier Score for Each Genome
Segment by the KNN
After the above preprocessing, the RD values for all genome
segments (i.e., R) can be obtained. Next, to estimate the degree of
abnormality (i.e., outlier score) of each genome segment, we
resort to the k-nearest neighbor (KNN) method (Ramaswamy
et al., 2000; Angiulli and Pizzuti, 2002), which is a distance-based
method and naturally assumes that the k-nearest neighbor
distance of outliers (i.e., CNVs) is much larger than that of
normal points. To simplify the representation, we use k to
denote the number of nearest neighbors for any object. Before
the introduction of calculating the outlier score by the KNN, we
first describe two definitions. Note that Definitions 1 refers to
prior work (Breunig et al., 2000; Yuan et al., 2021a), and similarly,
Definition 2 refers to (Ramaswamy et al., 2000; Angiulli and
Pizzuti, 2002; Aggarwal, 2017).

Definition 1 (k-distance and k-nearest neighborhood for any
object r) Given the RD values for all genome segments R �
[r1, r2,/, rN]T ∈ RN×1 and a positive integer k, the k-distance
for any r ∈ R to the remaining ones can be defined as
k − distance(r) � distance(r, e), where e ∈ R, and distance (r, e)
denotes the Euclidean distance between objects r and e. Moreover,
among all objects inR, e is an object that is the kth nearest neighbor to
r. The k-nearest neighborhood for any object r ∈ R can be formulated

as Nk(r) � {t|distance(r, t)≤ k − distance(r), t ∈ R, t ≠ r}. Thus,
the first k nearest-neighbor distances between the object r and the
rest can be expressed as {distance(r, t)|t ∈ Nk(r)}.

Definition 2 (outlier score for any object r) Knowing the RD
values for all genome segments R � [r1, r2,/, rN]T ∈ RN×1 and
a positive integer k, the outlier score for any object r ∈ R can be
defined as 1/|Nk(r)|∑t∈Nk(r)distance(r, t), where |Nk(r)|
denotes the cardinality of the set Nk(r), and 0≤ |Nk(r)|≤ k.
Furthermore, see Definitions 1 for more information on
distance(r, t) and Nk(r). Note that the above scheme for
calculating outlier scores is referred to as the average outlier
score scheme.

From the above definitions, it is obvious that Euclidean
distances between all pairwise objects must be calculated to
obtain the k-nearest neighborhood for all objects in R. The
computational overhead O(N2) increases significantly with the
increase of N, where N denotes the number of genome segments.
To partially circumvent this problem, a space-partitioning tree
data structure, k-dimensional tree (KDTree) (Ramasubramanian
and Paliwal, 1992), is adopted to search the k-nearest
neighborhood for any objects in R. On utilizing the KDTree,
its computational cost is O(N logN). Next, this paper introduces
how to estimate the outlier score for each genome segment via the
KNN method. Given the RD values for all genome segments R �
[r1, r2,/, rN]T ∈ RN×1 and a positive integer k, the outlier score
sr for any object r ∈ R can be obtained by Definition 2. More
exactly, the score sr is defined as the average value among its first
k nearest-neighbor distances. Additionally, there are two simple
variations of the scoring mechanism corresponding to the largest
outlier score scheme and the median outlier score scheme
(Aggarwal, 2017). Precisely, for any object r ∈ R, the two
simple variations treat the largest and median value among
the first k nearest-neighbor distances as its outlier score,
respectively. Nevertheless, the two simple variations neglect or
hardly consider the information of other nearest neighbors,
which may yield unstable performance when the k value is not
reasonable. Therefore, this paper adopts a more robust average
outlier score scheme to estimate the outlier score for any object in
R. It is noteworthy that, among these three outlier score schemes,
a ‘correct’ k value should be specified in advance (Aggarwal,

FIGURE 1 | Workflow of the KNNCNV method.
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2017). However, in the detection of CNVs, it is difficult to search
for a ‘correct’ k value due to the lack of ground truth. To partially
bypass this issue, one specifies a range of values of k and then
leverages random strategy to determine a final k value. More
specifically, the integer k is randomly selected in the range of
[0.2N, 0.35N], and k is rounded down. Accordingly, outlier
scores for all genome segments (i.e.,
S � [s1, s2,/, sN]T ∈ RN×1) are obtained through the average
outlier score scheme, as shown in Definition 2.

Inferring CNVs Based on the Scores via the
VBGMM
Although outlier scores for all genome segments are obtained,
these scores cannot be directly used to determine which genome
segments are CNVs. A simple solution is that after the outlier
scores are ranked in descending order, the solution treats the
genome segments corresponding to the first n scores as CNVs,
and the solution is called a simple threshold scheme in this paper.
Although converting these scores into binary labels is feasible by
the simple threshold, it is difficult to define a reasonable n value
owing to the absence of ground truth. To address this issue, the
variational Bayesian Gaussian mixture model (VBGMM)
(Corduneanu and Bishop, 2001; Tzikas et al., 2008) is adopted
to convert the outlier scores into a series of binary labels. The
VBGMM can approximate the posterior distribution of these
scores, so the method can also be considered as a soft clustering
method, and these labels are obtained without a user-defined
threshold.

This paper first introduces the Gaussian mixture model
(GMM) (Bishop, 2007), which assumes that the distribution of
S can be represented by the linear superposition of M Gaussian
distributions (i.e., component). Let αm and N (S|μm, σ2m) be the
mixing coefficient and the probability density of the mth
component, respectively, where μm and σ2m represent the mean
and variance. Note that we use μ to denote the set {μ1, μ2,/, μM},
and similarly for σ2 � {σ21, σ22,/, σ2M} and α � {α1, α2,/, αM}.
Thus, the mixture distribution of the ith outlier score si can be
formulated as Eq. 1.

p(si∣∣∣∣α, μ, σ2) � ∑M

m�1αmN (si∣∣∣∣μm, σ2
m). (1)

The left and right sides of Eq. 1 integrate si at the same time.
0≤ αm ≤ 1 and ∑M

m�1αm � 1 are obtained due to p(si|α, μ, σ2)≥ 0
andN (si|μm, σ2m)≥ 0. To calculate the parameters of μ, σ2, and α,
binary latent variables are introduced, which can be defined as
Z � {zim|1≤ i≤N, 1≤m≤M,zim ∈ {0, 1}}, where ∑M

m�1zim � 1,
and zim � 1 means that si is sampled from the mth
component. Therefore, the marginal distribution of Z can be
formulated as Eq. 2.

p(Z|α) � ∏
N

i�1
∏
M

m�1
αzimm . (2)

To simplify some representations, let θ be {Z, μ, σ2}. Given the
parameters θ, the conditional probability of S can be formulated
as Eq. 3.

p(S|θ) � p(S∣∣∣∣Z, μ, σ2) � ∏
N

i�1
∏
M

m�1
N (si∣∣∣∣μm, σ2m)zim . (3)

According to Bayes’ theorem, after the si is observed, the
posterior distribution p(zim � 1|si) from themth component can
be formulated as Eq. 4.

p(zim � 1|si) � p(si|zim � 1)p(zim � 1)
p(si) � αmN (si∣∣∣∣μm, σ2m)

∑M
m�1αmN (si∣∣∣∣μm, σ2

m)
,

(4)

where p(zim � 1|si) is also referred to as the responsibility
c(zim) of themth component to si, that is, c(zim) � p(zim � 1|si).
Given the mixing coefficients and the parameters of components,
the likelihood function can be formulated as Eq. 5.

p(S∣∣∣∣α, μ, σ2) � ∏
N

i�1
[∑M

m�1αmN (si∣∣∣∣μm, σ2m)]. (5)

On obtaining the likelihood function, the parameters of the
GMM can be estimated by using the maximum likelihood
framework of expectation maximization (EM) algorithm (Zandi
et al., 2013). However, the likelihood function may lead to
singularities, that is, one or more component density collapses
onto specific data (Bishop, 2007). Therefore, this paper utilizes the
VBGMM to infer CNVs based on the outlier scores for all genome
segments. Precisely, the VBGMM uses a simpler distribution q(θ)
to estimate the true posterior distribution p(θ|S, α) and then
maximizes the evidence lower bound (ELOB) on lnp(S|α).

Next, the details of the VBGMM are described in the
following. By Bayes’ theorem, we have:

lnp(S|α) � lnp(S, θ|α) − lnp(θ|S, α)
� [lnp(S, θ|α) − ln q(θ)] − [lnp(θ|S, α) − ln q(θ)]
� ln

p(S, θ|α)
q(θ) − ln

p(θ|S, α)
q(θ) ,

(6)

the left and right of Eq. 6 calculate the expectation to q(θ) at the
same time, thus Eq. 7 is obtained.

lnp(S|α) � ∫ q(θ) lnp(S, θ|α)
q(θ) dθ

︸���������︷︷���������︸
L(q)

−∫ q(θ) lnp(θ|S, α)
q(θ) dθ

︸����������︷︷����������︸
KL(q|p)

� L(q) +KL(q∣∣∣∣p),
(7)

where L(q) denotes the ELOB on lnp(S|α), and KL(q|p)
denotes the Kullback-Leibler divergence between q(θ) and
p(θ|S, α). Since KL(q|p)≥ 0, the ELOB L(q) is less than or
equal to lnp(S|α). The goal of the VBGMM is to select a
reasonable q(θ) to approximate the true posterior distribution
p(θ|S, α), that is, minimization KL(q|p). Of course, the ideal
state is KL(q|p) � 0, in other words, q(θ) � p(θ|S, α) and
lnp(S|α) � L(q). Additionally, the lnp(S|α) is fixed relative to
the selection of q(θ), so minimizing theKL(q|p) is equivalent to
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maximizing the ELOB L(q). To simplify this problem, it is
assumed that the q(θ) follows the mean field theory (Bishop,
2007). Accordingly, the q(θ) can be formulated as
q(θ) � ∏jqj(θj) � qZ(Z)qμ(μ)qσ2(σ2). By maximizing the
ELOB on lnp(S|α), the solution of variational posterior qj(θj)
can be formulated as Eq. 8.

qj(θj) � expEl≠j[lnp(S, θ|α)]
∫ expEl≠j[lnp(S, θ|α)]dθj, (8)

whereEl≠j[·] represents the expectations with respect to ql(θl) for
all l ≠ j. Refer to prior works (Corduneanu and Bishop, 2001;
Tzikas et al., 2008) for the specific derivation process. In addition,
according to previous work (Corduneanu and Bishop, 2001), the
joint distribution p(S, θ|α) can be formulated as Eq. 9.

p(S, θ|α) � p(S, Z, μ, σ2
∣∣∣∣α) � p(S∣∣∣∣Z, μ, σ2)p(Z|α)p(μ)p(σ2),

(9)

where p(μ) and p(σ2) follow the Gaussian distribution and the
Wishart distribution, respectively. Their specific forms refer to
(Corduneanu and Bishop, 2001). Thus, considering Eqs. 2, 3, 8, 9
jointly, the iterative formula of the variational posterior qj(θj)
can be formulated as Eq. 10.

qZ(Z) � ∏
N

i�1
∏
M

m�1
hzimim

qμ(μ) � ∏
M

m�1
N (μm

∣∣∣∣∣bmμ , σ2m(μ))

qσ2(σ2) � ∏
M

m�1
W(σ2

m

∣∣∣∣∣v(m)
σ2 , V(m)

σ2 ),

(10)

where W represents the Wishart distributions. For more
information on him, bmμ , σ

2
m(μ), v(m)

σ2 , and V(m)
σ2 , please refer to

(Corduneanu and Bishop, 2001). After obtaining these variational
posteriors, the ELOB L(q) is also obtained. Next, let the partial
derivative of ELOB L(q) with respect to α be zero, so the iterative
formula of α can be formulated as Eq. 11.

αm � 1
N

∑N

i�1him, (11)

note that details on him can be obtained by referring to previous
work (Corduneanu and Bishop, 2001). The maximum
likelihood framework of the EM algorithm is summarized as
the following two steps. In the expectation step, the solutions of
variational posterior qj(θj) are calculated by Eq. 10. In the
maximization step, the iterative formula of α is obtained by
maximizing the ELOB L(q) with respect to α. Repeat the above
expectation and maximization steps until the stop condition is
met (e.g., the maximum number of iterations is reached).

On the basis of the above introduction, one can find a q(θ) to
approximate the true posterior distribution p(θ|S, α). Thus, the
outlier scores S can be composed of M clusters, and each cluster
corresponds to a component. The cluster index λi for any score si
can be defined as Eq. 12.

λi � argmax{cim
∣∣∣∣1≤m≤M}, (12)

where argmax {·} denotes the index corresponding to the
maximum value in the set {·}. Consequently, the VBGMM can
be regarded as a soft clustering method (Tzikas et al., 2008). Since
the outlier scores indicate the anomaly degree of each genome
segment, each segment is either a CNV or a normal one. Thus, let
M equal two, that is, it is assumed that the distribution of S can be
represented by the linear superposition of two Gaussian
distributions. Note that the VBGMM is implemented by
scikit-learn (Pedregosa et al., 2011), and the detailed
architecture of the VBGMM is described in Algorithm 1.

Algorithm 1: Converting outlier scores into binary labels by the VBGMM

RESULTS

To evaluate the performance of KNNCNV, we conduct
experiments on simulated and real datasets. As for the
experiments on the simulated datasets and real blood datasets,
we first make comparisons between the proposed method and
peer methods and then discuss the influence of the
hyperparameter k on the result of KNNCNV. Finally, we
explore the effectiveness of each part of the KNNCNV. In
addition, the performance of the above methods is quantified
by precision, sensitivity, and F1-score, where precision � TP/PP,
and sensitivity � TP/P, and F1-score is the harmonic mean
between the precision and sensitivity. Here TP denotes the
number of duplicate genomic positions between the declared
CNVs and confirmed CNVs, and PP represents the total number
of genomic positions in the declared CNVs, and similarly, P is the
total number of positions in the confirmed CNVs. In terms of the
real cancer datasets, the comparison of our method with peer
methods is made in terms of the overlapping density score (ODS)
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(Yuan et al., 2020). To fairly compare our method with existing
ones, their default parameters are used. Note that the
performance of the KNNCNV on a third-generation
sequencing sample is shown in Supplementary Table 1.

Simulation Studies
The simulated datasets were generated by the IntSIM (Yuan et al.,
2017), and two key parameters (i.e., tumor purity and coverage
depth) should be specified. In each simulated configuration, the
tumor purity ranged from 0.2 to 0.4 in increments of 0.1, and the
coverage depth belonged to the set {4x, 6x}. In addition,
chromosome 21 of hg19 was selected as the reference genome.
To simplify the representations, we use (p, cov) to represent the
tumor purity and coverage depth, respectively. Note that each
simulated configuration was repeated fifty times to reduce the
randomness of the experiments, and their average performance
was reported.

To show the effectiveness of the KNNCNV, the comparisons of
the KNNCNV with five existing methods are shown in Figure 2,
and these existingmethods include CNVnator (Abyzov et al., 2011),
FREEC (Boeva et al., 2010; Boeva et al., 2012), CNV_IFTV (Yuan
et al., 2021b), CNV-LOF (Yuan et al., 2021a), and GROM-RD
(Smith et al., 2015). One can observe that the sensitivity of our
method outperforms other methods except for Figure 2F.
Furthermore, although the KNNCNV is not very prominent in
precision and sensitivity, it achieves a surprised F1-score compared
to these existing methods. More precisely, in terms of F1-score, the
KNNCNV is about 14.33%, 14.28%, 13.84%, 9.07%, 12.64%, and
5.28% higher than the highest existing methods, respectively.

The KNNCNV involves some hyperparameters including bin
size, region size, and the number of nearest neighbors (i.e., k).
Among them, only the k value has been carefully researched, so
Figures 3A–C show the variation of different outlier score schemes
generated by the KNN with the number of nearest neighbors,
respectively. The results indicate that the median outlier score
scheme and the largest scheme may yield unstable performance
when the k value is not reasonable, and the average outlier score
scheme is relatively insensitive to the k value when it reaches a
certain value. Additionally, we study the effectiveness of the
VBGMM (Corduneanu and Bishop, 2001; Tzikas et al., 2008).
The comparison of the VBGMM with other threshold selection
strategies is shown in Figure 3D, and these threshold selection
strategies consist of some simple threshold schemes, boxplot (Sim
et al., 2005), and GMM (Bishop, 2007; Aggarwal, 2017). Note that
the boxplot scheme treats the upper fence of the boxplot as CNVs,
and its whisker is 0.75. It can be seen that the GMM and the
VBGMM outperform other strategies for cov � 4x. Although the
boxplot scheme ranks first for cov � 6x, the one is less stable than
the GMM and the VBGMM. Furthermore, a simple threshold
scheme is also desirable when a suitable threshold is found, but
it is difficult to find such a threshold in real-world applications.
To further discuss the complexity of the proposed method, the
computational cost and performance of five methods vary with
the number of BAM files, as shown in Figures 4A,B, and these
five methods include CNVnator, FREEC, CNV_IFTV, CNV-
LOF, and KNNCNV. The results show that the KNNCNV not
only has promising performance, but also its computing
overhead is acceptable.

FIGURE 2 |Comparison of the KNNCNVwith five peer methods on the simulated datasets in terms of precision, sensitivity, and F1-score. The F1-score is shown in
black dashed lines ranging from 0.1 to 0.9 with an increment of 0.1. (A–F) They show the performance of the above six methods on different simulated configurations,
respectively.
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Application to Real Datasets
Analysis of Blood Samples from the 1,000 Genomes
Project
The real blood samples consist of NA12878, NA12891, NA12892,
NA19238, NA19239, and NA19240, where the first three samples

come from the CEU trio of European ancestry and the remaining
three from the YRI trio of Yoruba Nigerian ethnicity. Note that
each trio includes two parents and one daughter, and the above
six samples can be obtained from the 1,000 Genomes Project
(http://www.1000genomes.org). Each real sequencing sample was

FIGURE 3 | F1-score on the simulated datasets. (A-C) Variation of different outlier score schemes generated by the KNN with the number of nearest neighbors,
where 1–20 denote 0.05, 0.10, 0.15N, . . . , 0.95N, and 1.00N, respectively. The different outlier score schemes are the median outlier score scheme (A), the largest
outlier score scheme (B), and the average outlier score scheme (C). (D)Result with different threshold selection strategies under the framework of our method, where the
‘top n’ denotes a simple threshold, and n belongs to the set {0.05, 0.10, 0.15, 0.20, 0.25N}. Specifically, after the outlier scores are ranked in descending order, the
scheme treats the genome segments corresponding to the first n scores as CNVs. Note that 1–20 and n are rounded down.

FIGURE 4 | Comparison of the KNNCNV with four peer methods on the simulated datasets in terms of F1-score and computational cost. (A) Performance of the
five methods with different the number of BAM files. (B) Variation of running time of the five methods with the number of BAM files.
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repeated twenty times on the 21st chromosome, and their
average performance was reported. The confirmed CNVs of
these samples can be obtained from the database of genomic
variants (http://dgv.tcag.ca/dgv/app/home), which can help us
calculate some performance metrics, such as precision, sensitivity,
and F1-score.

As shown in Figure 5, we make comparisons between the
KNNCNV and five peer methods on the six real datasets. It can be
observed that our method achieves the best F1-score,
outperforming the highest existing method by 19.57%, 21.45%,
11.50%, 6.61%, 7.17%, and 11.00%, respectively. Furthermore, the
precision of our method also significantly outperforms these peer
methods. Additionally, the precision of many methods is
unsatisfactory compared to Figure 2 since there is a certain
deviation between the simulated and real datasets. Specifically,
due to the complexity of realistic cancer genomes, the simulated
datasets cannot accurately reflect the variant distributions and
correlations of the real datasets and do not take into account
insertion and deletion errors.

To verify the effectiveness of each part of the KNNCNV, the
hyperparameter k, other threshold selection strategies, different
outlier score schemes generated by KNN, and other detector
schemes are discussed. The variation of the KNNCNV with the
number of nearest neighbors is shown in Figure 6A. The result
illustrates that the performance of the KNNCNV is less sensitive
to the k value when it reaches a certain value. Furthermore, our
method has slight fluctuations in performance for k � 1.00N, as
some local CNVs may be ignored. Figure 6B shows the result
with different threshold selection strategies under the framework
of our method, and these threshold selection strategies contain
some simple threshold schemes, boxplot, GMM, and VBGMM.

One can observe that in addition to a single simple threshold
scheme, the VBGMM is significantly better than other threshold
selection strategies. Additionally, although the simple threshold
scheme (i.e., top n) is promising when a suitable n value is found,
such as ‘top 0.10N’ onNA12878 and ‘top 0.05N’ onNA19239, it is
a challenge to determine the n value in real-world applications.
To prove the effectiveness of the KNN detector, the comparison
of the KNN with the LOF (Breunig et al., 2000) and the IF (Liu
et al., 2012) detector is shown in Table 1. ‘Detector + VBGMM’
denotes that Detector calculates the outlier scores for all genome
segments, and these scores are transformed into binary labels by
the VBGMM. Note that the input of Detector is the RD values for
all genome segments (i.e., R), and * represents the KNNCNV.
Here the highest value in each column is highlighted. The result
indicates that KNN outperforms LOF and IF except for NA12891
and ranks first in the average performance among the six real
datasets.

Analysis of Cancer Samples from the European
Genome-Phenome Archive
The cancer samples involve a lung cancer sample (i.e.,
EGAD00001000144_LC) and two ovarian cancer samples (i.e.,
EGAR00001004802_2053_1 and EGAR00001004836_2561_1),
and they can be obtained from the European Genome-
Phenome Archive (https://ega-archive.org/). These samples are
genome-wide samples (22 autosome chromosomes) and have no
confirmed CNVs (i.e., ground truth). Thus, the performance of
methods cannot be quantified by the precision, sensitivity, and
F1-score. As a remedy, the ODS is adopted to quantify the
performance of methods, and the ODS for the jth method can
be formulated as Eq. 13.

FIGURE 5 |Comparison of the KNNCNVwith five peer methods on the real datasets in terms of precision, sensitivity, and F1-score. The F1-score is shown in black
dashed lines ranging from 0.1 to 0.9 with an increment of 0.1. (A-F) They show the performance of the above six methods on six real datasets, respectively.
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ODS(j) � m(j)cnv ·m′(j)cnv, (13)

where the definitions of m(j)cnv and m′(j)cnv refer to the prior
work (Yuan et al., 2020). The comparison of the KNNCNV with
peer methods on the three genome-wide samples (22 autosome
chromosomes) is shown in Table 2, and these peer methods
consist of CNVnator, FREEC, CNV_IFTV, and CNV-LOF. Here
the highest value in each row is shown in bold. The result
illustrates that in samples EGAD00001000144_LC and
EGAR00001004836_2561_1, the KNNCNV outperforms peer
methods and ranks second in the remaining sample. In
addition, our method achieves the highest average ODS
among the three genome-wide samples.

DISCUSSION

This paper proposes a new method used for whole genome
sequencing, called KNNCNV, which can detect CNVs using
NGS data. The KNNCNV first calculates the outlier score for

any genome segment based solely on its first k nearest-neighbor
distances. Specifically, the average value of these distances is
considered as the outlier score for the genome segments.
Finally, based on the VBGMM, these scores for all genome
segments are converted into a succession of binary labels to
indicate which genome segments are CNVs. Note that the
outlier score calculation schemes for KNNCNV and CNV-
LOF (Yuan et al., 2021a) are all based on the first k nearest-
neighbor distances between a genome segment and the remaining
ones. The difference between these two types of scores is that the
KNNCNV treats solely the average value of the first k nearest-
neighbor distances as its scores, while the scores of CNV-LOF
require the further calculation of reachability distance, local
reachability density, and local outlier factor. Thus, in contrast
to CNV-LOF, KNNCNV is not only simpler but also has less
computing overhead. Compared to the existing methods, the
KNNCNV has two key features: 1) the outlier score for any
genome segment can be obtained by the average outlier score
scheme, which is not only easy to extend to other data types but
also improves the power of detection CNVs, especially the local

FIGURE 6 | Performance of the KNNCNV in terms of F1-score on the six real datasets. (A) Performance of our method with different the number of nearest
neighbors, where 1–20 denote 0.05, 0.10, 0.15N, . . . , 0.95N, and 1.00N, respectively. (B) Result with different threshold selection strategies under the framework of our
method, where D1-D6 denote NA12878, NA12891, NA12892, NA19238, NA19239, and NA19240, respectively. Additionally, the ‘top n’ represents a simple threshold
scheme, and n belongs to the set {0.05, 0.10, 0.15, 0.20, 0.25N}. Specifically, after the outlier scores are ranked in descending order, the scheme treats the
genome segments corresponding to the first n scores as CNVs. Note that 1–20 and n are rounded down, and N is the number of genome segments.

TABLE 1 | F1-score on six real blood datasets.

Methods NA12878 NA12891 NA12892 NA19238 NA19239 NA19240 Average

IF + VBGMM 0.3790 0.1553 0.4247 0.5455 0.3764 0.3015 0.3637
LOF + VBGMM 0.6424 0.6453 0.6813 0.6906 0.6290 0.5968 0.6476
KNN + VBGMM* 0.8068 0.6325 0.8194 0.8658 0.6449 0.6444 0.7356

TABLE 2 | ODS on three genome-wide samples (22 autosome chromosomes).

Sample CNVnator FREEC CNV_IFTV CNV-LOF KNNCNV

EGAD00001000144_LC 0.0062 0.0026 0.0212 0.1452 1.1204
EGAR00001004802_2053_1 0.1176 0.1488 3.4559 10.5594 8.6538
EGAR00001004836_2561_1 0.6182 2.4948 0.9263 2.8583 5.6250
Average 0.2473 0.8821 1.4678 4.5210 5.1331
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CNVs that are likely to be masked by their surrounding regions;
2) the posterior distribution of these scores is approximated by
the VBGMM, which can obtain a series of binary labels without a
pre-determined threshold.

We conduct experiments on simulated and real datasets to
show the effectiveness of the KNNCNV. The comparisons of our
method with peer methods are made, and the results show that
the KNNCNV achieves encouraging performance in terms of F1-
score. In addition, we verify the effectiveness of each part of the
KNNCNV. The results indicate that the VBGMM is an effective
threshold selection strategy, and the KNN is a simple and effective
detector. Therefore, the KNNCNV might become a promising
tool for the detection of CNVs.

As for the potential disadvantages of our method, when
calculating the outlier scores for all genome segments, there is a
natural assumption that the k-nearest neighbor distance of outliers
(i.e., CNVs) is much larger than that of normal points. In other
words, it assumes that the CNVs regions only account for a small
fraction of the whole genome. However, the CNVs regions may
cover a large fraction of the whole genome in some cancers, so the
KNNCNV may not detect CNVs accurately in that case. In future
work, we would be dedicated to solving the case that the CNVs
regions account for a large proportion of the whole genome.
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